Chapter 2 Parameter Estimation of

Certain Three parameter
Nonlinear Growth Models

2.1  Introduction

The three parameter non-linear models namely Monomolecular, Gompertz and
Logistic are commonly used to determine the growth and development of various
systems [[45], [46]]. These models are particular cases of the generalized Chapman-
Richards model [52]. Many forestry researchers made extensive and profound studies
on these models [[22], [52], [89], [91]]. In this Chapter, the growth models
Monomolecular, Gompertz and Logistic, which are widely used by forestry scholars,

are fitted by estimating the parameters using various methods of estimations.

Logistic Growth Model: Logistic model was developed by Belgian mathematician
Pierre Verhulst, who suggested that the rate of population increase may be limited,
that is, it may depend on population density. At low densities, the population growth
rate is high. Population growth rate declines with population numbers. The dynamics

of the population is described by the differential equation:
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dw/dt
A—w

= bo + blw, (21)

where by, b; are constants and w and t are the dependent and independent

respectively. The solution of the differential equation is-

exp{(bo + by A)t} = B(w + by/b;1) (A —w) ™.

If w(—o) =0, b, must be zero. Hence the logistic growth model is given by

A

WO = T B exp(—kD))

(2.2)

where k = b; A is related to the rate of increasing of w, A is the upper asymptote and
B is a location parameter [57]. The curve of the model (2.2) is S-shaped and all the
parameters are positive. Also the shape of the curve is symmetric about its point of
inflection [18].

Monomolecular growth Model: The mathematical representation of Monomolecular
growth is borrowed from physical chemistry, where it describes a first order
irreversible chemical reaction. In plant nutrition and soil fertility, it is also known as
the Mitscherlich growth. The monomolecular model has no inflection point and the

growth rate decreases linearly as size increases. Then,

dw
i k(A —w), (2.3)
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where w is the expected size of an organism at time t, A represents the limiting size of
the organism and k is the growth rate parameter [18]. From this differential equation,

the required model may be written as

w(t) = A(1 — B exp(—kt)), (2.4)

where g is the biological constant.

Gompertz Growth Model: The Gompertz Model named after Benjamin Gompertz
(1779 — 1865). Gompertz model is a sigmoid function. The Gompertz equation arises
from models of self-limited growth where the rate decreases exponentially with time.
The model was first introduced to describe the growth in the number of tumor cells
which usually follows a sigmoidal growth pattern. The model can be derived by

solving the differential equation

dw

Frie kw log (%) (2.9)

By integrating (2.5), the Gompertz model is obtained as

w(t) = Aexp(—p exp(—kt)), (2.6)

where w is the number of tumor cells at time t, A > 0 is the upper limit, # > 0 is the
biological constant, k > 0 is the parameter governing the rate at which the response
variable approaches its potential maximum [[22], [42]].Although this curve is a S-
shaped like the logistic, it is not symmetrical about its point of inflection [18].

Nonlinear models are more difficult to specify and estimate the parameters than linear
models. But for prediction purpose, it is very important to distinguish these

parameters properly. Lots of methods of estimation were developed by various
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authors [[55], [57], [76]]. The aim of the study is to estimate the parameters of the
models by using various methods of estimation. By selecting an appropriate method
of estimation, the best fit model is selected based on five sets of well-known forestry
data sets. Also the proper initial (guess) value specification plays a very important
role in parameter estimation of nonlinear models using iterative methods. The first
four methods of this study provide the initial value specification for the parameters of

Monomolecular, Gompertz and Logistic growth models.

2.2  Objective

The aim of this chapter is to develop a suitable method of estimation to estimate the
parameters of Monomolecular, Gompertz and Logistic growth models. Five well-
known forestry data are used for testing the validity of the proposed methods based on

the certain statistical selection criteria.

2.3 Methods and materials
The maximum diameter data and top height growth of babul (Acacia Nilotica) tree

are used for testing the validity of the methods. These two sets of data, presented in
Table 2.1, were based on the analysis of sample plot data of Uttar Pradesh,
Maharashtra and Madhya Pradesh [37]. The top height age, the cumulative basal area
production and the mean diameter at breast height data, originated from the Bowmont
Norway spruce thinning experiment, sample plot 3661 [[21], [22]] are also used.
These data sets are repeatedly measured on a five-year cycle from age 20 to 64 and
are presented in Table 2.2.

Table 2.1: Top height and Maximum diameter growth data of Babul tree in India.

Age (year) 5 10 15 20 25
Top height(m) 8.14 12.19 1493 16.70 17.98
Maximum diameter (cm) 12,19 20.83 26.92 3149 34.29
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Table 2.2: Top height, cumulative basal area production and mean diameter at breast
height growth data from Bowmont Norway spruce thinning experiment,

sample plot 3661.

Age (year) 20 25 30 35 40 45 50 55 60 64

Top height (m) 7.3 90 109 126 139 154 169 182 190 20

Cumulative basal
area production 3799 49 6041 6891 78.73 89.83 986 107 1148 119.54
(m?*)

Mean diameter at

. 8.40 1040 12.35 14.74 17.13 1950 21.49 2382 2555 26.50
breast height (cm)

2.3.1 Stationarity of the data

A stochastic process is said to be stationary if its mean and variance are constant over
time and the value of covariance between two time periods depends only on the
distance between the two time periods and not on the actual time at which the
covariance computed [33]. In this work, theoretical correlogram and Augmented
Dickey-Fuller (ADF) unit root test have been used to check the stationarity of the
data. The autocorrelation function (ACF) and partial autocorrelation function (PACF)
of the data sets are plotted from Figure 2.1 to Figure 2.10.
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Figure 2.3: ACF of Maximum diameter
growth data of Babul tree in India
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Figure 2.5: ACF of top height growth
data from Bowmont Norway spruce
thinning experiment.
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Figure 2.7: ACF cumulative basal area
production data from Bowmont Norway
spruce thinning experiment.
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Figure 2.9: ACF of mean diameter at
breast height growth data from Bowmont
Norway spruce thinning experiment.
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Figure 2.4: PACF of Maximum diameter
growth data of Babul tree in India
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Figure 2.6: PACF of top height growth
data from Bowmont Norway spruce
thinning experiment.
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Figure 2.8: PACF of cumulative basal
area production data from Bowmont
Norway spruce thinning experiment.
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Figure 2.10: PACF of mean diameter at
breast height growth data from Bowmont
Norway spruce thinning experiment.



From the Figure 2.1 to Figure 2.10 it is clear that all the data sets presented in Table
2.1 and Table 2.2 have seasonal effect. Now the Augmented Dickey-Fuller (ADF)
unit root test has been used to check the stationarity of the data sets, which are
presented in Table 2.3. From Table 2.3, it is observed that, for all data sets, the
p —values are less then 5%. It means that, the null hypothesis H,, considering the
process is a unit root, can be rejected. For top height and maximum diameter growth
data of Babul tree, unit root test is not applicable due to less number of observations.
Although, in case of small data set, variables are relatively stationary in short term.
And hence, all the data sets presented in this work are stationary.

Table 2.3: p — values of ADF test for different data sets.

Data p — value
Top helg.ht growth dfalta from Bowmont Norway 0.008173
spruce thinning experiment.
Cumulative basal area pI:Odl.JCtlon dgta from 0.000002
Bowmont Norway spruce thinning experiment
Mean diameter at breast height growth data from 0.01491
Bowmont Norway spruce thinning experiment '

2.3.2 Method of estimation

The Monomolecular, Gompertz and Logistic nonlinear growth can be expressed as:

w; = f(ti' B) + &, (27)

i =1,2,---,n, where n be the number of observations, w is the response variable, t is
the independent variable, B is the vector of parameters A, and k. ¢; is a random
error in the model with mean zero and constant variance. The selection process
described in the chapter 1 is used to select the best fit growth model with a suitable

method of estimation for the parameters. A software package is developed in
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FORTRAN 77 for each method of estimation. The following six methods of

estimation have been developed to fit the growth models.
2.3.2.1  Method A: Estimation based on three equidistant points.

In this method, three equidistant points, t4, t,, t; have been considered from the given

data set. Let n be the number of observations, t, be the tl%th observation and t; be

the observation between the first observation and the (n — 2)th observation so that
the RMSE is least corresponding to that observation. Let d = t, — t,, then t; be the
(t, + d)th observation.

a) Parameter estimates for the Monomolecular growth model are:

Wz2 — WiW3

)
2W2 _Wl _W3

ﬁ - WZ - W1W3 W3 W2
~ 1 WZ - W1
) )
k 7In " (2.8)

where y; = wy, fori =1,2 and 3.

b) Parameter estimations for the Gompertz growth model are:

A:exp< Y2 —Y1¥3 )
2y, —=y1—Y3)’

t
g Gz=w) (yz - y1) a
Y3~ 2Ya + Y1 \V3 — V2 ’
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~ 1 Y2 — V1
R =—ln< ) 2.9
d Y3 — Y2 (29)

where y; = Inw;, fori=1,2and 3.

c) Parameter estimations for the Logistic growth model are:

N 22y — 71— Z3
A=——
Z5 — Z1Z3

(z, — 21)? (zz — zl)tl/d
(23— 22, +21)\23 — 2,

B = 2 )
Zy — 2173
(222 —Zy — 23)
~ 1 ZZ _Z1
= ( ) 2.1
k 7In P (2.10)

where z; = Wifor i=1,2and 3.
t

2.3.2.2  Method B: Estimation based on three partial sums.

In this method, the range of the total observations is divided into three equal parts.

That is, if the number of observations is n then consider m such that m = g Now let

S, be the sum of first m observations, S, be the sum of second m observations and S5

be the last m observations.

a) Parameter estimations for Monomolecular growth model are:

53 = 5,53

.1
A=—
m 252_51_53
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m(S, — 51)3{(52 - 51)% —(S3— 52)%}

B = : ,
(S3 = S,)m(S5 — 5153)(25, — S3— S1)
~ 1 SZ - SI
k=—1 . 2.11
m s, — S, (2.11)

b) Parameter estimations for Gompertz growth model:

In this method for Gompertz model, first taking the natural logarithm, In, of both
sides and then consider as y; = Inw;;i = 1,---, n. let L,be the sum of first m y;s,

L, be the sum of second m y;s and L5 be the sum of last m y;s. Then

AA— 1 L1L3_L%
— P L, 2L, + L, )

g = (Ly — Ly)? (Lz - L1)% 10

(L3 — 2L, + Ly)? |\L3 — L,
I T
= — } 2.12

c) Parameter estimations for Logistic growth model:

Lor logistic model, consider y; as the reciprocal of w;; i = 1,---,n. let R,be the
sum of first m y;s, R, be the sum of second m y;s and R; be the sum of last m

¥;S. Then

A R1R3 - R%
A - Y
m/ <R3 — 2R, + R,
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1
(R, —Ry)® 1— (Rz - R1)m
(R3 — 2R; + Ry)? R; — R,

= (l RiRs — R2 > '
m'R, — 2R, T R,
~ 1 LZ_LI
=1 ( ) 2.1
m \L, — L, (2.13)

2.3.2.3  Method C: Composite method assuming that the parameter k is known
from three equidistant points.

In this method first the growth models are linearizedas ¥ = P + Q X, assuming the
parameter k is known. The estimated value of k is taken from the method of three
equidistance points. Hence, the other parameters A and S are estimated using the

method of least square [40].

ny Xy -QXxQY)
nyX>-x)? ’

a:

A~ — ~

pP=Y-0X (2.14)

Where for

a) Monomolecular model Y = w,A = P,Q = —AfB and X = exp(—kt),
b) Gompertzmodel Y =Inw,P =1nA,Q = —f and X = exp(—kt) and

c) Logistic model Y = % P = % Q = %and X = exp(—kt).
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2.3.2.4  Method D: Composite method assuming that the parameter k is known
from method of three partial sums.

The procedure for this method is similar to the earlier one. Here, the estimated value

of k is taken from the method of three partial sums.

2.3.2.5  Method E: Newton-Raphson method under the assumption that the
parameter A is known.

a) For Monomolecular and Gompertz growth model

In this method, assume that the parameter A is known. Then to estimate the other

two unknown parameters, the sum of residuals square ® is minimized, where

O = Z(wi —ft.B))’, (2.15)
i=1

where w; and t; denote the dependent and independent variables respectively. The
sum of squared residuals is a function of g and k. Now differentiating (2.15), with

respect to £ and k, two normal equations are obtained as

f=P= zn:{(wi - f(t;,B))} [af (t“B)] (2.16)
i=1
g=®= Z{(wl f(t:,B))} [af (t"B)] (2.17)

Then the Newton-Raphson method for two variables [62] is used to estimate the

parameters 8 and k.
b) For Logistic Growth model
For Logistic model, after taking {n on both sides, the model can be written as
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Yy =p+qexpct, (2.18)

E

where y = ,pzi,q =Aandc=—k.

Sl

Now the model can be written as
yi=f(t,B), i=12,,n, (2.19)

where B is the vector of parameters p, q and c. For the Logistic model (2.18), the
parameter p is assumed to be known. Hence, the parameter g and c are estimated
in the same way that has been done for the Monomolecular and the Gompertz

model.

After getting the value of § and k (q and c, in case of Logistic), the value of A (p,

in case of Logistic) is estimated as:

a) Taking the natural logarithm, In, on both side of monomolecular model (2.4)

Wi .
Ind =1 fori =1,
n nl—ﬁexp(—ki)' ori ,o,n (2.20)
Hence the parameter A is estimated as
1
n
= ( i=1 Wi )”. (2.21)
[Ti-:(1 = B exp(=ki))

b) Taking the natural logarithm, In, on both side of Gompertz model (2.6),

A .
ln; = Be X, fori=1,-,n. (2.22)

Hence the parameter A may be estimated as
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n 1/n
- ke k-1
A= {1—[ w; <eﬁe kee_k—_l)} _ (2.23)

i=1
c) The Logistic model (2.18) can be written as,
p =y, —be‘ fori=1,--,n (2.24)

Hence p may be estimated as

1 n n
5= —(z y;— b Z eCi>. (2.25)
n 1 i=1

i:
This process may be repeated using pre-defined stopping criteria.

2.3.2.6  Method F: Newton-Raphson method under the assumption that the

parameter k is known.
a) Linear transformation of Monomolecular Growth Model
Here the linear transformation of the Monomolecular model (2.4) has been taken

under the assumption that the parameter k is known

y; = a + bz;, where y; = w;, z; = exp(—ik),

fori=1,---,n. (2.26)

Here A = a and B=—§.

b) Linear transformation of Logistic Growth Model

For Logistic model (2.2), the linear form is
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1
y; = a+ bz;, where y; = ol = exp(—ik),fori=1,---,n. (2.27)

i

Here Azéand g==2

a

Hence, the sum of the squared residuals @ for (2.26) and (2.27) can be written as

n
<D=Z(yi—a—bzi)2.fori= 1,-n (2.28)

i=1

Now differentiating (2.28) with respect to a and b, two normal equations are obtained

as
n
f=, = Z(yi —a—bz), (2.29)
i=1
n
g=o, = Z{O’izi —az; — bz;%}. (2.30)
i=1

Then, the Newton-Raphson method for two variables is used to estimate the
parameters a and b. After estimating parameters a and b using (2.29) and (2.30), the

unknown parameter k can also be estimated by using Newton-Raphson method

b, = Z{(yl- —a — bexp(—ki))(ib exp(—ki)}. (2.31)
i=1

c) Parameter estimation of Gompertz model:

The sum of squared residuals is given as
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n
® = Z(wi — Ae 7)), (2.32)
i=1

where z; = exp(—ik), fori =1, ,n.

Now differentiating (2.32) and proceeding like Monomolecular and Gompertz

models, the parameters 8 and A are obtained.

After estimating the parameters £ and A, the unknown parameter k is estimated

using Newton-Raphson method by minimizing

@ = i (wi - Ae—ﬁe"“')z. (2.33)
i=1

l

The process may be repeated using a pre-defined stopping criterion.

2.4 Results and discussion

2.4.1 Properties of the growth models

There is a clear relationship between the properties of different mathematical models
and the estimation of their respective parameters. If the properties of nonlinear
mathematical models are to be known then it may helpful to estimate the parameters
to be estimated. Indeed, even a few cases, because of the absence of knowledge of
these properties, it might appear to face different problems to use in different natural
growth. Some basic properties of the mentioned model are provided in Table 2.4. It is
observed that the upper asymptote and the domain of the independent variable are

same for each model with A and [0, o) respectively.
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Table 2.4: Summary of some basic properties of the growth models.

Logistic Gompertz Monomolecular
Integral form of A
the growth e Ae—Be™™* A(1 — Be k%)
function 1+ fe™
Starting point of 2
the growth — Ae™B A(1-B)
function 1+B
ABKe KT
GfOWth rate (1+B—Z_Kt)2 ABKe_Be_kte_kt ABKe_kt
Relative groYVth BK BKe-Pe*t BK
rate as function _ -
of time e+ B el —B et —1
Relative growth A
rate as function K (1 _ X) Ky l"; BK(A—y)
of response A A (1 —In é) ABB-1+y
variable y
Second ABK?e7Kt(1 ABK2e—Be gkt (1
derivative of the | + Be Xt)=2{2Be~Kt(1 ¢ € E; —ABK?e Kt
growth function | — Be=Kt)=1 — 1} te )
Point of 4 2
inflection > — Does not exist
e
() =)
Domain of the 2
dependent [—A] [Ae™B, A] [A(1 — B), A]
variable 1+B

52




2.4.2 Initial value specification

The Newton-Raphson method requires an initial value for each parameter is
estimated. The method A to method D may be useful for estimating the starting values
for the parameter estimates. In this study, the initial values are provided by any one of

these four methods of estimation.

2.4.3 Parameter estimates and analysis

Gompertz, monomolecular and logistic growth models have been fitted to top height
and maximum diameter growth data of babul trees compiled from Uttar Pradesh,
Maharashtra and Madhya Pradesh of India. The parameters of these models have been

estimated using six methods of estimation.

24.3.1 For top height growth of babul tree

The estimation of parameters for the growth models along with the summary of
statistical analysis to top height growth data of babul tree are presented from Table
2.5 to Table 2.7. Based on six model selection criteria as discussed in the first

Chapter, the results are summarized as below.

Step I: The Logistic model estimated by method B and D are rejected due to the
non-logical estimation of the parameters. All the methods have estimated the
asymptotes smaller than the dominant height of babul tree (17.98m). The
estimated parameters of the rest of the models are logically consistent and

biologically significant.

Step Il: Gompertz growth model (method B, D and E) and Logistic model
(method A, C, E and F) are rejected due to having less than 95% level of

significance.
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Step I1I: Considering the relative value of RMSE, the five best results are
selected in this step. Comparing the values of RMSE, Monomolecular growth

models with all its methods of estimation are promoted to the next level.

Step 1V: In the fourth step, no results are eliminated as all surviving results have
RZ value 0.99.

Step V: AIll surviving results along with the 95% confidence level are
demonstrated in Table 2.16. It is observed no results are eliminated as all the
parameters of the surviving results are significantly different from zero at 95%

confidence level.

Step VI: From the final step, the best fit growth model is selected. In case of top
height growth data of babul tree, the Monomolecular growth model (methods A,
C, D, E and F) is found to be more suitable as the value of R}, .q;crion @nd R
(99.99 and 99.99 respectively) are better than the remaining surviving growth
models.

Table 2.5: Fitting of the Logistic growth model for top height growth of babul trees.

Age Observed Method
Data A B © D E F

5 8.14 8.14 8.14 8.19 8.11 8.15 8.17
10 12.19 11.86 12.19 11.91 12.33 12.07 12.04
15 14.93 14.93 14.93 14.98 15.27 15.10 15.08
20 16.70 16.91 16.28 16.95 16.73 16.88 16.90
25 17.98 17.98 16.84 18.01 17.35 17.75 17.81
© A 18.97 17.19 18.99 17.73 18.43 18.55
§ 5 B 2.950 3.013 2.926 3.219 3.019 2.991
o k 0.796 0.997 0.796 0.997 0.873 0.855
x? 0.012 0.088 0.011 0.032 0.008 0.007
RMSE 0.176 0.543 0.17 0.326 0.162 0.151
R?(in %) 99.75 97.61 99.76 99.13 99.78 99.81
R2 0.99 0.90 0.99 0.96 0.99 0.99
Rf,rediction (in %) 99.65 92.35 99.64 97.53 99.50 99.62

54




Table 2.6: Fitting of the Gompertz growth model for top height growth of babul trees.

Age Observed
Data A B C D E F

5 8.14 8.14 8.14 8.18 8.10 8.54 8.18
10 12.19 12.03 12.19 12.05 12.26 11.78 12.09
15 14.93 14.93 14.93 14.94 15.11 14.58 14.96
20 16.70 16.83 16.53 16.82 16.77 16.79 16.80
25 17.98 17.98 17.40 17.96 17.68 18.43 17.90
® A 19.52 18.32 19.49 18.64 22.13 19.32
E g B 1.579 1.615 1.567 1.661 1.439 1.575
o k 0.591 0.689 0.591 0.689 0.413 0.606
x? 0.003 0.021 0.003 0.008 0.053 0.002
RMSE 0.092 0.272 0.084 0.164 0.363 0.077
R?(in %) 99.93 99.40 99.94 99.78 98.92 99.95
R2 0.99 0.97 0.99 0.99 0.95 0.99
Rzredicmn (in %) 99.89 98.05 99.91 99.40 97.99 99.90

Table 2.7: Fitting of the Monomolecular growth model for top height growth of babul

trees.
Observed

Age Data A B C D E F
5 8.14 8.14 8.14 8.14 8.16 8.14 8.14
10 12.19 12.21 12.19 12.19 12.18 12.19 12.19
15 14.93 14.93 14.93 14.91 14.89 14.91 14.91
20 16.70 16.76 16.78 16.74 16.73 16.74 16.74
25 17.98 17.98 18.04 17.96 17.98 17.96 17.96
° A 20.46 20.66 20.44 20.58 20.47 20.47
é g B 0.899 0.896 0.898 0.893 0.897 0.897
o k 0.400 0.391 0.400 0.391 0.398 0.398
v .0002 .0006 .0001 .0002 .0001 .0001
RMSE 0.026 0.046 0.021 0.024 0.020 0.020
R2(in %) 99.99 99.98 99.99 99.99 99.99 99.99
Ré 0.99 0.99 0.99 0.99 0.99 0.99
RZ, caiction (in %) 99.99 99.96 99.99 99.99 99.99 99.99

2.4.3.2 For maximum diameter growth of babul tree

The estimation of parameters for the growth models and the summary of statistical
analysis to maximum diameter growth data of babul tree are presented from Table 2.8
to Table 2.10. In this case, logistic growth model (method B and D) and Gompertz

growth model (method B) are rejected due to the non-logical estimation of the
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parameters. In all the cases, some of their parameters estimate of asymptotic
parameters smaller than the dominant diameter of babul tree (34.29cm). The
eliminated results in each step are also highlighted accordingly from Table 2.8 to
Table 2.10. Gompertz growth model (method A, C, D, E and F) and Logistic model
(method A, C, E and F) are rejected due to having less than 95% level of significance.
In the third step, comparing the values of RMSE, Monomolecular growth models with
all its methods of estimation are promoted to the next level. No results are eliminated
in step V as all the parameters of this model are significantly different from zero at
95% confidence level (Table 2.16). And finally, the best fit model has been selected
and find that Monomolecular growth model with method C, D, E and F give the

similar results with the R2 .4;.ri0n @nd R? values 99.97 and 99.99 respectively.

Table 2.8: Fitting of the Logistic growth model for top height growth of babul trees.

Age Observed Method
Data A B c ) E F

5 1219 1219 | 1219 12.30 212 | 1221 | 1223
10 2083 1982 | 2083 2001 2128 | 2052 | 2045
15 2692 2692 | 26.92 2720 2803 | 2761 | 2756
20 3149 3171 | 29.69 32.06 3119 | 3174 | 3180
25 3429 3429 | 30.70 34.67 3236 | 3363 | 3379
@ 4 3645 | 8119 36.86 3204 | 3489 | 3516
55 8 4719 | 4.885 4737 5378 | 4933 | 4888
& K 0863 | 1142 | 08634 | 1142 | 0976 | 0.958
% 0053 | 0529 0052 0172 | 0087 | 0032
RMSE 0464 | 179 0497 1026 | 0461 | 0423
R? (in %) 9966 | 94.85 99.60 9832 | 9966 | 9971
R2 098 0.79 098 093 098 098
R eaiction (in %) 9958 | 8412 99.35 9531 | 9924 | 9943

Table 2.9: Fitting of the Gompertz growth model for top height growth of babul trees.

Age Observed Method
Data A B C D E F
5 12.19 12.19 12.19 12.29 12.06 13.17 12.30
10 20.83 20.31 20.83 20.43 21.12 19.94 20.55
15 26.92 26.92 26.92 27.04 27.62 26.23 27.13
20 31.49 31.46 30.44 31.58 31.41 31.42 31.53
25 34.29 34.29 32.28 34.41 33.40 35.39 34.20
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o A 38.14 34.07 38.25 35.34 4457 37.65
E g B 2.064 2.147 2.053 2.247 1.849 2.067
o k 0.593 0.737 0.593 0.737 0.416 0.614
P 0.014 0.162 0.010 0.047 0.165 0.007

RMSE 0.235 1.015 0.205 0.528 0.829 0.170

R% (in %) 99.91 98.36 99.93 99.55 98.90 99.95

RZ 0.99 0.93 0.99 0.98 0.96 0.99

R, caiction (in %) 99.89 94.96 99.91 98.89 97.87 99.93

Table 2.10:  Fitting of the Monomolecular growth model for top height growth of

babul trees.
Ade Observed Method
g Data A B C D E F
5 12.19 12.19 12.19 12.18 12.17 12.18 12.17
10 20.83 20.82 20.83 20.85 20.87 20.85 20.86
15 26.92 26.92 26.92 26.98 27.00 26.98 26.99
20 31.49 31.24 31.21 31.32 31.32 31.32 31.32
25 34.29 34.29 34.24 34.39 34.37 34.39 34.38
° A 41.67 41.46 41.80 41.65 41.83 41.72
§ § B 1.000 1.002 1.002 1.004 1.002 1.003
o k 0.346 0.349 0.346 0.349 0.3458 0.348
X2 0.002 0.003 0.001 0.001 0.001 0.001
RMSE 0.113 0.126 0.093 0.092 0.093 0.092
R? (in %) 99.98 99.98 99.99 99.99 99.99 99.99
RZ 0.99 0.99 0.99 0.99 0.99 0.99
R, oiction (in %) 99.96 99.95 99.97 99.97 99.97 99.97

2433 For top height growth from the Bowmont Norway spruce Thinning
Experiment

The Monomolecular, Gompertz and Logistic nonlinear models are also been fitted to
top height age-growth data from the Bowmont Norway spruce Thinning Experiment.
The Parameter estimates for these three models with the corresponding observed and
predicted height values have been presented from Table 2.11 to Table 2.13. The

statistical analyses for each method of estimations are also presented.

For top height age-growth data, no result is rejected in the first step as all are logically
consistent and biologically significant. The eliminated results in each step are
highlighted accordingly in from Table 2.11 to Table 2.13. It is also observed that no
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results are eliminated in step 11, IV and V, as all results have calculated y? value less
then tabulated value at 95% level of significance, all surviving results have 0.99 of
RZ value and all of their parameters are significantly different from zero (Table 2.16).
From the step I11, five least RMSE values are chosen and given by Gompertz growth
model (method B, C, D and F) and Monomolecular growth model (method F).
Finally, the best fit growth model is selected and find that Gompertz growth model
(method F) with the R2,.,qiction and R* values 99.92 and 99.93 respectively.

Table 2.11: Fitting of the Logistic growth model for top height growth from the

Bowmont Norway spruce Thinning Experiment.

Age Observed Logistic

Data A B C D E F

20 7.30 7.50 7.41 7.44 7.38 7.34 7.37
25 9.00 9.00 8.99 8.95 8.97 8.96 8.98
30 10.90 10.60 10.67 10.58 10.66 10.69 10.69
35 12.60 12.24 12.38 12.26 12.38 12.43 12.43
40 13.90 13.86 14.04 13.93 14.06 14.12 1411
45 15.40 15.40 15.57 15.52 15.61 15.66 15.66
50 16.90 16.80 16.93 16.98 17.00 17.02 17.03
55 18.20 18.05 18.10 18.28 18.19 18.18 18.19
60 19.00 19.11 19.07 19.40 19.18 19.12 19.15
65 20.00 20.00 19.85 20.34 19.98 19.88 19.92
€ v A 23.33 22.44 23.88 22.63 22.25 22.39
g % B 2.80 2.75 2.93 2.80 2.78 2.78
& k 28 31 28 31 31 31
x? 0.03 0.02 0.04 0.02 0.02 0.02

RMSE 174 .139 232 .149 .154 152
R?(in %) 99.82 99.89 99.68 99.87 99.86 99.86

R2 0.99 0.99 0.99 0.99 0.99 0.99
R2, eaiction (in %) 99.80 99.86 99.56 99.84 99.83 99.83

Table 2.12: Fitting of the Gompertz growth model for top height growth from the

Bowmont Norway spruce Thinning Experiment.

Age Observed Gompertz
Data A B C D E F
20 7.30 7.32 7.36 7.36 7.36 7.22 7.33
25 9.00 9.00 9.05 9.05 9.05 9.02 9.05
30 10.90 10.69 10.75 10.75 10.75 10.82 10.79
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35 12.60 12.35 12.42 12.42 12.42 12.54 12.47

40 13.90 13.93 14.01 14.00 14.00 14.15 14.06

45 15.40 15.40 15.50 15.48 15.48 15.60 15.53

50 16.90 16.75 16.86 16.84 16.84 16.90 16.86

55 18.20 17.96 18.08 18.06 18.06 18.03 18.04

60 19.00 19.05 19.17 19.15 19.15 19.00 19.00

65 20.00 20.00 20.14 20.11 20.11 19.84 20.00

. A 25.62 25.83 25.76 25.78 23.93 25.01

3 B 1.49 1.50 1.49 1.50 1.47 1.48
a (5]

k 18 18 18 18 21 19

+Z 0.014 0.01 0.009 0.009 0.011 0.007

RMSE 137 121 117 118 132 104

R%(in %) 99.89 99.01 99.92 99.92 99.89 99.93

RZ 0.99 0.99 0.99 0.99 0.99 0.99

R2,oiction (in %) 99.87 99.88 99.89 99.89 99.86 99.92

Table 2.13: Fitting of the Monomolecular growth model for top height growth from

the Bowmont Norway spruce Thinning Experiment.

Age Observed Monomolecular
Data A B C D E F

20 7.30 7.29 7.26 7.23 7.34 7.23 7.20
25 9.00 9.16 9.10 9.13 9.15 9.13 9.12
30 10.90 10.90 10.84 10.89 10.86 10.89 10.90
35 12.60 1251 12.47 1252 12.46 1252 1254
40 13.90 14.01 14.00 14.04 13.97 14.04 14.06
45 15.40 15.40 15.44 15.45 15.38 15.45 15.46
50 16.90 16.69 16.79 16.75 16.71 16.76 16.76
55 18.20 17.89 18.06 17.96 17.96 17.97 17.97
60 19.00 19.00 19.25 19.09 19.13 19.09 19.08
65 20.00 20.03 20.38 20.14 20.24 20.13 20.11
c . A 33.40 37.88 33.67 37.45 33.52 32.78
S 2 B 84 .86 85 .86 85 84
e k .07 .06 .07 .06 .08 .09
X2 0.012 0.016 0.01 0.014 0.01 0.01
RMSE 137 168 123 148 123 122
R2(in %) 99.89 99.84 99.91 99.87 99.91 99.91
RZ 0.99 0.99 0.99 0.99 0.99 0.99
RZ, diction (in %) 99.85 99.73 99.88 99.81 99.88 99.88

2434 For mean diameter at breast height growth from the Bowmont Norway
spruce Thinning Experiment

The estimation of parameters for the growth models along with the summary of
statistical analysis to mean diameter at breast height are presented in Table 2.14. The

eliminated results in each step are also highlighted accordingly in Table 2.14.
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Table 2.14: Fitting of the growth models for mean diameter at breast height from the

Bowmont Norway spruce Thinning Experiment.

> § L | R2(in R, oice:
Fl A B k I (é) %) RZ (iﬁréz/:)i)tctwn
= | = [0
s | A | 2542485 | 0.9757 | 0.0090 |0.07 | 0.415 | 99.56 | 0.99 | 99.29
3 | B | 197.0727 | 0.9708 | 0.0123 |0.10 | 0.480 | 99.37 | 0.99 | 98.92
S| C | 2520445 | 0.9756 | 0.0090 |0.07 | 0.393 | 99.58 | 0.99 | 99.36
S | D | 190.6542 | 0.9682 | 0.0123 |0.07 | 0.380 | 99.61 | 0.99 | 99.38
S | E | 106.9216 | 0.9460 | 0.0238 |0.06 | 0.346 | 99.68 | 0.99 | 99.52
F | 827384 | 0.9328 | 0.0327 |0.06 | 0.337 | 99.69 | 0.99 | 99.53
A | 425918 | 1.8758 | 0.1445 |0.04 | 0.303 | 99.75 | 0.99 | 99.57
N | B | 424126 | 1.8908 | 0.1469 |0.04 | 0.318 | 99.72 | 0.99 | 99.52
S | C | 423118 | 1.8732 | 0.1445 |0.03| 0.278 | 99.79 | 0.99 | 99.65
E| D | 416907 | 18628 | 0.1469 |0.03| 0.267 | 99.80 | 0.99 | 99.69
O | E | 332335 | 1.7768 | 0.2038 |0.10 | 0.361 | 99.65 | 0.99 | 99.57
F | 38.0838 | 1.8153 | 0.1653 |0.03 | 0.229 | 99.86 | 0.99 | 99.79
A | 331059 | 3.9194 | 02871 |0.02| 0.205 | 99.87 | 0.99 | 99.80
, LB | 327692 | 38763 | 0.2891 |0.01| 0.173 | 99.92 | 0.99 | 99.86
= | C | 327681 | 3.8575 | 0.2871 |0.01| 0.164 [ 99.93 | 0.99 | 99.88
S| D | 325522 | 3.8346 | 0.2891 |0.01| 0.157 | 99.93 | 0.99 | 99.88
— | E | 328134 | 38648 | 0.2869 |0.01| 0.166 | 99.92 | 0.99 | 99.87
F | 327599 | 3.8566 | 0.2873 |0.01| 0.164 | 99.93 | 0.99 | 99.89

In case of mean diameter at breast growth, Monomolecular growth model (method A,
B, C, D, E and F) is eliminated due to non-biologically realistic estimates of their
asymptotic parameter(A). It is also observed that no results are eliminated in step I,
IV and V, as all results have calculated y? value less then tabulated value at 95%
level of significance, all surviving results have 0.99 of RZ value (Table 2.14) and all
of their parameters are significantly different from zero (Table 2.16). The Logistic
growth model with method B, C, D, E and F are promoted to the next step as they

have less value of RMSE in step Ill. Finally, based on R? and Réredietmn, the better

60




result is chosen and it is find Logistic growth model (method F) with the R, .4iction

and R? values 99.89 and 99.93 respectively.

2435 For cumulative basal area production from the Bowmont Norway spruce
Thinning Experiment

The estimation of parameters for the growth models and the summary of statistical
analysis to cumulative basal area production are presented in Table 2.15. The
eliminated results in each step are highlighted accordingly in the Table 2.15. In this
case, the Monomolecular growth model (method A, B, C, D, E and F) is eliminated in
the step | due to non-biologically realistic estimates of their asymptotic parameter
(A). Moreover, no results are eliminated in step 11, IV and V. The results promoted in
the step 11l are Gompertz growth model (method A, C and F) and Logistic growth
model (method A and B). Finally, the best result is selected and found as Gompertz

growth model for method F with the RJ,.giction and R? values 99.90 and 99.92

respectively.

Table 2.15: Estimated parameters along with the statistical analysis for cumulative

basal area production.

@ IS 2 L R?(in 2 R} ediction
3£ A B k X 2 | Ra | (inw)
= | = 04
s | A | 254.9126 0.8990 0.0547 | 0.16 | 1.198 | 99.79 | 0.99 | 99.69
§ B | 427.8732 0.9350 0.0275 | 0.22 | 1.577 | 99.66 | 0.99 | 99.42
E C | 252.7398 0.8988 0.0547 | 0.10 | 0.961 | 99.87 | 0.99 | 99.81
S | D | 419.6737 0.9319 0.0275 | 0.20 | 1.381 | 99.73 | 0.99 | 99.59
§ E | 260.2751 0.9008 0.0524 | 0.10 | 0.970 | 99.87 | 0.99 | 99.81
F | 246.9026 0.8973 0.0566 | 0.10 | 0.958 | 99.87 | 0.99 | 99.81
o A | 154.2372 1.6701 0.1880 | 0.09 | 0.867 | 99.89 | 0.99 | 99.87
g % B | 175.1747 1.7565 0.1589 | 0.15 | 1.141 | 99.82 | 0.99 | 99.72
o C | 155.2063 1.6914 0.1880 | 0.08 | 0.784 | 99.91 | 0.99 | 99.89
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D | 174.9517 | 17589 | 0.1589 | 0.15 | 1.115 | 99.83 | 0.99 | 99.74
E | 1475676 | 1.6857 | 0.2055 | 0.14 | 1.068 | 99.84 | 0.99 | 99.80
F | 158.9386 | 1.7017 | 0.1812 [0.07 | 0.748 | 99.92 | 0.99 | 99.90
A | 139.8948 | 3.4201 | 0.3000 | 0.15| 0.895 | 99.89 | 0.99 | 99.87
o | B | 1412550 | 35000 | 0.2998 [0.14| 0.897 | 99.89 | 0.99 | 99.87
£ | C | 143.9179 | 3.6409 | 0.3000 |0.22 | 1.277 | 99.77 | 0.99 | 99.69
2| D | 1440177 | 3.6430 | 0.2998 | 0.22 | 1.285 | 99.77 | 0.99 | 99.68
— | E | 1306011 | 3.3809 | 0.3409 |0.22 | 1.380 | 99.73 | 0.99 | 99.73
F | 130.7002 | 3.3812 | 0.3405 | 0.21 | 1.369 | 99.74 | 0.99 | 99.64

From the results, it is observed that for top height growth data of babul tree,

Monomolecular growth model along with methods A, C, D, E and F is found to be

more suitable than the remaining growth models whereas Monomolecular growth

model with method C, D, E and F provides a better fit for maximum growth data. In

case of for top height age data and for cumulative basal area production from the

Bowmont Norway spruce thinning experiment, the Gompertz growth model (method

F) and for the mean diameter at breast height data, originated from the Bowmont

Norway spruce thinning experiment, the Logistic growth model (method F) produced
a better fit than the others.

Table 2.16: 95% Confidence intervals of the parameters of the candidate models.

A B k

Data Models Method Lgvv_er U_pp_er Lgvv_er U_pp_er L(_)vv_er U_pp_er

limit limit limit limit limit limit

A 19.497 21.438 0.855 | 0.942 | 0.337 | 0.463

. B 18.895 22.427 0.823 | 0.969 | 0.282 | 0.499

Top height C 19.681 | 21.199 | 0.864 | 0.932 | 0.351 | 0.449
growth of Monomolecular

babul trees. D 19.656 21.511 0.854 | 0931 | 0.333 | 0.448

E 19.717 21.214 0.864 | 0930 | 0.350 | 0.447

F 19.719 21.216 0.864 | 0930 | 0.350 | 0.446

. A 36.172 47.168 0.907 | 1.093 | 0.227 | 0.465

“é';xn'{:t‘g:‘ B 35563 | 47.366 | 0.899 | 1.104 | 0.219 | 0.480

growth of Monomolecular C 37.346 46.261 | 0.927 | 1.077 | 0.250 | 0.442

babul trees D 37.286 46.005 0.928 | 1.080 | 0.254 | 0.446

E 37.351 46.307 0.926 | 1.077 | 0.250 | 0.442
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F 37328 | 46.101 | 0.928 | 1.079 | 0.253 | 0.444

B 24358 | 27.301 | 1.464 | 1.542 | 0.161 | 0.198

Top height C 24347 | 27174 | 1.462 | 1.538 | 0.162 | 0.198

grfo""th ﬂata Gompertz D 24357 | 27211 | 1462 | 1.538 | 0.162 | 0.198

Bm‘mtoﬁt F 23.890 | 26.124 | 1.451 | 1.516 | 0.173 | 0.206

Monomolecular F 28.680 | 36.889 | 0.831 | 0.857 | 0.061 | 0.095

B 31.296 | 34.243 | 3.710 | 4.043 | 0.269 | 0.309

diam’;‘gr " B c 31.346 | 34.190 | 3.699 | 4.016 | 0.268 | 0.306

breact Logistic D 31.226 | 33.878 | 3.685 | 3.984 | 0.271 | 0.307

height E 31368 | 34.258 | 3.704 | 4.025 | 0.268 | 0.306

F 31344 | 34.176 | 3.699 | 4.014 | 0.268 | 0.306

A 144.385 | 164.089 | 1.623 | 1.717 | 0.167 | 0.209

. Gompertz c 146.229 | 164.183 | 1.649 | 1.734 | 0.169 | 0.207
Cumulative

asal aren F 149.522 | 168.356 | 1.660 | 1.743 | 0.163 | 0.199

Logistic A 133.630 | 146.159 | 3.253 | 3.588 | 0.276 | 0.324

B 134.872 | 147.638 | 3.329 | 3.671 | 0.276 | 0.323

2.5 Conclusion

The main focus of this Chapter is to develop some new method of estimations
required for estimating the parameters of three nonlinear models, namely, Gompertz,
Monomolecular and Logistic. The validity of these methods is tested with five
experimental data sets. All the results are demonstrated and analyzed in the last
section. It is observed that the method F produces better results for all five sets of data
considered in this study with all growth models. It is also observed that the method A
requires only three equidistant points. So, if only a few observations are available then
the method A may be more appropriate.

It is also noted that, in the estimation of parameters, all the nonlinear iterative
methods require certain initial values. This study introduces four methods of
estimation (method A, B, C and D) which may be helpful to provide the initial values
of the parameters for use of any iteration method.

*kkkk

63




