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Chapter 2: Parameter Estimation of 

Certain Three parameter 

Nonlinear Growth Models 

 
2.1 Introduction 

The three parameter non-linear models namely Monomolecular, Gompertz and 

Logistic are commonly used to determine the growth and development of various 

systems [[45], [46]]. These models are particular cases of the generalized Chapman-

Richards model [52]. Many forestry researchers made extensive and profound studies 

on these models [[22], [52], [89], [91]]. In this Chapter, the growth models 

Monomolecular, Gompertz and Logistic, which are widely used by forestry scholars, 

are fitted by estimating the parameters using various methods of estimations. 

Logistic Growth Model: Logistic model was developed by Belgian mathematician 

Pierre Verhulst, who suggested that the rate of population increase may be limited, 

that is, it may depend on population density. At low densities, the population growth 

rate is high. Population growth rate declines with population numbers. The dynamics 

of the population is described by the differential equation: 
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         (2.1) 

where       are constants and   and   are the dependent and independent 

respectively. The solution of the differential equation is- 

    {         }          ⁄            

If             must be zero. Hence the logistic growth model is given by 

      
 

             
  (2.2) 

where       is related to the rate of increasing of  ,   is the upper asymptote and 

  is a location parameter [57]. The curve of the model (2.2) is S-shaped and all the 

parameters are positive. Also the shape of the curve is symmetric about its point of 

inflection [18]. 

Monomolecular growth Model: The mathematical representation of Monomolecular 

growth is borrowed from physical chemistry, where it describes a first order 

irreversible chemical reaction. In plant nutrition and soil fertility, it is also known as 

the Mitscherlich growth. The monomolecular model has no inflection point and the 

growth rate decreases linearly as size increases. Then,  

 
  

  
         (2.3) 
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where w is the expected size of an organism at time  ,   represents the limiting size of 

the organism and   is the growth rate parameter [18]. From this differential equation, 

the required model may be written as 

                      (2.4) 

where   is the biological constant.  

Gompertz Growth Model: The Gompertz Model named after Benjamin Gompertz 

(1779 – 1865). Gompertz model is a sigmoid function. The Gompertz equation arises 

from models of self-limited growth where the rate decreases exponentially with time. 

The model was first introduced to describe the growth in the number of tumor cells 

which usually follows a sigmoidal growth pattern. The model can be derived by 

solving the differential equation 

 
  

  
       (

 

 
)   (2.5) 

By integrating (2.5), the Gompertz model is obtained as 

                        (2.6) 

where   is the number of tumor cells at time t,     is the upper limit,     is the 

biological constant,     is the parameter governing the rate at which the response 

variable approaches its potential maximum [[22], [42]].Although this curve is a S-

shaped like the logistic, it is not symmetrical about its point of inflection [18]. 

Nonlinear models are more difficult to specify and estimate the parameters than linear 

models. But for prediction purpose, it is very important to distinguish these 

parameters properly. Lots of methods of estimation were developed by various 
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authors [[55], [57], [76]]. The aim of the study is to estimate the parameters of the 

models by using various methods of estimation. By selecting an appropriate method 

of estimation, the best fit model is selected based on five sets of well-known forestry 

data sets. Also the proper initial (guess) value specification plays a very important 

role in parameter estimation of nonlinear models using iterative methods. The first 

four methods of this study provide the initial value specification for the parameters of 

Monomolecular, Gompertz and Logistic growth models. 

2.2 Objective 

The aim of this chapter is to develop a suitable method of estimation to estimate the 

parameters of Monomolecular, Gompertz and Logistic growth models. Five well-

known forestry data are used for testing the validity of the proposed methods based on 

the certain statistical selection criteria.  

2.3 Methods and materials 

The maximum diameter data and top height growth of babul (Acacia Nilotica) tree 

are used for testing the validity of the methods. These two sets of data, presented in 

Table 2.1, were based on the analysis of sample plot data of Uttar Pradesh, 

Maharashtra and Madhya Pradesh [37]. The top height age, the cumulative basal area 

production and the mean diameter at breast height data, originated from the Bowmont 

Norway spruce thinning experiment, sample plot 3661 [[21], [22]] are also used. 

These data sets are repeatedly measured on a five-year cycle from age 20 to 64 and 

are presented in Table 2.2.  

Table 2.1: Top height and Maximum diameter growth data of Babul tree in India. 

Age (year) 5 10 15 20 25 

Top height(m) 8.14  12.19 14.93 16.70 17.98 

Maximum diameter (cm) 12.19 20.83 26.92 31.49 34.29 
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Table 2.2: Top height, cumulative basal area production and mean diameter at breast 

height growth data from Bowmont Norway spruce thinning experiment, 

sample plot 3661. 

Age (year) 20 25 30 35 40 45 50 55 60 64 

Top height     7.3 9.0 10.9 12.6 13.9 15.4 16.9 18.2 19.0 20 

Cumulative basal 

area production 

     

37.99 49 60.41 68.91 78.73 89.83 98.6 107 114.8 119.54 

Mean diameter at 

breast height      
8.40 10.40 12.35 14.74 17.13 19.50 21.49 23.82 25.55 26.50 

 

2.3.1 Stationarity of the data 

A stochastic process is said to be stationary if its mean and variance are constant over 

time and the value of covariance between two time periods depends only on the 

distance between the two time periods and not on the actual time at which the 

covariance computed [33]. In this work, theoretical correlogram and Augmented 

Dickey-Fuller (ADF) unit root test have been used to check the stationarity of the 

data. The autocorrelation function (ACF) and partial autocorrelation function (PACF) 

of the data sets are plotted from Figure 2.1 to Figure 2.10. 

  

Figure 2.1:   ACF of top height growth 

data of Babul tree in India 

Figure 2.2:  PACF of top height growth 

data of Babul tree in India 
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Figure 2.3: ACF of Maximum diameter 

growth data of Babul tree in India 

Figure 2.4:  PACF of Maximum diameter 

growth data of Babul tree in India 

  

Figure 2.5:  ACF of top height growth 

data from Bowmont Norway spruce 

thinning experiment. 

Figure 2.6: PACF of top height growth 

data from Bowmont Norway spruce 

thinning experiment. 

  

Figure 2.7:  ACF cumulative basal area 

production data from Bowmont Norway 

spruce thinning experiment. 

Figure 2.8:  PACF of cumulative basal 

area production data from Bowmont 

Norway spruce thinning experiment. 

  

Figure 2.9: ACF of mean diameter at 

breast height growth data from Bowmont 

Norway spruce thinning experiment. 

Figure 2.10: PACF of mean diameter at 

breast height growth data from Bowmont 

Norway spruce thinning experiment. 
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From the Figure 2.1 to Figure 2.10 it is clear that all the data sets presented in Table 

2.1 and Table 2.2 have seasonal effect. Now the Augmented Dickey-Fuller (ADF) 

unit root test has been used to check the stationarity of the data sets, which are 

presented in Table 2.3. From Table 2.3, it is observed that, for all data sets, the 

  values are less then   . It means that, the null hypothesis   , considering the 

process is a unit root, can be rejected. For top height and maximum diameter growth 

data of Babul tree, unit root test is not applicable due to less number of observations. 

Although, in case of small data set, variables are relatively stationary in short term. 

And hence, all the data sets presented in this work are stationary.  

Table 2.3:     values of ADF test for different data sets. 

Data    value 

Top height growth data from Bowmont Norway 

spruce thinning experiment. 
0.008173 

Cumulative basal area production data from 

Bowmont Norway spruce thinning experiment 
0.000002 

Mean diameter at breast height growth data from 

Bowmont Norway spruce thinning experiment 
0.01491 

2.3.2 Method of estimation 

The Monomolecular, Gompertz and Logistic nonlinear growth can be expressed as: 

                (2.7) 

           where   be the number of observations,   is the response variable,   is 

the independent variable,   is the vector of parameters     and  .    is a random 

error in the model with mean zero and constant variance. The selection process 

described in the chapter 1 is used to select the best fit growth model with a suitable 

method of estimation for the parameters. A software package is developed in 
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FORTRAN 77 for each method of estimation. The following six methods of 

estimation have been developed to fit the growth models. 

2.3.2.1 Method A: Estimation based on three equidistant points. 

In this method, three equidistant points,          have been considered from the given 

data set. Let   be the number of observations,    be the 
    

 
   observation and    be 

the observation between the first observation and the         observation so that 

the RMSE is least corresponding to that observation. Let        , then    be the 

         observation.  

a) Parameter estimates for the Monomolecular growth model are: 
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where        
 for       and    

b) Parameter estimations for the Gompertz growth model are: 
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where          
 for       and    

c) Parameter estimations for the Logistic growth model are: 
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where     
 

   

 for       and    

2.3.2.2 Method B: Estimation based on three partial sums. 

In this method, the range of the total observations is divided into three equal parts. 

That is, if the number of observations is   then consider   such that   
 

 
  Now let 

  be the sum of first   observations,    be the sum of second   observations and    

be the last   observations.  

a) Parameter estimations for Monomolecular growth model are: 
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b) Parameter estimations for Gompertz growth model: 

In this method for Gompertz model, first taking the natural logarithm,   , of both 

sides and then consider as                  let   be the sum of first      s, 

   be the sum of second     s and    be the sum of last     s. Then  
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c) Parameter estimations for Logistic growth model: 

Lor logistic model, consider    as the reciprocal of              let   be the 

sum of first      s,    be the sum of second     s and    be the sum of last   

  s. Then 

 
 ̂    .

       
 

         
/   

 



 
 
 

 

 

46 
 
 

 

 

 

 ̂  

       
 

            {  (
     

     
)

 
 

}

(
 
  

       
 

         
)

  

 

  ̂  
 

 
  (

     

     
)   (2.13) 

2.3.2.3 Method C: Composite method assuming that the parameter k is known 

from three equidistant points. 

In this method first the growth models are linearized as            , assuming the 

parameter k is known. The estimated value of  ̂ is taken from the method of three 

equidistance points. Hence, the other parameters   and   are estimated using the 

method of least square [40]. 

  ̂  
 ∑    ∑   ∑  

 ∑    ∑   
  

 

  ̂   ̅   ̂ ̅  (2.14) 

Where for 

a) Monomolecular model               and           , 

b) Gompertz model                  and            and 

c) Logistic model   
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2.3.2.4 Method D: Composite method assuming that the parameter   ̂  is known 

from method of three partial sums. 

The procedure for this method is similar to the earlier one. Here, the estimated value 

of   ̂   is taken from the method of three partial sums. 

2.3.2.5 Method E: Newton-Raphson method under the assumption that the 

parameter   is known. 

a) For Monomolecular and Gompertz growth model 

In this method, assume that the parameter   is known. Then to estimate the other 

two unknown parameters, the sum of residuals square   is minimized, where 

   ∑(          )
 
 

 

   

 (2.15) 

where    and    denote the dependent and independent variables respectively. The 

sum of squared residuals is a function of   and  . Now differentiating (2.15), with 

respect to   and  , two normal equations are obtained as 

      ∑{(          )} [
        

  
]

 

   

  (2.16) 

      ∑{(          )} [
        

  
]  

 

   

 (2.17) 

Then the Newton-Raphson method for two variables [62] is used to estimate the 

parameters   and    

b) For Logistic Growth model 

For Logistic model, after taking    on both sides, the model can be written as  
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where   
 

 
   

 

 
   

 

 
 and     .  

Now the model can be written as 

                          (2.19) 

where   is the vector of parameters     and  . For the Logistic model (2.18), the 

parameter   is assumed to be known. Hence, the parameter   and   are estimated 

in the same way that has been done for the Monomolecular and the Gompertz 

model. 

After getting the value of    and   (  and  , in case of Logistic), the value of   ( , 

in case of Logistic) is estimated as:  

a) Taking the natural logarithm,   , on both side of monomolecular model (2.4) 

       
  

           
              (2.20) 

Hence the parameter  ̂ is estimated as 

  ̂  .
∏   

 
   

∏               
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  (2.21) 

b) Taking the natural logarithm,   , on both side of Gompertz model  (2.6), 

   
 

 
                        (2.22) 

Hence the parameter  ̂ may be estimated as 
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c) The Logistic model (2.18) can be written as, 

                       (2.24) 

Hence  ̂ may be estimated as 

  ̂  
 

 
(∑  
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)  (2.25) 

This process may be repeated using pre-defined stopping criteria.  

2.3.2.6 Method F: Newton-Raphson method under the assumption that the 

parameter   is known. 

a) Linear transformation of Monomolecular Growth Model 

Here the linear transformation of the Monomolecular model (2.4) has been taken 

under the assumption that the parameter   is known  

 
                                 

               
(2.26) 

Here   ̂    and   ̂   
 

 
. 

b) Linear transformation of Logistic Growth Model 

For Logistic model (2.2), the linear form is 
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Here   ̂  
 

 
 and    ̂  

 

 
. 

Hence, the sum of the squared residuals    for (2.26) and (2.27) can be written as 

   ∑          
 

 

   

              (2.28) 

Now differentiating (2.28) with respect to   and  , two normal equations are obtained 

as 

      ∑           

 

   

 (2.29) 

      ∑{             
 } 

 

   

 (2.30) 

Then, the Newton-Raphson method for two variables is used to estimate the 

parameters   and b  After estimating parameters   and   using (2.29) and (2.30), the 

unknown parameter   can also be estimated by using Newton-Raphson method  

    ∑{                           }

 

   

  (2.31) 

c) Parameter estimation of Gompertz model: 

 The sum of squared residuals is given as 
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 (2.32) 

where                        . 

Now differentiating (2.32) and proceeding like Monomolecular and Gompertz 

models, the parameters   and   are obtained. 

After estimating the parameters   and  , the unknown parameter   is estimated 

using Newton-Raphson method by minimizing 

   ∑(           
)
 

 

 

   

 (2.33) 

The process may be repeated using a pre-defined stopping criterion. 

2.4 Results and discussion 

2.4.1 Properties of the growth models 

There is a clear relationship between the properties of different mathematical models 

and the estimation of their respective parameters. If the properties of nonlinear 

mathematical models are to be known then it may helpful to estimate the parameters 

to be estimated.  Indeed, even a few cases, because of the absence of knowledge of 

these properties, it might appear to face different problems to use in different natural 

growth. Some basic properties of the mentioned model are provided in Table 2.4. It is 

observed that the upper asymptote and the domain of the independent variable are 

same for each model with   and       respectively. 
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Table 2.4: Summary of some basic properties of the growth models. 

 Logistic Gompertz Monomolecular 

Integral form of 

the growth 

function 

 

       
         

            

Starting point of 

the growth 

function 

 

   
             

Growth rate 
       

          
           

             

Relative growth 

rate as function 

of time 

  

     
 

         

     
 

  

     
 

Relative growth 

rate as function 

of response 

variable 

 (  
 

 
) 

     
 
 

 (    
 
 )

 
       

        
 

Second 

derivative of the 

growth function  

          

         {        

           } 

           
       

       
          

Point of 

inflection 

        

 

 
 

 

 
 Does not exist 

Domain of the 

dependent 

variable 

[
 

   
  ]        ]          ] 
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2.4.2 Initial value specification 

The Newton-Raphson method requires an initial value for each parameter is 

estimated. The method A to method D may be useful for estimating the starting values 

for the parameter estimates. In this study, the initial values are provided by any one of 

these four methods of estimation. 

2.4.3 Parameter estimates and analysis 

Gompertz, monomolecular and logistic growth models have been fitted to top height 

and maximum diameter growth data of babul trees compiled from Uttar Pradesh, 

Maharashtra and Madhya Pradesh of India. The parameters of these models have been 

estimated using six methods of estimation.  

2.4.3.1 For top height growth of babul tree 

The estimation of parameters for the growth models along with the summary of 

statistical analysis to top height growth data of babul tree are presented from Table 

2.5 to Table 2.7. Based on six model selection criteria as discussed in the first 

Chapter, the results are summarized as below. 

Step I: The Logistic model estimated by method B and D are rejected due to the 

non-logical estimation of the parameters. All the methods have estimated the 

asymptotes smaller than the dominant height of babul tree (17.98m). The 

estimated parameters of the rest of the models are logically consistent and 

biologically significant. 

Step II: Gompertz growth model (method B, D and E) and Logistic model 

(method A, C, E and F) are rejected due to having less than     level of 

significance. 
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Step III: Considering the relative value of RMSE, the five best results are 

selected in this step. Comparing the values of RMSE, Monomolecular growth 

models with all its methods of estimation are promoted to the next level. 

Step IV: In the fourth step, no results are eliminated as all surviving results have 

  
  value 0.99. 

Step V: All surviving results along with the 95% confidence level are 

demonstrated in Table 2.16.  It is observed no results are eliminated as all the 

parameters of the surviving results are significantly different from zero at 95% 

confidence level. 

Step VI: From the final step, the best fit growth model is selected. In case of top 

height growth data of babul tree, the Monomolecular growth model (methods A, 

C, D, E and F) is found to be more suitable as the value of            
  and    

(99.99 and 99.99 respectively) are better than the remaining surviving growth 

models.  

 

Table 2.5: Fitting of the Logistic growth model for top height growth of babul trees. 

Age 
Observed 

Data 

Method 

A B C D E F 

5 8.14 8.14 8.14 8.19 8.11 8.15 8.17 

10 12.19 11.86 12.19 11.91 12.33 12.07 12.04 

15 14.93 14.93 14.93 14.98 15.27 15.10 15.08 

20 16.70 16.91 16.28 16.95 16.73 16.88 16.90 

25 17.98 17.98 16.84 18.01 17.35 17.75 17.81 

P
ar

am
e

te
rs

   18.97 17.19 18.99 17.73 18.43 18.55 

  2.950 3.013 2.926 3.219 3.019 2.991 

  0.796 0.997 0.796 0.997 0.873 0.855 

   0.012 0.088 0.011 0.032 0.008 0.007 

RMSE 0.176 0.543 0.17 0.326 0.162 0.151 

  (in %) 99.75 97.61 99.76 99.13 99.78 99.81 

  
  0.99 0.90 0.99 0.96 0.99 0.99 

           
  (in %) 99.65 92.35 99.64 97.53 99.50 99.62 
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Table 2.6: Fitting of the Gompertz growth model for top height growth of babul trees. 

Age 
Observed 

Data 

Method 

A B C D E F 

5 8.14 8.14 8.14 8.18 8.10 8.54 8.18 

10 12.19 12.03 12.19 12.05 12.26 11.78 12.09 

15 14.93 14.93 14.93 14.94 15.11 14.58 14.96 

20 16.70 16.83 16.53 16.82 16.77 16.79 16.80 

25 17.98 17.98 17.40 17.96 17.68 18.43 17.90 

P
ar

am
e

te
rs

 

  19.52 18.32 19.49 18.64 22.13 19.32 

  1.579 1.615 1.567 1.661 1.439 1.575 

  0.591 0.689 0.591 0.689 0.413 0.606 

   0.003 0.021 0.003 0.008 0.053 0.002 

RMSE 0.092 0.272 0.084 0.164 0.363 0.077 

  (in %) 99.93 99.40 99.94 99.78 98.92 99.95 

  
  0.99 0.97 0.99 0.99 0.95 0.99 

           
  (in %) 99.89 98.05 99.91 99.40 97.99 99.90 

Table 2.7: Fitting of the Monomolecular growth model for top height growth of babul 

trees. 

Age 
Observed 

Data 

Method 

A B C D E F 

5 8.14 8.14 8.14 8.14 8.16 8.14 8.14 

10 12.19 12.21 12.19 12.19 12.18 12.19 12.19 

15 14.93 14.93 14.93 14.91 14.89 14.91 14.91 

20 16.70 16.76 16.78 16.74 16.73 16.74 16.74 

25 17.98 17.98 18.04 17.96 17.98 17.96 17.96 

P
ar

am
e

te
rs

   20.46 20.66 20.44 20.58 20.47 20.47 

  0.899 0.896 0.898 0.893 0.897 0.897 

  0.400 0.391 0.400 0.391 0.398 0.398 

   .0002 .0006 .0001 .0002 .0001 .0001 

RMSE 0.026 0.046 0.021 0.024 0.020 0.020 

  (in %) 99.99 99.98 99.99 99.99 99.99 99.99 

  
  0.99 0.99 0.99 0.99 0.99 0.99 

           
  (in %) 99.99 99.96 99.99 99.99 99.99 99.99 

2.4.3.2 For maximum diameter growth of babul tree 

The estimation of parameters for the growth models and the summary of statistical 

analysis to maximum diameter growth data of babul tree are presented from Table 2.8 

to Table 2.10. In this case, logistic growth model (method B and D) and Gompertz 

growth model (method B) are rejected due to the non-logical estimation of the 
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parameters. In all the cases, some of their parameters estimate of asymptotic 

parameters smaller than the dominant diameter of babul tree (34.29cm). The 

eliminated results in each step are also highlighted accordingly from Table 2.8 to 

Table 2.10. Gompertz growth model (method A, C, D, E and F) and Logistic model 

(method A, C, E and F) are rejected due to having less than     level of significance. 

In the third step, comparing the values of RMSE, Monomolecular growth models with 

all its methods of estimation are promoted to the next level. No results are eliminated 

in step V as all the parameters of this model are significantly different from zero at 

95% confidence level (Table 2.16). And finally, the best fit model has been selected 

and find that Monomolecular growth model with method C, D, E and F give the 

similar results with the            
  and    values 99.97 and 99.99 respectively.  

Table 2.8: Fitting of the Logistic growth model for top height growth of babul trees. 

Age 
Observed 

Data 

Method 

A B C D E F 

5 12.19 12.19 12.19 12.30 12.12 12.21 12.23 

10 20.83 19.82 20.83 20.01 21.28 20.52 20.45 

15 26.92 26.92 26.92 27.20 28.03 27.61 27.56 

20 31.49 31.71 29.69 32.06 31.19 31.74 31.80 

25 34.29 34.29 30.70 34.67 32.36 33.63 33.79 

P
ar

am
e

te
rs

   36.45 31.19 36.86 32.94 34.89 35.16 

  4.719 4.885 4.737 5.378 4.933 4.888 

  0.863 1.142 0.8634 1.142 0.976 0.958 

   0.053 0.529 0.052 0.172 0.037 0.032 

     0.464 1.796 0.497 1.026 0.461 0.423 

          99.66 94.85 99.60 98.32 99.66 99.71 

  
  0.98 0.79 0.98 0.93 0.98 0.98 

           
          99.58 84.12 99.35 95.31 99.24 99.43 

Table 2.9: Fitting of the Gompertz growth model for top height growth of babul trees. 

Age 
Observed 

Data 

Method 

A B C D E F 

5 12.19 12.19 12.19 12.29 12.06 13.17 12.30 

10 20.83 20.31 20.83 20.43 21.12 19.94 20.55 

15 26.92 26.92 26.92 27.04 27.62 26.23 27.13 

20 31.49 31.46 30.44 31.58 31.41 31.42 31.53 

25 34.29 34.29 32.28 34.41 33.40 35.39 34.20 
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P
ar

am
e

te
rs

   38.14 34.07 38.25 35.34 44.57 37.65 

  2.064 2.147 2.053 2.247 1.849 2.067 

  0.593 0.737 0.593 0.737 0.416 0.614 

   0.014 0.162 0.010 0.047 0.165 0.007 

     0.235 1.015 0.205 0.528 0.829 0.170 

          99.91 98.36 99.93 99.55 98.90 99.95 

  
  0.99 0.93 0.99 0.98 0.96 0.99 

           
          99.89 94.96 99.91 98.89 97.87 99.93 

Table 2.10: Fitting of the Monomolecular growth model for top height growth of 

babul trees. 

Age 
Observed 

Data 

Method 

A B C D E F 

5 12.19 12.19 12.19 12.18 12.17 12.18 12.17 

10 20.83 20.82 20.83 20.85 20.87 20.85 20.86 

15 26.92 26.92 26.92 26.98 27.00 26.98 26.99 

20 31.49 31.24 31.21 31.32 31.32 31.32 31.32 

25 34.29 34.29 34.24 34.39 34.37 34.39 34.38 

P
ar

am
e

te
rs

   41.67 41.46 41.80 41.65 41.83 41.72 

  1.000 1.002 1.002 1.004 1.002 1.003 

  0.346 0.349 0.346 0.349 0.3458 0.348 

   0.002 0.003 0.001 0.001 0.001 0.001 

     0.113 0.126 0.093 0.092 0.093 0.092 

          99.98 99.98 99.99 99.99 99.99 99.99 

  
  0.99 0.99 0.99 0.99 0.99 0.99 

           
          99.96 99.95 99.97 99.97 99.97 99.97 

2.4.3.3 For top height growth from the Bowmont Norway spruce Thinning 

Experiment 

The Monomolecular, Gompertz and Logistic nonlinear models are also been fitted to 

top height age-growth data from the Bowmont Norway spruce Thinning Experiment. 

The Parameter estimates for these three models with the corresponding observed and 

predicted height values have been presented from Table 2.11 to Table 2.13. The 

statistical analyses for each method of estimations are also presented. 

For top height age-growth data, no result is rejected in the first step as all are logically 

consistent and biologically significant. The eliminated results in each step are 

highlighted accordingly in from Table 2.11 to Table 2.13. It is also observed that no 
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results are eliminated in step II, IV and V, as all results have calculated    value less 

then tabulated value at     level of significance, all surviving results have      of 

  
  value and all of their parameters are significantly different from zero (Table 2.16). 

From the step III, five least RMSE values are chosen and given by Gompertz growth 

model (method B, C, D and F) and Monomolecular growth model (method F). 

Finally, the best fit growth model is selected and find that Gompertz growth model 

(method F) with the            
  and    values 99.92 and 99.93 respectively. 

Table 2.11: Fitting of the Logistic growth model for top height growth from the 

Bowmont Norway spruce Thinning Experiment. 

Age Observed 

Data 

Logistic 

A B C D E F 

20 7.30 7.50 7.41 7.44 7.38 7.34 7.37 

25 9.00 9.00 8.99 8.95 8.97 8.96 8.98 

30 10.90 10.60 10.67 10.58 10.66 10.69 10.69 

35 12.60 12.24 12.38 12.26 12.38 12.43 12.43 

40 13.90 13.86 14.04 13.93 14.06 14.12 14.11 

45 15.40 15.40 15.57 15.52 15.61 15.66 15.66 

50 16.90 16.80 16.93 16.98 17.00 17.02 17.03 

55 18.20 18.05 18.10 18.28 18.19 18.18 18.19 

60 19.00 19.11 19.07 19.40 19.18 19.12 19.15 

65 20.00 20.00 19.85 20.34 19.98 19.88 19.92 

P
ar

am

et
er

s 

  23.33 22.44 23.88 22.63 22.25 22.39 

  2.80 2.75 2.93 2.80 2.78 2.78 

  .28 .31 .28 .31 .31 .31 

   0.03 0.02 0.04 0.02 0.02 0.02 

RMSE .174 .139 .232 .149 .154 .152 

  (in %) 99.82 99.89 99.68 99.87 99.86 99.86 

  
  0.99 0.99 0.99 0.99 0.99 0.99 

           
  (in %) 99.80 99.86 99.56 99.84 99.83 99.83 

Table 2.12: Fitting of the Gompertz growth model for top height growth from the 

Bowmont Norway spruce Thinning Experiment. 

Age Observed 

Data 

Gompertz 

A B C D E F 

20 7.30 7.32 7.36 7.36 7.36 7.22 7.33 

25 9.00 9.00 9.05 9.05 9.05 9.02 9.05 

30 10.90 10.69 10.75 10.75 10.75 10.82 10.79 
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35 12.60 12.35 12.42 12.42 12.42 12.54 12.47 

40 13.90 13.93 14.01 14.00 14.00 14.15 14.06 

45 15.40 15.40 15.50 15.48 15.48 15.60 15.53 

50 16.90 16.75 16.86 16.84 16.84 16.90 16.86 

55 18.20 17.96 18.08 18.06 18.06 18.03 18.04 

60 19.00 19.05 19.17 19.15 19.15 19.00 19.09 

65 20.00 20.00 20.14 20.11 20.11 19.84 20.00 

P
ar

am

et
er

s 

  25.62 25.83 25.76 25.78 23.93 25.01 

  1.49 1.50 1.49 1.50 1.47 1.48 

  .18 .18 .18 .18 .21 .19 

   0.014 0.01 0.009 0.009 0.011 0.007 

RMSE .137 .121 .117 .118 .132 .104 

  (in %) 99.89 99.91 99.92 99.92 99.89 99.93 

  
  0.99 0.99 0.99 0.99 0.99 0.99 

           
  (in %) 99.87 99.88 99.89 99.89 99.86 99.92 

Table 2.13: Fitting of the Monomolecular growth model for top height growth from 

the Bowmont Norway spruce Thinning Experiment. 

Age Observed 

Data 

Monomolecular 

A B C D E F 

20 7.30 7.29 7.26 7.23 7.34 7.23 7.20 

25 9.00 9.16 9.10 9.13 9.15 9.13 9.12 

30 10.90 10.90 10.84 10.89 10.86 10.89 10.90 

35 12.60 12.51 12.47 12.52 12.46 12.52 12.54 

40 13.90 14.01 14.00 14.04 13.97 14.04 14.06 

45 15.40 15.40 15.44 15.45 15.38 15.45 15.46 

50 16.90 16.69 16.79 16.75 16.71 16.76 16.76 

55 18.20 17.89 18.06 17.96 17.96 17.97 17.97 

60 19.00 19.00 19.25 19.09 19.13 19.09 19.08 

65 20.00 20.03 20.38 20.14 20.24 20.13 20.11 

P
ar

am

et
er

s 

  33.40 37.88 33.67 37.45 33.52 32.78 

  .84 .86 .85 .86 .85 .84 

  .07 .06 .07 .06 .08 .09 

   0.012 0.016 0.01 0.014 0.01 0.01 

RMSE .137 .168 .123 .148 .123 .122 

  (in %) 99.89 99.84 99.91 99.87 99.91 99.91 

  
  0.99 0.99 0.99 0.99 0.99 0.99 

           
  (in %) 99.85 99.73 99.88 99.81 99.88 99.88 

2.4.3.4 For mean diameter at breast height growth from the Bowmont Norway 

spruce Thinning Experiment 

The estimation of parameters for the growth models along with the summary of 

statistical analysis to mean diameter at breast height are presented in Table 2.14. The 

eliminated results in each step are also highlighted accordingly in Table 2.14.  
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Table 2.14: Fitting of the growth models for mean diameter at breast height from the 

Bowmont Norway spruce Thinning Experiment. 

M
o
d
el

 

M
et

h
o
d
  

         

R
M

S
E

 

  (in 

%)   
  

           
  

(in %) 

M
o

n
o
m

o
le

cu
la

r A 254.2485 0.9757 0.0090 0.07 0.415 99.56 0.99 99.29 

B 197.0727 0.9708 0.0123 0.10 0.480 99.37 0.99 98.92 

C 252.0445 0.9756 0.0090 0.07 0.393 99.58 0.99 99.36 

D 190.6542 0.9682 0.0123 0.07 0.380 99.61 0.99 99.38 

E 106.9216 0.9460 0.0238 0.06 0.346 99.68 0.99 99.52 

F 82.7384 0.9328 0.0327 0.06 0.337 99.69 0.99 99.53 

G
o
m

p
er

tz
 

A 42.5918 1.8758 0.1445 0.04 0.303 99.75 0.99 99.57 

B 42.4126 1.8908 0.1469 0.04 0.318 99.72 0.99 99.52 

C 42.3118 1.8732 0.1445 0.03 0.278 99.79 0.99 99.65 

D 41.6907 1.8628 0.1469 0.03 0.267 99.80 0.99 99.69 

E 33.2335 1.7768 0.2038 0.10 0.361 99.65 0.99 99.57 

F 38.0838 1.8153 0.1653 0.03 0.229 99.86 0.99 99.79 

L
o
g
is

ti
c 

A 33.1059 3.9194 0.2871 0.02 0.205 99.87 0.99 99.80 

B 32.7692 3.8763 0.2891 0.01 0.173 99.92 0.99 99.86 

C 32.7681 3.8575 0.2871 0.01 0.164 99.93 0.99 99.88 

D 32.5522 3.8346 0.2891 0.01 0.157 99.93 0.99 99.88 

E 32.8134 3.8648 0.2869 0.01 0.166 99.92 0.99 99.87 

F 32.7599 3.8566 0.2873 0.01 0.164 99.93 0.99 99.89 

In case of mean diameter at breast growth, Monomolecular growth model (method A, 

B, C, D, E and F) is eliminated due to non-biologically realistic estimates of their 

asymptotic parameter   . It is also observed that no results are eliminated in step II, 

IV and V, as all results have calculated    value less then tabulated value at     

level of significance, all surviving results have      of   
  value (Table 2.14) and all 

of their parameters are significantly different from zero (Table 2.16). The Logistic 

growth model with method B, C, D, E and F are promoted to the next step as they 

have less value of RMSE in step III. Finally, based on     and             
 , the better 
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result is chosen and it is find Logistic growth model (method F) with the            
  

and    values 99.89 and 99.93 respectively.  

2.4.3.5 For cumulative basal area production from the Bowmont Norway spruce 

Thinning Experiment 

The estimation of parameters for the growth models and the summary of statistical 

analysis to cumulative basal area production are presented in Table 2.15. The 

eliminated results in each step are highlighted accordingly in the Table 2.15. In this 

case, the Monomolecular growth model (method A, B, C, D, E and F) is eliminated in 

the step I due to non-biologically realistic estimates of their asymptotic parameter 

   . Moreover, no results are eliminated in step II, IV and V. The results promoted in 

the step III are Gompertz growth model (method A, C and F) and Logistic growth 

model (method A and B). Finally, the best result is selected and found as Gompertz 

growth model for method F with the            
  and    values 99.90 and 99.92 

respectively.  

Table 2.15: Estimated parameters along with the statistical analysis for cumulative 

basal area production. 

M
o
d
el

 

M
et

h
o
d
  

         

R
M

S
E

 

  (in 

%)   
  

           
  

(in %) 

M
o

n
o
m

o
le

cu
la

r A 254.9126 0.8990 0.0547 0.16 1.198 99.79 0.99 99.69 

B 427.8732 0.9350 0.0275 0.22 1.577 99.66 0.99 99.42 

C 252.7398 0.8988 0.0547 0.10 0.961 99.87 0.99 99.81 

D 419.6737 0.9319 0.0275 0.20 1.381 99.73 0.99 99.59 

E 260.2751 0.9008 0.0524 0.10 0.970 99.87 0.99 99.81 

F 246.9026 0.8973 0.0566 0.10 0.958 99.87 0.99 99.81 

G
o
m

p

er
tz

 A 154.2372 1.6701 0.1880 0.09 0.867 99.89 0.99 99.87 

B 175.1747 1.7565 0.1589 0.15 1.141 99.82 0.99 99.72 

C 155.2063 1.6914 0.1880 0.08 0.784 99.91 0.99 99.89 
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D 174.9517 1.7589 0.1589 0.15 1.115 99.83 0.99 99.74 

E 147.5676 1.6857 0.2055 0.14 1.068 99.84 0.99 99.80 

F 158.9386 1.7017 0.1812 0.07 0.748 99.92 0.99 99.90 

L
o
g
is

ti
c 

A 139.8948 3.4201 0.3000 0.15 0.895 99.89 0.99 99.87 

B 141.2550 3.5000 0.2998 0.14 0.897 99.89 0.99 99.87 

C 143.9179 3.6409 0.3000 0.22 1.277 99.77 0.99 99.69 

D 144.0177 3.6430 0.2998 0.22 1.285 99.77 0.99 99.68 

E 130.6011 3.3809 0.3409 0.22 1.380 99.73 0.99 99.73 

F 130.7002 3.3812 0.3405 0.21 1.369 99.74 0.99 99.64 

From the results, it is observed that for top height growth data of babul tree, 

Monomolecular growth model along with methods A, C, D, E and F is found to be 

more suitable than the remaining growth models whereas Monomolecular growth 

model with method C, D, E and F provides a better fit for maximum growth data. In 

case of for top height age data and for cumulative basal area production from the 

Bowmont Norway spruce thinning experiment, the Gompertz growth model (method 

F) and for the mean diameter at breast height data, originated from the Bowmont 

Norway spruce thinning experiment, the Logistic growth model (method F) produced 

a better fit than the others. 

Table 2.16: 95% Confidence intervals of the parameters of the candidate models. 

 

Data 
Models 

 

Method 

       

Lower 

limit 

Upper 

limit 

Lower 

limit 

Upper 

limit 

Lower 

limit 

Upper 

limit 

Top height 

growth of 

babul trees. 

Monomolecular 

                                        

                                        

                                        

                                        

                                        

                                        

Maximum 

diameter 

growth of 

babul trees 

Monomolecular 
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Top height 

growth data 

from the 

Bowmont 

Gompertz 

                                        

                                        

                                        

                                        

Monomolecular                                         

mean 

diameter at 

breast 

height 

Logistic 

                                        

                                        

                                        

                                        

                                        

Cumulative 

basal area 

Gompertz 

                                          

                                          

                                          

Logistic 
                                          

                                          

2.5 Conclusion 

The main focus of this Chapter is to develop some new method of estimations 

required for estimating the parameters of three nonlinear models, namely, Gompertz, 

Monomolecular and Logistic. The validity of these methods is tested with five 

experimental data sets. All the results are demonstrated and analyzed in the last 

section. It is observed that the method F produces better results for all five sets of data 

considered in this study with all growth models. It is also observed that the method A 

requires only three equidistant points. So, if only a few observations are available then 

the method A may be more appropriate.  

It is also noted that, in the estimation of parameters, all the nonlinear iterative 

methods require certain initial values. This study introduces four methods of 

estimation (method A, B, C and D) which may be helpful to provide the initial values 

of the parameters for use of any iteration method. 

***** 


