LIST OF FIGURES

Figure No.	Figure captions	Page No.
Fig 1.1	Schematic representation of construction of metagenomic	2
	libraries from environmental samples	
Fig. 1.2	Industrial applications of metagenomics	4
Fig. 3.1	pUC19 cloning system	34
Fig. 3.2	pET28a(+) expression system	44
Fig. 3.3	Strategy for regulating the expression of genes cloned into	46
	a pET vector	
Fig 4.1	mgDNA from goat rumen digesta	54
Fig 4.2	mgDNA extracted from goat rumen digesta using	56
	different methods	
Fig 4.3	Bar graph plots on the comparative analysis of five	56
	different DNA extraction methods (P1-P5)	
Fig 4.4	PCR amplification of 16S rRNA gene	58
Fig 4.5	Restriction digestion of mgDNA isolated by P5 method	58
Fig 4.6	mgDNA partially digested with BamHI	59
Fig 4.7	pUC19 plasmid DNA	60
Fig 4.8	BamHI-digested pUC19 plasmid DNA on 0.8% agarose	61
	gel	
Fig 4.9	Recombinant pUC19 plasmid DNA from randomly	62
	selected E. coli DH5α recombinant colonies	
Fig 4.10	Linearization of recombinant pUC19 plasmid DNA from	62
	randomly selected E. coli DH5α recombinant colonies	
	using KpnI	
Fig 4.11	Screening of mgDNA library for cellulolytic clones on	63
	CMC agar	
Fig 4.12	Recombinant pUC19 plasmid DNA from the cellulolytic	64
	T3 clone	
Fig 4.13	BamHI-catalysed digestion of recombinant pUC19	65
	plasmid containing celT3 cellulolytic clone	
Fig 4.14	DNA sequence of the CelT3 gene	65

Fig 4.15	PCR amplification of CelT3 gene	66
Fig 4.16	pET28a(+) plasmid DNA and its digestion with NdeI and	67
	<i>Hin</i> dIII	
Fig 4.17	Double digestion of CelT3 gene with NdeI and HindIII	67
Fig 4.18	Transformation of <i>E. coli</i> DH5α cells by pET28CT3	68
Fig 4.19	pET28a(+) plasmid DNA from <i>E. coli</i> DH5α cells	69
Fig 4.20	Recombinant pET28a(+) DNA digestion with NdeI and	69
	<i>Hin</i> dIII	
Fig 4.21	Cell free extract of recombinant clone ["pET28a(+) with	70
	CelT3" in E. coli BL21(DE3)] showing cellulolytic	
	activity on CMC agar plate	
Fig 4.22	SDS-PAGE of recombinant protein CelT3	71
Fig 4.23	Protein sequence of cloned cellulase gene	71
Fig 4.24	Phylogenetic tree of CelT3 protein	73
Fig 4.25	Multiple sequence alignment of CelT3 with GH5	74
	cellulases	
Fig 4.26	Ribbon representation of three dimensional structure of	75
	CelT3 cellulase	
Fig 4.27	Ramachandran plot for validation of CelT3 structure	75
	prediction	
Fig 4.28	Effects of pH on the activity of CelT3	77
Fig 4.29	Effect of temperature on the activity of CelT3	78
Fig 4.30	Effect of metal ions on the activity of CelT3	79
Fig 4.31	Effect of substrate concentration on the initial velocity of	79
	CelT3 cellulase catalyzed reaction	
Fig 4.32	Determination of K_{m} and V_{max} of the CelT3 recombinant	80
	cellulase using Lineweaver-Burk plot	