CONTENTS

Abstrac	· t	Page No	
	Declaration by the Candidate		
	Certificates Acknowledgment		
	f Contents	IX XI	
List of '		XVI	
	List of Figures		
	Abbreviations	XIX	
Chapt	er 1: Introduction	1-12	
1.1	Microbial diversity	1	
1.2	Metagenomics	1	
1.2.1	Sequence-based approach	3	
1.2.2	Function-based approach	3	
1.2.3	Why Metagenomics study?	5	
1.3	Profiling of microbial diversity	5	
1.4	Enzymes	7	
1.4.1	Cellulase	7	
1.4.2	Applications of cellulases in various industries	8	
1.4.3	Cellulases: A potential solution to energy crisis	9	
1.5	Rumen microbial ecosystem	10	
1.5.1	Rumen metagenomics and cellulases	11	
1.5.2	Goat rumen	12	
1.6	Objectives of the study	12	
Chapt	Chapter 2: Review of literature		
2.1	Microbial diversity	13	
2.1.1	The uncultivable majority	13	
2.2	Metagenomics	14	
2.2.1	Rumen metagenomics	15	
2.2.1.1	The function-driven approach	15	
2.2.1.2	The sequence-driven approach	15	
2.3	Goat rumen metagenomics	16	
2.4	Bioinformatics tools for metagenomic data annotation	19	
2.5	Metagenomics as a tool for the discovery of industrially important enzymes	20	
2.6	Biotechnological relevance of cellulases	21	
2.7	Metagenomics for cellulases	22	

Chapter 3: Materials and Methods		25-53
3.1	Materials used	25
3.1.1	Plasticware/Glassware	25
3.1.2	Chemicals and Reagents	25
3.1.3	Microbiological grade culture media	25
3.1.4	Bacterial strains and plasmids used	25
3.1.5	Molecular Biology grade chemicals and kits	26
3.1.6	Equipment used in the study	27
3.2	Methods	28
3.2.1	Buffers	28
3.2.2	Media composition	28
3.2.2.1	Media used for inoculation	28
3.2.2.2	Maintenance medium	28
3.2.2.3	Media used for cellulase production	29
3.2.3	Sterilization	29
3.3	Collection of sample for metagenomic study	29
3.4	Metagenomic Study	29
3.4.1	Extraction of metagenomic DNA from goat rumen digesta	29
3.4.2	Agarose gel electrophoresis of mgDNA	30
3.4.3	Quantification of mgDNA	31
3.4.4	Use of P5 protocol in the isolation of genomic DNA from	31
	the culturable bacteria	
3.4.5	Suitability of mgDNA for PCR amplification	32
3.4.6	Restriction digestion of mgDNA by EcoRI and BamHI	32
3.5	Construction of mgDNA library	32
3.5.1	Partial restriction digestion of mgDNA	33
3.5.2	Extraction of DNA fragments from agarose gel	33
3.5.3	Isolation of pUC19 plasmid DNA from E. coli DH5α cells	34
3.5.4	Restriction digestion of pUC19 plasmid DNA with BamHI	36
3.5.5	Ligation of mgDNA fragments into pUC19 plasmid DNA	37
3.5.6	Transformation	37
3.5.6.1	Preparation of <i>E. coli</i> DH5α competent cells	37
3.5.6.2	Transformation of E. coli DH5α competent cells with	38
	recombinant pUC19 plasmid	
3.5.6.3	Transformation efficiency of pUC19 plasmid DNA	39
3.5.7	Blue-white screening	39
3.5.8	Assessment of mgDNA library	40
3.5.8.1	Isolation of recombinant pUC19 plasmid DNA from	40
	randomly selected clones	
3.5.8.2	Restriction digestion of recombinant pUC19 plasmid DNA with <i>Kpn</i> I	40

3.5.9	Screening of mgDNA library for cellulase producing clone(s)	40
3.5.10	Isolation and restriction digestion of recombinant pUC19 plasmid from cellulase producing clone	41
3.5.11		41
	Sequencing of cloned mgDNA fragment	
3.5.12	Analysis of the sequenced mgDNA fragment	42
3.5.13	PCR amplification of DNA sequence for cellulase gene	43
3.5.14	GenBank submission	43
3.5.15	Analysis of the cloned cellulase gene	43
3.5.16	Subcloning of CelT3 cellulase gene into pET28a(+) expression vector	44
3.5.16.1	Isolation of pET28a(+) plasmid DNA from <i>E. coli</i> DH5α cells	44
3.5.16.2	Restriction digestion of pET28a(+) plasmid DNA and CelT3 cellulase gene	45
3.5.16.3	Ligation of the CelT3 cellulase gene into pET28a(+) plasmid DNA	45
3.5.17	Transformation of <i>E. coli</i> DH5α with the recombinant plasmid pET28CT3	46
3.5.18	Retransformation of pET28CT3 into E. coli BL21(DE3)	46
3.5.18.1	Isolation of recombinant plasmid pET28CT3 from $E.\ coli$ DH5 α	47
3.5.18.2	Transformation of pET28CT3 into E. coli BL21(DE3) cells	47
3.5.19	Preservation of recombinant plasmid pET28CT3	47
3.5.20	Confirmation of cellulase production by transformed <i>E. coli</i> BL21(DE3) cells	47
3.6	Phylogenetic tree construction	47
3.7	Overexpression of the recombinant protein	48
3.8	Recombinant protein purification	48
3.9	Determination of molecular weight of the protein by SDS-PAGE	49
3.10	Quantification of total protein	50
3.11	Homology model and validation for protein structure prediction	51
3.12	Biochemical characterization of the purified cellulase	51
3.12.1	Determination of specific activity of purified cellulase	51
3.12.2	Substrate specificity	52
3.12.3	Determination of K_m and V_{max} for the enzyme catalysed reactions	52
3.12.4	Effect of pH on the catalytic activity of cellulase	52
3.12.5	Effect of temperature on the catalytic activity of cellulase	52
3.12.6	Effect of metal ions on the catalytic activity of cellulase	53

Chapter 4: Results		54-80
4.1	Extraction of mgDNA	54
4.1.1	Spectrophotometric assessment of yield and purity of mgDNA	55
4.1.2	Comparison of mgDNA extraction methods	55
4.1.3	Assessment of quality of mgDNA for PCR amplification	58
4.1.4	Testing for restriction digestion of mgDNA	58
4.2	Construction of mgDNA library	59
4.2.1	Partial restriction digestion of mgDNA	59
4.2.2	Isolation of pUC19 plasmid DNA from E. coli DH5α	59
4.2.3	Linearization of pUC19 plasmid DNA	60
4.2.4	pUC19 as the potential cloning vector	61
4.2.5	Ligation of mgDNA and pUC19 plasmid DNA	61
4.2.6	Assessment of mgDNA library	61
4.2.6.1	Isolation of recombinant pUC19 plasmid from the recombinant bacterial colonies	61
4.2.6.2	Linearization of recombinant pUC19 plasmid DNA	62
4.3	Functional screening of mgDNA library for cellulolytic clone(s)	63
4.4	Isolation of recombinant plasmid DNA from the cellulolytic T3 clone	63
4.4.1	Restriction digestion of recombinant plasmid DNA from the T3 clone	64
4.5	Sequencing and sequence analysis of cloned cellulase gene	65
4.6	GenBank submission	66
4.7	Subcloning of CelT3 gene into pET28a (+) expression	66
	vector	
4.7.1	PCR amplification of CelT3 gene from T3 clone	66
4.7.2	Isolation of pET28a(+) plasmid DNA and its digestion with <i>Nde</i> 1 and <i>Hin</i> dIII	66
4.7.3	Double digestion of CelT3 DNA fragment with Nde1 and HindIII	67
4.7.4	Ligation of double-digested pET28a(+) DNA and CelT3 gene	68
4.7.5	Transformation of <i>E. coli</i> DH5α cells by pET28CelT3	68
4.7.6	Restriction digestion of pET28CT3 with <i>Nde</i> I and <i>Hin</i> dIII	68
1.7.0	enzymes	00
4.7.7	Isolation of pET28CT3 from <i>E. coli</i> DH5α cells	69
4.7.8	Preservation of recombinant plasmid pET28CT3	70
4.7.9	Transformation of <i>E. coli</i> BL21(DE3) cells by pET28CT3	70
4.7.10	Confirmation of cellulolytic activity in pET28CT3 transformed <i>E. coli</i> BL21(DE3) cells	70

List of publications		
References		92-104
6.1	Conclusion Future prospects	90 91
Chapte	er 6: Conclusion and Future prospects	90-91
J.,.J	reactions	00
5.7.3	Determination of K_m and V_{max} for the enzyme catalysed	88
5.7.2	Effect of metal ions	88
5.7.1	Effect of substrate, pH and temperature on CelT3 activity	87
5.7	cellulase Biochemical characterization of purified CelT3 cellulase	87
5.6	Cloning, expression and purification of metagenomic	84
5.5	Screening of mgDNA library for cellulolytic clone(s)	83
5.4	Construction of mgDNA library	82 82
5.3	Genomic DNA isolation from culturable bacteria	82
5.1 5.2	Extraction of mgDNA from goat rumen digesta Comparison of the extraction methods	81 82
-	er 5: Discussion	81-89
4.15.5	K_{m} and V_{max} for the CelT3 catalysed reactions	79
	•	
4.15.3	Effect of metal ions on the catalytic activity of cellulase	78 78
4.15.2 4.15.3	Effect of pH on the catalytic activity of cellulase Effect of temperature on the catalytic activity of cellulase	77 78
4.15.1	Substrate specificity Effect of pH on the catalytic activity of callulate	76 77
	enzyme	
4.15	protein fold purification Biochemical characterization of the purified CelT3 cellulase	76
4.14	Determination of specific activity, percentage yield and	76
4.13	Quantification of protein	76
4.12	Homology modeling and protein structure prediction	74
4.11	Multiple sequence alignment	73
4.10	Phylogeny of CelT3 protein	73
4.9	Protein sequence of CelT3 protein	71
4.8	Recombinant protein expression and purification	70