LIST OF FIGURES

Page

Figure 1.1	The coagulation cascade	4
Figure 1.2	Amino acid sequence alignment of several Kunitz-type inhibitors from ticks	12
Figure 1.3	Tick salivary gland proteins and their targets on coagulation factors	13
	Chapter 2	
Figure 2.1	Representative of cattle for collection of ticks	27
Figure 2.2	Female ticks (a: Rhipicephaline and b: Haemaphysalinae) at different feeding stages	28
Figure 2.3	Electron micrographs of adult female <i>Rhipicephalus (B)</i> . <i>microplus</i> (a, and b), adult male <i>R. (B)</i> . <i>microplus</i> (c), and adult female <i>Haemaphysalis bispinosa</i> (d, e, and f).	30
Figure 2.4	0.8% Agarose gel of tick genomic DNA	31
Figure 2.5	0.8% agarose gel of ITS2 PCR products	32
Figure 2.6	0.8% agarose gel of 16S rDNA PCR products	32
Figure 2.7	Chromatogram showing peaks corresponding to bases of ITS2 sequence from <i>R</i> . (<i>B</i>) <i>microplus</i> after Sanger sequencing	33
Figure 2.8	Nucleotide sequence alignment of 16S rDNA of (a) R . (B) microplus and (b) H . bispinosa	34
Figure 2.9	Nucleotide sequence alignment of ITS2 of (a) <i>R</i> . (<i>B</i>) <i>microplus</i> and (b) <i>H. bispinosa</i>	35
Figure 2.10	Nucleotide sequence alignment of ITS2 of <i>H. bispinosa</i> performed using ClustalW and viewed on AliView	38
Figure 2.11	Nucleotide sequence alignment of 16S rDNA performed using ClustalW and viewed on AliView.	39
Figure 2.12	Neighbor-Joining trees constructed based on sequence alignment of ITS2 sequences with 1,000 bootstraps	40
Figure 2.13	Neighbor-Joining trees constructed based on sequence alignment of 16S rDNA sequences with 1,000 bootstraps	41
Figure 2.14	Nucleic acid sequence alignment of ITS2 sequences of <i>H. bispinosa</i> and <i>H. longicornis</i> using DNAMAN software	42
Figure 2.15	Restriction sties were mapped using online tool	42

RestrictionMapper

Figure 2.16 PCR-RFLP analysis of ITS2 gene using restriction enzyme 43 *Hind*III

Chapter 3

Figure 3.1	Representative of a salivary gland dissected out from <i>H</i> . <i>bispinosa</i> female tick	52
Figure 3.2	SDS-PAGE gel profile of salivary gland extract	52
Figure 3.3	Recalcification time of PP plasma when pre-incubated with SGE	53
Figure 3.4	Activated partial thromboplastin time of PP plasma pre- incubated with SGE	53
Figure 3.5	Prothrombin time of PP plasma pre-incubated with SGE	54
Figure 3.6	Percentage hemolysis of RBC by SGE	54
Figure 3.7	PLA ₂ activity of SGE of <i>H. bispinosa</i>	55

Figure 4.1	1.1% agarose gel profile of total RNA isolated from salivary gland	68
Figure 4.2	1.1% agarose gel profile of synthesized cDNA from salivary gland total RNA	69
Figure 4.3	1.1% agarose gel profile of amplified gene	69
Figure 4.4	Nucleotide sequences and deduced amino acid sequences of haemathrin 1 and haemathrin 2	70
Figure 4.5	Conserved domains search of (a) haemathrin 1 and (b) haemathrin 2	71
Figure 4.6	Nucleotide sequence alignment of haemathrins and madanins performed using DNAMAN	72
Figure 4.7	Alignment of amino acid sequence of mature peptides of haemathrins and madanins	73
Figure 4.8	1.1% agarose gel profile of PCR products of gene coding for mature peptides of haemathrin 1 and 2	73
Figure 4.9	1.1% agarose gel profile of colony PCR products (haemathrin 1)	74
Figure 4.10	1.1% agarose gel profile of colony PCR products (haemathrin 2)	74
Figure 4.11	12.5% SDS-PAGE gel profile of expressed rHaemathrins	75
Figure 4.12	12.5% SDS-PAGE gel profile of expression of rHaemathrin 2 at different temperatures	75

Figure 4.13	12.5% SDS-PAGE gel profile of expression of rHaemathrin 2 using different concentration of IPTG	76
Figure 4.14	12.5% SDS-PAGE gel profile of expression of rHaemathrin 2 using different time intervals of induction	77
Figure 4.15	12.5% SDS-PAGE gel profile of expression of rHaemathrins using optimized conditions	77
Figure 4.16	12.5% SDS-PAGE gel profile of His-tag purification of rHaemathrin 1	78
Figure 4.17	12.5% SDS-PAGE gel profile of His-tag purification of rHaemathrin 2	78
Figure 4.18	12.5% SDS-PAGE gel profile of dialyzed rHaemathrins	79
Figure 4.19	MS/MS analysis of recombinant haemathrins of (a) rHaemathrin 1 and (b) rHaemathrin 2	80
Figure 4.20	18% tricine-SDS-PAGE gel profile enterokinase digested (a) rHaemathrin 1 and (b) rHaemathrin 2	80
Figure 4.21	Chromatogram showing peaks corresponding to (a) rHaemathrin 1 and (b) rHaemathrin 2	81
Figure 4.22	Deconvulated ESI-MS spectra of (a) rHaemathrin 1 & (b) rHaemathrin 2	82
Figure 4.23	CD spectra of purified rHaemathrin 1 (black) and rHaemathrin 2 (red) were recorded in the far-UV region (190-260 nm)	83

Figure 5.1	Graph showing increase in thrombin time of platelet poor plasma when incubated with rHaemathrin 1 and rHaemathrin 2	92
Figure 5.2	Graph showing increase in prothrombin time of platelet poor plasma when incubated with rHaemathrin 1 and rHaemathrin 2	93
Figure 5.3	Graph showing increase in activated partial thromboplastin time of platelet poor plasma when incubated with rHaemathrin 1 and rHaemathrin 2	93
Figure 5.4	Selectivity profile of rHaemathrins 1	94
Figure 5.5	Selectivity profile of rHaemathrins 2	95
Figure 5.6	Graph showing increase in fibrinogen clotting time when incubated with rHaemathrin 1 and rHaemathrin 2	96
Figure 5.7	Linear progression curves of thrombin inhibition by (a) rHaemathrin 1 and (b) rHaemathrin 2	98
Figure 5.8	Dose-response curve of thrombin inhibition by rHaemathrin 1 and rHaemathrin 2	98

Figure 5.9	Michaelis-Menten curve of enzyme inhibition by (a) rHaemathrins 1 and (b) rHaemathrin 2. Lineweaver-Burk plot showing rHaemathrin 1 (a) and rHaemathrin 2 (b) as a mixed-type of thrombin inhibitor.	99
Figure 5.10	Graph showing decrease of percentage inhibition of thrombin amidolytic activity by rHaemathrin 1 and rHaemathrin 2	100
Figure 5.11	Chromatogram showing cleavage of (a) rHaemathrin 1 and (b) rHaemathrin 2	101
Figure 5.12	Chromatogram showing peaks of cleaved products of (a) rHaemathrin 1 and (b) rHaemathrin 2	102
Figure 5.13	Predicted tertiary structure of (a) haemathrin 1 and (b) haemathrin 2 by Quark tool	104
Figure 5.14	Predicted tertiary structure of (a) haemathrin 1 and (b) haemathrin 2 by I-TASSER server	105
Figure 5.15	Ramachandran plots of protein structures predicted using Quark tool $-$ (a) haemathrin 1, (b) haemathrin 2 and I-TASSER $-$ (c) haemathrin 2, (d) haemathrin 2	107
Figure 5.16	Computational docking of haemathrin 2 to thrombin. Left panel: docked structure of haemathrin 2 with α -thrombin	107
Figure 5.17	Graph showing percentage hemolysis of RBC by rHaemathrins	108
Figure 5.18	Anti-microbial sensitivity test of (a-d) rHaemathrin 1 and (e-h) rHaemathrin 2 by well-diffusion method	109
Figure 5.19	Graph showing percentage cell viability of murine macrophage cell line treated with different concentrations of rHaemathrin 1 and rHaemathrin 2	110

Chapter 6

Figure 6.1 Schematic representation of mechanism of action of haemathrins 117

LIST OF TABLES

Page

Chapter 1

Table 1.1	Putative secreted salivary proteins from ticks curated as	16
	gene families	
Table 1.2	Some tick-protective proteins	20

Chapter 2

Table 2.1	Primers for amplification of ITS2 and 16S rDNA	25
Table 2.2	Some morphological characters of <i>R</i> . (<i>B</i>) <i>microplus</i> and <i>H</i> . <i>bispinosa</i>	30
Table 2.3	Sequences submitted to NCBI database with GenBank [™] accession numbers	32
Table 2.4	Pairwise distance of ITS2 of <i>Haemaphysalis bispinosa</i> with 5 <i>Haemaphysalis</i> and 1 <i>Ixodes</i> ticks	36

Table 5.1	Percentage inhibition of thrombin amidolytic activity by peptidic fragments of rHaemathrins	103
Table 5.2	Anti-coagulation activity assay of haemathrin peptidic fragments	103