LIST OF FIGURES

	CHAPTER 3	
Fig. 3.1A	Agarose gel electrophoresis (1%) of Nisin gene	35
Fig. 3.1B	The evolutionary history of AMD 17 Nisin gene was inferred using the Neighbor-Joining method	35
Fig. 3.1C	Multiple sequence alignment of <i>L. lactis</i> AMD17 Nisin gene with non-redundant protein sequence	36
Fig. 3.1D	Domain organization of <i>Lactococcus lactis</i> AMD17 Nisin gene	37
Fig. 3.2	Survival of <i>Lactococcus lactis</i> AMD17 in simulated human GI tract conditions	38
Fig. 3.3A	Adhesion to Caco-2 cell line observed under inverted microscope at 40X and by Gram Stain using bright field microscopy at 100x	41
Fig. 3.3B	Adherence (%) of <i>L. lactis</i> AMD17 and <i>L. rhamnosus</i> MTCC 1408 (L.r) to Caco-2 monolayer	42
Fig. 3.3C	Percentage adhesion of <i>Listeria monocytogenes</i> AMDK2 (L.m) and <i>S. enterica typhimurium</i> (S.t) to Caco-2 monolayer in the absence or presence of probiotic isolate	42
Fig. 3.4.	Survivability of <i>L. lactis</i> AMD17 in honey-enriched dahi under low temperature	44
Fig. 3.5	Texture profile analysis of dahi enriched with different concentration of honey (1-5 %) after 1, 7, 14, 21 and 28 days	46
	CHAPTER 4	
Fig.4.1	Novagen pBluescript KS (+) vector map	60
Fig. 4.2	Novagen pET22b(+) vector map	65
Fig. 4.3	Wistar rats used for experimental purpose	70
Fig. 4.4A	PCR amplicon of 16S rDNA of AMD6 isolate	72
Fig. 4.4B	Phylogenetic studies of AMD6 isolate with closely related species based upon 16S rDNA gene sequence	72

Fig. 4.5A	Adhesion ability of AMD6 and MTCC 1407 to Caco-2 cells as observed by Gram-stain under microscope	77
Fig. 4.5B	Percentage adhesion of probiotic isolate to Caco-2 cells	77
Fig. 4.5C	Percentage of <i>Salmonella</i> adhesion to Caco-2 cells in the presence and absence of probiotic isolate	77
Fig. 4.6	Screening of BSH activity	78
Fig. 4.7	PCR amplification of L. plantarum AMD6 BSH gene	78
Fig. 4.8A	Phylogenetic studies of AMD6 BSH gene	79
Fig. 4.8B	Multiple sequence alignment of AMD6 BSH gene using MEGA 6.0	79
Fig. 4.9A	Docking of AMD6 BSH gene with sodium glycocholate salt	81
Fig. 4.9B	Docking of AMD6 BSH gene with sodium taurocholate salt	82
Fig. 4.10	Motifs present in AMD6 BSH protein identified using Motif Finder bioinformatics server	83
Fig. 4.11	Agarose gel electrophoresis image showing the release of DNA fragment corresponding to BSH gene (975 bp) upon double digestion of pBluescript KS(+) and pET 22b (+) with restriction endonuclease	83
Fig. 4.12A	SDS-PAGE (14%) analysis showing the over-expression of BSH in <i>E. coli</i> BL21 (DE3) upon induction with IPTG	84
FIg. 4.12B	Purification of recombinant BSH-His protein by Ni-NTA affinity chromatography	84
Fig. 4.12C	Analysis of disulfide bond formation using SDS-PAGE	85
Fig. 4.13	Cysteines disulfide bonding state and connectivity predictor using DISULFIND prediction tool	85
Fig. 4.14	The enzymatic activity of BSH-His using different bile substrates	86
Fig. 4.15	SEM micrograph of AMD6 and <i>L. plantarum</i> MTCC 1407 grown in the absence or presence of water soluble cholesterol at 37 °C	87

CHAPTER 5

Fig. 5.1	Fermented soybean (libi Churpi)	98
Fig. 5.2	Phylogenetic tree based on 16S rRNA gene sequences showing the relationship of strain <i>B. amyloliquefaciens</i> AMS1 with closely related species	103
Fig. 5.3	Cell surface hydrophobicity of <i>B. amyloliquefaciens</i> AMS1	106
Fig. 5.4	Auto aggregation and co-aggregation of <i>B. amyloliquefaciens</i> AMS1	107
Fig. 5.5A	Adhesion of <i>B. amyloliquefaciens</i> (AMS1) and <i>L. rhamnosus</i> MTCC 1408 (L.r) to Caco-2 cell line observed by Gram staining under bright field microscope at 100 x	108
Fig. 5.5B	Adherence (%) of <i>B. amyloliquefaciens</i> (AMS1) and <i>L. rhamnosus</i> MTCC 1408 (L.r) to Caco-2 monolayer	108
Fig. 5.5C	Percentage of <i>Listeria monocytogenes</i> AMDK2 (L.m) and <i>Salmonella enterica typhimurium</i> (S.t) adhesion to Caco-2 monolayer in the presence and absence of probiotic	108
Fig. 5.6	Screening of cellulase production at 37 °C by plate assay	109
Fig. 5.7.	Optimization of cellulase production at different temperatures and pH	110
Fig. 5.8	Scanning electron micrograph showing cellulose degradation of maize straw at different temperatures	111
Fig. 5.9	Filter paper degradation by <i>B. amyloliquefaciens</i> AMS1 in basal salt medium supplemented with Whatman filter paper no.1	112
	CHAPTER 6	
Fig. 6.1	Preliminary screening of cellulase activity of <i>B. amyloliquefaciens</i> AMS1 on 1% CMC agar plate	124
Fig. 6.2A	Gel electrophoresis showing amplification of cellulase gene	125
Fig. 6.2B	Phylogenetic tree showing the relationship of strain <i>B.</i> amyloliquefaciens AMS1 cellulase gene sequence with closely related species	125
Fig. 6.3A	Multiple sequence alignment of <i>B. amyloliquefaciens</i> AMS1 cellulase gene with highly similar sequence obtained from GenBank database	126

Fig. 6.3B	Sequence analysis using Motif Finder online tool	126
Fig. 6.4	Multiple sequence alignment of thermophilic cellulase from <i>Bacillus</i> spp	128
Fig. 6.5	Docking of cellulase AMS1 with carboxy methyl cellulose (CMC)	129
Fig. 6.6	Agarose gel electrophoresis showing the release of DNA fragment corresponding to cellulase gene upon double digestion of pBluescript KS(+) and pET 22b (+) with restriction endonuclease	130
Fig. 6.7A	SDS-PAGE (12%) analysis showing the over-expression of BSH in <i>E. coli</i> BL21 (DE3) upon induction with IPTG	131
Fig. 6.7B	Purification of recombinant cellulase AMS1-His protein by Ni-NTA affinity chromatography	131
Fig. 6.8	Characteristics of the recombinant cellulase AMS1 from <i>B. amyloliquefaciens</i> : Effect of pH and temperature on activity	132
Fig. 6.9	Glucose released after incubating Maize straw with recombinant cellulase	134
	CHAPTER 7	
Fig. 7.1	Fermented soybean libi Churpi	143
Fig. 7.2	Phylogenetic tree based on 16S rRNA gene sequences showing the relationship of strain <i>B. subtilis</i> AMS6 with closely related species	147
Fig. 7.3	Autoaggregation, Co-aggregation and Cell surface hydrophobicity of <i>B. subtilis</i> (AMS6) and <i>L. rhamnosus</i> MTCC 1407 (L.r)	150
Fig. 7.4A	Adhesion of <i>B. subtilis</i> (AMS6) and <i>L. rhamnosus</i> MTCC 1408 (L.r) to Caco-2 cell line observed by Gram staining under bright field microscope	151
Fig. 7.4B	Adherence (%) of <i>B. subtilis</i> (AMS6) and <i>L. rhamnosus</i> MTCC 1408 (L.r) to Caco-2 monolayer	151
Fig. 7.4C	Percentage adhesion of <i>Listeria monocytogenes</i> AMDK2 (L.m) and <i>Salmonella enterica typhimurium</i> (S.t) to Caco-2 monolayer in the presence or absence of probiotic	151

Fig. 7.5	Hemolysis assay on blood agar	153
Fig. 7.6A	Screening of cellulase activity of <i>B. subtilis</i> AMS6 by plate assay	154
Fig. 7.6B	Scanning electron micrograph of maize (<i>Zea mays</i>) straw in the presence and absence of AMS6 culture showing degradation of cellulose incubated at 37 °C	154
Fig. 7.6C	Maize (Zea mays) straw with AMS6 culture showing degradation of cellulose incubated at 37 °C	154
Fig. 7.6D	Optimization of cellulase production at different tempearture	154
Fig. 7.7A	Gel electrophoresis image showing amplification of AMS6 cellulase gene	155
Fig. 7.7B	Phylogenetic tree showing the relationship of strain <i>B. subtilis</i> AMS6 cellulase gene sequence with closely related species	155
Fig. 7.8	Multiple sequence alignment of AMS6 cellulase gene with other reported cellulase gene	156
Fig. 7.9	Domain structure of AMS6 cellulase gene prepared using DOG 1.0	157
Fig.7.10	Filter paper degradation by <i>B. subtilis</i> AMS6 in basal salt medium supplemented with Whatman filter paper no.1	157