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7.1 Introduction 

Network pharmacology is a novel concept that creates a molecular network 

by integrating multidisciplinary concepts of biology including Biochemistry, 

Bioinformatics, and Systems Biology
1
. The concept is based on multi targeting 

potentials of the effective drugs for therapeutic applications
2,3

. Several complex 

diseases occur because it involves the interactions of multiple genes as well as 

functional proteins
4
. In such cases, network pharmacology helps in detecting how 

and where in the disease network, one target inhibits or activates the disease 

phenotypes and assists in systematic characterization of the drug targets to reduce 

the challenges of drug discovery
5
. 

To determine the relation between the traditionally used antidiabetic plants 

of NE India and T2DM, the network pharmacology approach was used in the 

study. The network comprises of nodes and edges, where the nodes represent 

molecular species (compounds and proteins), and the edges specify intermolecular 

interactions connecting the nodes (compound– target or target– target interactions). 

Thus, the complex relationship between the compounds and their targets can be 

visualized. To achieve that, the “Compound– Target network” (CTN) was 

constructed after combining the predicted compounds and all relevant targets. In 

addition, the properties of the network were also analyzed. Cytoscape is an open 

source software to visualize the biomolecular interaction networks and biological 

pathways. It also helps in integrating these networks with annotations, gene 

expression profiles and other state of data and makes it a unified conceptual 

framework
6
. 

In the field of drug discovery, a new approach has been developed 

considering the integration of Network Biology and Polypharmacology. Due to the 

use of the principles of System Biology, it is also known as System Pharmacology. 

This new approach of drug discovery also helps in understanding the disease 

pathogenesis using system level approach and hence, it gives a better idea for 

developing new lead molecules and their targets without the limitations of a single 

target along with its side effects. It helps in finding the potent molecules present in 

the traditionally used medicinal plants which have supposedly more efficacies for 

the therapeutic targets as well as in their mechanism of action.  
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The northeast India is rich in medicinal plants and the traditional knowledge 

regulating their use as medicine for the treatment of different diseases is well 

known. With its vast and unique plant resources, this region of India has huge 

potential and possibilities in the field of drug discovery. Therefore, efforts can 

justifiably be focused on these plant species for identifying the much needed new 

potent molecules having antidiabetic activity. It may also be more effective in 

combination with the different molecules present in different plants, as has been 

used in the Traditional Chinese Medicine (TCM). Thus, in this study, on the basis 

of molecular docking and network analysis, some suitable compounds of 

polypharmacophoric nature were found out from some of the traditionally used 

antidiabetic plants and their therapeutic targets along with its molecular 

mechanism, for the treatment of T2DM. This research could lead to better 

opportunities in the near future for the development of effective lead molecules for 

monotherapy or combination therapy for betterment of T2DM treatment. 

7.2 Materials and methods 

7.2.1 Natural Product (NP) Library Development  

A library of 505 natural products from plant sources, having well known 

ethnobotanical use for the treatment of diabetes, was collected form extensive 

literature survey. The compounds were sketched using MarvinSketch v6.0 and 

energetically optimized using CHARMM based force field at BIOVIA Discovery 

Studio v4.5. CHARMM based smart minimizer used 1500 steps of Steepest 

Descent followed by Conjugate Gradient algorithms with a convergence gradient 

of 0.001 kcal mol
-1 7

.  Diverse conformation options were applied and 250 

conformations were generated using BEST generation module of Discovery Studio 

(DS) by applying Poling Algorithm at an energy threshold of 15 kcal mol
-1

. The 

principles of rigorous energy minimization in both torsional and Cartesian space 

are employed in this option, as it ensures the best coverage of conformational space 

by application of the poling algorithm
8,9

. Further, natural products library was used 

to study the ADMET properties such as Blood-brain barrier (BBB) permeability, 

Solubility, Human intestinal absorption (HIA), Oral Bioavailability and 

Hepatotoxicity
10,11,12

. Density Functional Theory based descriptor such as Highest 

Occupied Molecular Orbital Energy (HOMO) and Lowest Unoccupied Molecular 
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Orbital’s (LUMO) are also annotated in order to reveal their reactivity to the target 

protein. A set of drug molecules from the Drug Bank was retrieved and 925 drugs 

were selected as reference to analysis the natural products library. Drug Library 

was also used to prepare similar to the NPs library for further analysis (Table 7.1).   

Table 7.1: Molecular Descriptors of NPs and Drugs  

Descriptor 

Variable 

NPs (505 Molecules) Drugs (925 Molecules) 

Min Max Mean 
Std. 

Dev. 
Min Max Mean 

Std. 

Dev. 

nHBD 0 7 1.400 1.354 0 7 1.164 0.994 

nHBA 0 12 3.228 2.168 0 9 3.489 1.465 

MW 

44.01 

806.9

6 251.16 107.82 28.013 891.53 309.25 

93.84

2 

MFPSA 0 0.825 0.221 0.170 0 1 0.191 0.110 

nRotatable 

Bonds 0 16 2.815 2.926 0 21 4.290 2.947 

nRings 0 8 2.375 1.772 0 8 2.674 1.392 

ALogP 4.408 6.967 2.632 2.128 -8.065 8.843 2.654 1.622 

nAromatic 

Rings 0 4 0.859 0.874 0 4 1.398 0.915 

nHBD: Number of Hydrogen Bond Donor; nHBA: Number of Hydrogen Bond Acceptor; 

MW: Molecular Weight; ALogP: Water/Octanal  Partition Coefficient; MFPSA:Molecular 

Fractional Polar Surface Area 

7.2.2 Collection of T2DM Drug Targets   

Twenty four proteins were selected on the basis of their association with 

insulin resistance and T2DM.  The 3D structures of these proteins were retrieved 

from the Protein Data Bank (PDB) of Research Collaboratory for Structural 

Bioinformatics (RCSB) as presented in Table 7.2. All the structures were cleaned 

and optimized using Steepest Descent Algorithm (200 steps) at Protein Preparation 

module of DS v4.5. The potential ligand binding site of all the structures was 

further computed using the Edit and Built binding site tool of DS v4.5. The 

resolution of the protein targets were in the range of 1.55 to 3.0 Ǻ.  
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Table 7.2: 24 target proteins involved in the pathogenesis of insulin resistance and 

T2DM pathway 

Sl 

No. 
Proteins 

Code 

name 
PDBID 

Resolution 

(Ǻ) 

PM 

ID 

1 Toll Like Receptor 4 TLR4 2Z65 2.7  [13] 

2 Nuclear Factor κB P50 NFkBP50 1SVC 2.6 [14] 

3 Protein Kinase C θ PKC θ 1XJD 2.0 [15] 

4 Peroxisome Proliferator-

Activated Receptor γ 

PPAR γ 2P4Y 2.25 [16] 

5 Dipeptidyl Peptidase 4 DPP 4 1RWQ 2.2 [17] 

6 Glucokinase GK 1V4S 2.3 [18] 

7 Cytochrome P450 CYP450 1W0E 2.8 [19] 

8 Aldose reductase AR 3RX3 1.95 [20] 

9 Protein Tyrosine 

Phosphatase 1B 

PTP1B 2F70 2.12 [21] 

10 Phosphatase and Tensin 

Homolog 

PTEN 1D5R 2.1 [22] 

11 Glycogen synthase kinase 

3β 

GSK3B 1H8F 2.8 [23] 

12 Peroxisome Proliferator-

Activated Receptor α 

PPARα 1I7G 2.2 [24] 

13 Glycogen phophorylase GP 1Z8D 2.3 [25] 

14 Adenosine Monophosphate 

Activated Protein Kinase 
AMPK 2V92 2.4 [26] 

15 Glucagon Like Peptide-1 GLP-1 3IOL 2.1 [27] 

16 Pyruvate dehydrogenase 

kinase 
PDK 3D2R 2.03 [28] 

17 Carbonic anhydrase 1 CA1 2FOY 1.55 [29] 

18 Carbonic anhydrase 2 CA2 2VVB 1.66    [30] 

19 Growth factor receptor-

bound protein 2 
GRB2 1IO6 

           - 
   [31] 

20 Peroxisome Proliferator-

Activated Receptor -δ 

PPAR-δ 2ZNP 3.0  [32] 

21 Insulin-like growth factor 1 

receptor kinase 
IGF-1R 1K3A 2.1  [33] 

22 11-beta hydroxysteroid 

dehydrogenase 1 

11β-

HSD1 
3PDJ 2.3  [34] 

23 Estrogen receptor ER 3ERT 1.9  [35] 

24 Glucocorticoid receptor GR 3K22 2.1  [36] 

 



Chapter 7 

 

Ph. D. Thesis  192 

 

7.2.3 Chemical Space Analysis 

Principal component analysis (PCA) is an orthogonal linear statistical 

transformation method which can transform the data into a new coordinate system 

in a three dimensional system. Principal component analysis (PCA) was conducted 

on the NPs by using the Library Analysis module of DS v4.5. In a PCA model, 

variance of the data which was maximized on the first coordinate was called first 

principal component and rest of variance maximized on the second coordinate, and 

so on
37,38

.  Herein, the NPs library for Space analysis was used along with the drug 

library as reference.    

7.2.4 Molecular Docking  

In silico molecular docking analysis was performed using the LibDock 

docking algorithms of Discovery Studio (DS) v3.5 software. The LibDock 

algorithm is based on the Diller and Merz algorithm. The LibDock methodology 

was originally developed to handle the rapid docking analysis of combinatorial 

libraries of the compounds with the goal of prioritizing the selection of libraries 

rather than rank ordering the compounds themselves
39 , 40

. The four functional 

aspects of using this algorithm are conformation generation of the ligands, creation 

of a binding site image (hot spot identification), matching the binding site image 

and the ligand, and a final optimization stage and scoring. Docking was performed 

for all the 505 compounds against the entire Receptor model as shown in the Table 

7.2. Docking result was analyzed based on the “LibDock” score. The compounds 

that obtained more than 100 LibDock score were further considered as selected for 

the Ligand-Protein Network analysis
41

.  

7.2.5 Network Pharmacology  

Ligand-Target Networking analysis is a well established method to reveal 

the poly pharmacological phenomenon of natural products towards their disease 

targets.  Herein, the docking score (LibDock Score) was used to develop the NPs-

Target Network.  The compounds with LibDock > 100 were subjected to develop 

the Network Pharmacology Modeling.  The network comprised of nodes and edges 

where the nodes represent molecular species (compounds and proteins), and the 

edges specify intermolecular interactions connecting the nodes (compound– target 
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or target– target interactions). Thus, the complex relationships between the 

compounds and their targets can be developed.  The “NPs – Target network” 

(NPsTN) was developed based on the combination of the predicted compounds and 

all the 24 drug targets (Table 7.1). In addition, the important parameters such as 

Degree, Stress, Betweenness Centrality, Closeness Centrality and Average Shortest Path 

Length were also computed to establish the NPs – Target networking relationship. In 

order to develop this relationship, the Cytoscape v3.3.0 was employed. Cytoscape 

software is used to visualize the biomolecular interaction networks and biological 

pathways. It also helps in integrating these networks with annotations, gene 

expression profiles and other state data and making it a unified conceptual 

framework
42

. The networking parameters were also analyzed using the Network 

Analyzer Plugin. 

7.2.6 DFT Computation  

Density Functional Theory (DFT) is a computational quantum mechanical 

modelling method to examine the electronic structure of matter and also to find out 

the orbital energy values of compounds
43

. Herein, the DFT computation was 

employed to determine the most effective compounds as a type 2 diabetes mellitus 

inhibitor. From the network analysis, the compounds having the degree ≥ 10were 

further subjected to DFT analysis. Frontier Orbital energy descriptor namely 

HOMO and LUMO were calculated for all the screened compounds by using 

B3LYP module of DS. Further, compounds with least band energy gap (LUMO-

HOMO) were selected as suitable natural products with multi targeted Type 2 

diabetes mellitus inhibitors.  

7.3 Results 

7.3.1 ADMET and Physicochemical property analysis 

The pharmacokinetics properties of a molecule are carried out by ADMET 

study where absorption, distribution, metabolism, excretion and toxicity of the 

compound are investigated. To select the drug like compound from the entire 

dataset ADMET plot was prepared which is depicted in the Figure 7.1. Among all 

the 799 natural products, only 505 compounds satisfied all the criteria of ADMET 
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prediction. These 505 NPs were considered as drug like compounds and used for 

the further studies. 

.  

Figure 7.1: ADMET plot of NPs Library. 

To understand the biological activities including metabolism, toxicity, 

pharmacokinetics and pharmaceutical properties of a compound, the 

physicochemical properties are determined which depend on the structure of the 

compound. The physicochemical properties of the 505 natural products (with 

optimum ADME/Tox score) were predicted and compared with a set of 925 known 

drugs retrieved from the Drug Bank (Table7.1). From the study, it was found that 

most of the natural products obey the Lipinski’s rules of five with mean H-bond 

donor < 5 and mean H-bond acceptor < 10. The average molecular weight of the 

natural products is less than 500 Da. Similarly, the mean value of ALogP was 

found to be less than 5. A similar set of results were obtained in the case of the 

Drug bank compounds. The nRotatable Bonds was also determined and the mean 

value was found to be less than 10, suggesting that the compounds would have 

good oral bioavailability. The mean value of the nRings and the nAromatic Rings 

were also predicted for both the natural products Library and the Drug Library. 

Very close values were found between them as presented in the Table 7.1.  
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7.3.2 Principle Component analysis 

The natural products and the Drug Library were further compared using the 

Principal Component analysis (PCA) to visualize the distribution in the chemical 

space. The 3D descriptors (Table 7.1) were used to develop the PCA Model. From 

the PCA analysis, it has been observed that the distribution of drug like natural 

products (Yellow Sphere) are similar to the 3D space occupied by the compounds 

retrieved from the Drug Bank database (Blue Sphere) indicating the presence of 

drug like properties in natural products.  

 

Figure 7.2: PCA Model of NPs (Yellow Sphere) and Drugs (Blue Sphere) 

7.3.3 Molecular Docking Analysis  

Docking is a suitable approach to understand the atomic level interactions 

of novel natural products to its specific targets
44

. In the current investigation, 

molecular docking was carried out for the entire 505 drugs like natural products, 

against 21 proteins that are associated with insulin resistance and T2DM. In this 

study, LibDock score 100 was used as the threshold limit to pick the best ligands 

for the prediction of active molecules to their targets. Aldose reductase was found 

to be the most potential drug target, where the highest numbers of natural products 

comprising of 141 compounds (27%) were docked with LibDock Score > 100 as 

presented in the Figure 7.3 followed by 11β-HSD1 (18%), AMPK (12.27%), 
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GR(11.48%), PPARγ (10.09%), PPARα (9.1%), ER (8.31%), CA2 (8.31%), GLP1 

(5.94%),  PTP1B (4.95%), PDK1 (4.75%), GK (4.75%), PKCθ (4.35%), PTEN 

(4.15%), IGF (2.97%), CYP450 (2.77%), CA1 (2.37%), TLR4 (1.78) and PPARδ 

(0.99%).  A minimum of three natural products were found to be docked at 

LibDock value >100 with DPP4 and GSK3β receptor model with 0.59%. On the 

other hand no compound was docked with GRB2 with LibDock value more than 

equal to 100. 

 

 

Figure 7.3: Bar diagram of the docking result. The black bars represent the total number 

of Compounds docked with various receptors; Green bars represent the number of 

compounds with LibDock > 100  

7.3.4 NPs-Target Network Analysis  

There are several complex diseases which involve the interactions of multiple 

genes as well as functional proteins45. In such cases, network pharmacology helps in 

solving how and where in the disease network, one target inhibits or activates the 

disease phenotypes, and assists in systematic characterization of drug targets to reduce 

the challenges of drug discovery46. To determine the relationship between compounds 

of the traditionally used antidiabetic plants of NE India to the disease, network 

pharmacology approach was used. Since several natural products have better binding 

affinity to the target proteins associated with insulin resistance and T2DM, natural 

products - target network (NTN) was developed on the basis of LibDock result using 

natural products - target binding data, and the Degree ≥10 was considered for the 
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further study. In NTN, a total of 188 compounds and 21 protein targets were used. 

The network comprised of 209 nodes and 736 edges with average degree of 7.04. 

 

Figure 7.4: Natural Products - Target Network (NTN) between natural products with 

LibDock score >100 and their targets.  The green coloured circles represent the natural 

products and the pink coloured hexagons represent the target proteins. The grey coloured 

edges represent the relation between the nodes. 

From the network analysis it was revealed that 14 natural products can bind 

to minimum 10 different receptors at a time with good binding affinity (Table 7.3) 

where the compounds C262, C3, C171 and C176 can bind to18 different receptors 

with better binding affinity. Along with the degree, other important key parameters 

such as Betweenness Centrality, Closeness Centrality were also determined. 

Betweenness Centrality varied between 0.005 and 0.018 whereas the Closeness 

Centrality ranged from 0.513 to 0.465.   

From the NTN analysis, of the 14 natural products targeting multiple target 

proteins, 4 compounds were found to have relationship with 18 numbers of targets 

out of 21 proteins used for the study. Compound C12 and C495 formed 

relationship network with 17 and 16 numbers of targets respectively and so on. 
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Table 7.3: Network topology of Natural Products and Target Network (NTN) with degree 

≥ 10.   

Compounds 

ID 

Average Shortest 

Path Length 

Betweenness 

Centrality 

Closeness 

Centrality 
Degree Stress 

C262 1.94711538 0.01459936 0.51358025 18 46944 

C3 1.94711538 0.01802189 0.51358025 18 45792 

C171 1.94711538 0.01459936 0.51358025 18 46944 

C176 1.94711538 0.01788283 0.51358025 18 47172 

C12 1.95673077 0.01374114 0.51105651 17 45254 

C495 1.96634615 0.01221954 0.50855746 16 43310 

C365 2.05288462 0.00787117 0.48711944 13 30284 

C250 1.99519231 0.00965482 0.50120482 13 37558 

C166 2.02403846 0.00855239 0.49406176 12 31790 

C226 2.05288462 0.00735451 0.48711944 11 29030 

C405 2.07211538 0.00622606 0.48259861 11 23680 

C406 2.11057692 0.00524846 0.4738041 11 19712 

C410 2.14903846 0.00989057 0.46532438 11 23260 

C449 2.05288462 0.00675471 0.48711944 10 26636 

 

 

Figure 7.5: NPs- Target Network (NTN) between natural products with degree ≥ 10 

and their targets.  The yellow coloured circles represent the NPs and the light blue 
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coloured circles represent the target proteins. The deep blue coloured edges represent the 

relation between the nodes. 

7.3.5 DFT Computation  

A group of 14 numbers of natural products targeting more than 10 targets 

were subjected to DFT analysis to find out the efficient molecules in terms of their 

binding energy. DFT-based descriptors such as atomic charges, molecular orbital 

energies, frontier orbital densities, and atom-atom polarizabilities are very useful in 

predicting the reactivity of atoms in molecules
47

. The energy difference between 

HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied 

molecular orbital) of a compound is known as HOMO-LUMO gap. The lower the 

HOMO-LUMO gap, the more reactive the molecules are considered, possessing 

lower kinetic stability. The reason for this is because it is energetically unfavorable 

to add electrons to a high-lying LUMO by extracting electrons from a low-lying 

HOMO, in order to form the activated complex of any potential reaction
48

.  
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Table 7.4: Screened natural products with LUMO-HOMO orbital energy value 

Compound 

ID 

Compound  

Name 
HOMO LUMO 

ΔE 

(LUMO-HOMO) 

C405 Aurapten -0.227 -0.058 0.169 

C226 Gigantean -0.193 -0.019 0.174 

C365 Cannabichromene -0.193 -0.013 0.179 

C262 Eleostearic acid -0.190 -0.010 0.220 

C176 Marmesinin -0.223 0.002 0.226 

C171 Lonoleic Acid -0.224 0.003 0.227 

C3 Z_Z-4_16-

octadecadien-1-ol 

Acetate 

-0.226 0.008 0.234 

C12 Vernolic acid -0.233 0.005 0.239 

C495 1-(14-

methylhexadecanoyl) 

pyrrolidine 

-0.229 0.038 0.268 

C250 Ethyl hexadecanoate -0.268 0.008 0.276 

 

From the DFT study it was found that the compounds,viz, aurapten (C405), 

Gigantean (C226) and Cannabichromene (C365) have the lowest HOMO-LUMO 

gaps as a result of which these 3 compounds were more reactive for their targets 

with good binding affinity. The network property revealed that these 3 compounds 
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Figure 7.6: Docking view of best 3 compounds with receptors having highest binding 

affinity. Docking of Aurapten with AMPK and AR with LibDock score 115.788 and 

140.027 respectively (A), Docking of Cannabichromene with AR and 11β-HSD1 with 

LibDock score 132.302 and 120.071 respectively (B), Docking of Gigantean with GK and 

AR with LibDock score 149.126 and 151.455 respectively (C) 

can target multiple numbers of receptor proteins where cannabichromene showed 

its binding affinity to maximum 13 receptors associated with type 2 diabetes 

mellitus. Table 7.5 represents the 2D structures of the most potent ligands among 

all the compounds present in 25 antidiabetic plants used by various ethnic groups 

present in the north eastern part of India. 
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Table 7.5: 2D representation of potential natural products 

 

Aurapten 

 

 
 

 

Cannabichromene 

 
 

 

Gigantean 

 
 

 

Figure 7.7: Natural Products - Target Network (NTN) between 3 potential natural 

products and their targets.  The yellow coloured hexagons represent the natural products 

and the pink coloured hexagons represent the target proteins. The blue coloured edges 

represent the relation between the nodes. 

7.4 Discussion 

Although there are plenty of drugs currently available in the market, it has 

to be accepted that the traditional knowledge on the use of medicinal plants plays a 

vital role in the important discoveries in the field of drug development
49,50

. Due to 

their structural diversity, they provide a limitless source for developing new lead 

entities
51

. From 1981 to 2010, 1135 new drugs were approved by the US Food and 

Drug Administration (FDA) out of which 34% were of natural origin
52

. But 
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isolation of a single bioactive compound from the traditionally used plants 

sometimes may not be very effective for the treatment of disease. Herbal derived 

compounds acts synergistically or additively to exert its mechanism of action. 

Therefore, from the pharmacological point of view, the traditional preparation 

containing a mixture of compounds may have the potential to treat the complex 

disease like T2DM by targeting multiple therapeutically important proteins
53

. It is 

worth mentioning that the North East India is known for its diversity in the use of 

medicinal plants based on inherited knowledge by the different ethnic groups 

inhabiting in this area. The use of several plant based resources for the treatment of 

diabetes by different communities has been reported with few scientific validations, 

but a huge number of plants have not been documented yet. Since, different parts 

of these plants show their efficacy to T2DM treatment alone, a hypothesis was 

generated to mix these traditionally used antidiabetic plants of the NE India as a 

form of combination therapy which would be more effective. As all the compounds 

are not equally important for the disease targets, hence, finding out the active 

compounds from all these antidiabetic plants and their molecular targets with 

proper scientific validation would be helpful for decreasing the risk of having 

T2DM. In this study the network pharmacology based virtual screening of natural 

products has been studied for identifying the active principles for the treatment of 

insulin resistance and T2DM. 

Network pharmacology based study helps in deciphering the underlying 

mechanism of biological system and helps in several aspects in drug discovery 

including target identification, lead discovery and optimization, mode of action and 

safety assessment
54

. From the NTN analysis, the best molecules having good 

affinity to multiple numbers of target proteins were further analyzed. Since the 

network was developed on the basis of LibDock study, a large scale interaction was 

obtained between natural products and the targets. Hence DFT calculation was 

performed considering the compounds having the degree more than 10 with 

maximum values of betweenness centrality. Degree is nothing but the number of 

neighbours of a node whereas betweenness represents the role of nodes in 

transmission of information in a network. So, Degree and betweenness centrality 

act as a primary parameters in evaluating the importance of the node in a 
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network
55

. From the DFT analysis, 3 best active compounds were obtained, viz. 

aurapten, gigantean and cannabichromene for their targets on the basis of their 

reactivity. These compounds were reported to be present in Aegle marmelos (L) 

Corr Roxb., Calotropis gigantean (L) W Aiton.  and Cannabis sativa Linn. 

respectively
56,57

. Moreover, it has been reported that auraptene shows antidiabetic 

activity by modulating lipid metabolism through PPARα activation
58

. There is no 

report of cannabichromene and gigantean as anti hyperglycaemic agent. Rather the 

derivatives of cannabichromene reduce inflammation with its high anti-

inflammatory effect
59

. Since inflammation is one of the responsible factors for 

developing insulin resistance cannabichromene may ameliorate insulin resistance 

by lowering the inflammation in the body
60

.  

From this study the probable multitargeting therapeutic choices are 

demonstrated for the treatment of insulin resistance and T2DM, based on network 

pharmacology and DFT based approach. The concoction of these compounds may 

reduce the risk of T2DM which may be validated after further in vitro and in vivo 

experiments. 
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