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CHAPTER 3 2017 

METHODS 

3.1. Computational Techniques: 

To study the structural dynamics, aggregation mechanism, polymorphism of 

amyloid fibrils, and oligomer characterization of the Aβ1-42 peptide, we used MD 

simulation. The principle and theory of the MD simulation is discussed below. 

3.1.1. Molecular dynamics simulation: 

  MD simulations act as a bridge between theory and experiments. As a 

counterpart to experiment, MD simulations are used to solve scientific problems 

wherein numerical experiments can be performed for new materials without 

synthesizing them. MD simulations are used to reproduce experiment to elucidate the 

invisible microscopic details and to further explain experiments. MD simulation consists 

of the numerical, step-by-step, solution of the classical equations of motion and thus the 

molecular interactions can be studied in details. Ultimately to make direct comparisons 

with experimental measurements made on specific materials a good model of molecular 

interactions is essential. The crucial advantage of MD simulation lies in its ability to 

extend the horizon of the complexity that separates ‘solvable’ from ‘unsolvable’.  

3.1.1.1. History of simulation: 

In the late 1950's MD simulation emerged as one of the first simulation method 

from the pioneering application to study the interactions of hard spheres by Alder and 

Wainwright [159]. Many important understandings on the behavior of simple liquids 

developed from their studies. The next major breakthrough happened in 1964, when the 

first simulation for liquid argon was carried out using a realistic potential by Rahman 

[160]. In 1974, Rahman and Stillinger performed MD simulation of liquid water, the 

first simulation of realistic system like the phase behavior of Lennard-Jones particles 

[161]. The first protein simulations appeared in 1977 with the simulation of the bovine 

pancreatic trypsin inhibitor (BPTI) [162].  Due to the revolutionary advances in 

computer technology and algorithmic improvements, nowadays, MD simulations are 

used on a regular basis to study the solvated proteins, protein-DNA complexes as well 

as lipid systems addressing a variety of issues including the thermodynamics of ligand 

binding and the folding of small proteins. Not only MD simulation but different 

simulation methods for molecular system have greatly expanded for particular 
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problems, including mixed quantum mechanical - classical simulations that are being 

employed to study enzymatic reactions in the context of the full protein. To validate and 

minimized the experimentally (X-ray crystallography and NMR structure) determined 

protein structures generally MD simulations are widely used.  

3.1.1.2. Theory of molecular dynamics simulation: 

The essence of MD simulation consists of integrating Newton’s law of motion 

for a system of interacting particles with mass m and initial positions and velocities with 

an accurate description of the potential energy as a function of the atomic coordinates. It 

generates the positions and velocities of the particles in the system that varies with time 

in phase space and specified as trajectories. These trajectories provide the average 

values of physical and chemical properties of the particle describing how positions and 

velocities of the atoms change with time. This is a deterministic method. By solving the 

differential   equation of Newton’s second law, the trajectory is attained  

                                    �⃗� = 𝑚𝑎……………………………………………………………………… (1) 

                               𝐹 = −
𝑑

𝑑𝑟
𝜇…………………………………………………………….. (2) 

The forces F is acting on the particles with mass of the particles = m and acceleration of 

the particle = a, and these are derived from the potential energy μ(r N), where r N = (r1, 

r2 . . . r N) represents the complete set of 3N atomic coordinates. 

 The purpose of the numerical integration of Newton’s equation of motion is to find an 

expression that defines position ri (t+∆t) at time t+∆t in terms of the already known 

positions at time t. Because of its simplicity, time-reversibility and numerical stability, 

the Verlet algorithm is frequently used in MD simulation to calculate the trajectories of 

particles. The basic formula of this algorithm uses Taylor series expansions of the 

positions and dynamic properties.  

A variation on the Verlet algorithm is the leap-frog algorithm [163] where velocities 

can be calculated from the positions or propagated explicitly.  

 

 

The leapfrog algorithm use velocities at half time step: 

  

                             �̇�𝑖 (𝑡 +
Δ𝑡

2
 ) =  �̇�𝑖 (𝑡 −

Δ𝑡

2
 ) +  𝑟�̈�(𝑡)∆𝑡 …………………………… (3) 
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The velocities at time t can be also computed from:  

 

                             𝑟𝑖 ̇ (𝑡) =  
�̇� 𝑖 (𝑡+ 

Δ𝑡 

2
 )+ �̇� 𝑖(𝑡− 

Δ𝑡 

2

̇
)

2
   …………………………………………. (4)           

 

This is useful when the kinetic energy is needed at time t, as for example in the case 

where velocity rescaling must be carried out. The atomic positions are then obtained 

from:  

                               𝑟𝑖  (t+∆t) = 𝑟𝑖  (t) +�̇�𝑖(𝑡 +
Δ𝑡

2
) ∆t……………………………………. (5) 

The leapfrog algorithm is computationally less expensive and requires less storage. 

This could be an important advantage in the case of large scale calculations. Moreover, 

the conservation of energy is respected, even at large time steps. Therefore, the 

computation time could be greatly decreased when this algorithm is used. However, 

when more accurate velocities and positions are needed, another algorithm should be 

implemented, like the Predictor-Corrector algorithm. 

The molecular trajectory theoretically imitates the motion of the real system. If the 

potential energy function is a good estimate of the real interactions between the 

particles, this can provide an extremely detailed description of both the dynamics and 

equilibrium properties of the system under consideration. The functional form of the 

potential energy function together with the set of interaction parameters used is called a 

force field. 

3.1.1.3. Force field: 

A molecular mechanical force field is an empirical model that describes the   

interactions within a molecular system. The force field models calculate the energy of a 

system as a function of the nuclear positions only. Several different force fields have 

been developed by different research groups. The common thing between all the current 

force fields is that they use a potential energy function. The typical functional form of a 

force field is: 

   𝑉(𝑟𝑁) =  ∑
𝑘𝑖

2𝑏𝑜𝑛𝑑𝑠 (𝑙𝑖 − 𝑙𝑖,𝑜  ) 2 +   ∑
𝑘𝑖

2𝑎𝑛𝑔𝑙𝑒𝑠 (𝜃𝑖 −  𝜃𝑖,𝑜  ) 2 +

    ∑
𝑉𝑛

2𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠 (1 + cos(𝑛∅ − ∅𝑜  )) +  ∑ ∑ (4𝜀𝑖𝑗  ⌈ (
𝜎𝑖𝑗 

𝑟𝑖𝑗
)

12

−    (
𝜎𝑖𝑗 

𝑟𝑖𝑗
)

6

  ⌉ +𝑁
𝑗=𝑖+1

𝑁
𝑖=1

 
𝑞𝑖𝑞𝑗

4𝜋𝜖𝑜𝜀𝑟𝑟𝑖𝑗
)…………………………………………………………………………………………………………… (6) 

Where,  
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V (rN)        : potential energy as a function of the positions (r) of N atoms; 

ki               : force constant; 

l ,l0             : current and reference bond lengths; 

θ, θ0          : current and reference valence angle: 

Vn               : barrier height of rotation; 

Ø                : torsion angle; 

n                 : multiplicity that determines the number of energy minima during a full              

                     rotation; 

σij             : collision diameter for the interaction between two atoms i and j; 

 εij               : well depth of the Lennard-Jones potential for the i-j interaction; 

qi, qj         : partial atomic charges on the atoms i and j; 

rij             : current distance between the atoms i and j; 

ε0, εr             : permittivity of the vacuum and relative permittivity of the  

                    environment respectively; 

Ø0               : phase factor that determines where the torsion angle passes through its 

                     energy minima. 

The potential energy function is generally composed of bonded interactions such as 

bond lengths, angles and bond rotations and non-bonded interactions i.e. van der Waals 

and electrostatic interactions. The types of interactions are schematically presented in 

Figure 3.1. 

                                  

Figure 3.1. Schematic illustration of the main contribution to the empirical 

potential energy function (Taken from [164]). 

The first term in the equation represents the bond stretching between pairs of 

covalently bonded atoms. The second term characterizes the contribution of each angle. 

Angle bending due to vibrational motions requires less energy to distort an angle from 

its equilibrium value. The third term models the torsion angle. It shows how the energy 

changes due to the rotation around a bond. The fourth term of the equation models the 
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contribution of non-bonded interactions using a Lennard-Jones potential for van der 

Waals interaction and a Coulomb potential for electrostatic interactions.  

3.1.1.4. Long range interactions: Ewald sum: 

Ewald summation [165] is one of the most widely used techniques to treat long 

range interaction in periodic system.  Main idea of Ewald sum is to consider a charge 

distribution of opposite sign on every charge site; this extra charge distribution screens 

the interaction between neighboring atoms. This screened interaction is now short-range 

and can be accurately taken care of using the cut-off scheme discussed above for short 

range interaction. To compensate the additional charge distribution equal charge 

distribution having opposite sign short range interaction is added and summed in 

reciprocal space. The contribution to the electrostatic potential at point ri due to a set of 

screened charges can easily be computed by direct summation because the electrostatic 

potential due to screened charge is a rapidly decaying function of r. Total potential 

energy due to Long range Coulomb interaction is given by the expression: 

                           𝜇𝑐 =  𝜇𝑞(𝛼) − 𝜇𝑠𝑒𝑙𝑓(𝛼) + ∆𝜇(𝛼)……………………………….. (7) 

Larger the value of α, sharper the distribution hence large number of K summation 

has to be included for better accuracy. On the other hand, large value of α reduces range 

of screened potential hence we can use smaller cutoff radius. Hence value of α is 

optimized between these two factors to give better accuracy and efficiency. Note that 

Ewald summation as presented above scales as N 2 only. However, with suitable choice 

of α and k-space summation cut-off K, Finchman [166] was able to optimize the 

summation which scales as N 3/2. Ewald summation can further be optimized through 

the use of Fast Fourier transform (FFT) in evaluating the reciprocal summation. Particle 

Mesh based approaches rely on the use of fixed cutoff on the direct space sum together 

with an FFT based approximation for the reciprocal space sum that scales as N log(N). 

3.1.1.5. Dealing with molecules: SHAKE algorithm: 

In a molecular system, the choice of time step is limited by the various time scales 

associated with vibrational degrees of freedom such as bond vibration, angle stretching 

or torsional mode. In general, the bonds involving hydrogen atoms have the fastest 

vibrational mode and they limit the time step of integration to 1 fs. In order to use a 

larger time step one can restrain these fast degrees of freedoms while solving the un-
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constrained degrees of freedom. Bonds involving hydrogen have the highest frequency 

hence they can be constrained during dynamics using The SHAKE algorithm which was 

introduced by Ryckaert et al [167]. Basic idea of SHAKE is to use Lagrange multiplier 

formalism to enforce bonds distances constant. Suppose we have Nc such constrained 

given by  

∝𝑘 =  𝑟2 
𝑘1 𝑘2

−  𝑅2

𝑘1 𝑘2
= 0,  where k = 1, 2, 3…….Nc ………………… (8) 

Rk1k2 being constrained distant between atoms k1 and k2 atoms. This leads to modified 

constrained equation of motion 

𝑚𝑖 
𝑑2𝑟𝑖  (𝑡)

𝑑𝑡2 =  − 
𝜕

𝜕𝑟𝑖
 [𝑉 (𝑟1 … … 𝑟𝑁) +  ∑ 𝜏𝑘 (𝑡)𝛼𝑘(𝑟1 … . 𝑟𝑁)𝑁𝑐

𝑘=1 ]  …………… (9) 

Where mi is mass of ith particle and τk is the Lagrange multiplier (unknown) for 

kth constraint. This equation can be solved for unknown multiplier by solving 

Nc quadratic coupled equations, and we get the following equation of motion: 

𝑟𝑘1(𝑡 + ∆𝑡) =  𝑟𝑘1
𝑢𝑐 (𝑡 + ∆𝑡) − 2(∆𝑡)2𝑚𝑘1

−1 𝜏𝑘 (𝑡)𝑟𝑘1𝑘2(𝑡) ………………………… (10) 

Where 𝑟𝑢𝑐 is position updates with unconstrained force only. This procedure is 

repeated till defined tolerance is given. 

3.1.1.6. Periodic boundary conditions: 

The size of the model systems consists of a small number of particles compared to 

real macroscopic systems. Many of the atoms will experience a large boundary surface 

to a vacuum environment while simulating which will be irrelevant to study phenomena 

taking place in bulk. Periodic boundary conditions make it possible to small particles to 

experience forces if they are in a bulk solution. The atoms are placed in a simulation 

box that is surrounded by translated copies of the coordinates of the atom as shown in 

Figure 3.2. A periodic 3-dimensional array surrounds the inner cell. If an atom crosses 

the boundary it is replaced by an image atom that enters from the opposite side with 

unchanged velocity. Thus, the number of particles within the central box remains 

constant. A non-bonded cutoff is used to deal with the non-bonded interactions such that 

each atom interacts with only one image of every other atom in the system.  
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Figure 3.2. Periodic boundary conditions in two dimensions. The simulation cell 

(solid) is surrounded by translated copies of itself (dashed). 

3.1.1.7. Temperature and pressure computation and control: 

The initial temperature of the system is computed by coupling to a Berendsen 

thermal bath [168]. The bath supply or remove heat from the system as appropriate, 

thereby acts as a source of thermal energy. The system temperature T (t) that deviates 

from the bath temperature T0 is corrected according to:  

                      
𝑑𝑇(𝑡)

𝑑𝑡
=  

1

𝜏
{𝑇𝑜 − 𝑇(𝑡)}……………………………………………………… (11) 

where  𝜏 (time constant) determines the strength of the coupling between the bath 

and the system. The temperature of the system is corrected by scaling the atom 

velocities at each step by a factor χ, given by: 

                              χ = [1 +  
Δt

𝜏𝑇
 (

𝑇𝑜

𝑇(𝑡) 
− 1)]………………………………………………… (12)        

The strength of the coupling can be varied by changing the time constant𝜏.  

The method used for pressure control is similar to that of temperature control. 

The system can be coupled to a barostat and the pressure can be maintained at a 

constant value by periodic scaling of the simulation cell size and atomic positions with a 

factor μ: 

                               𝜇 = 1 − 𝜔
Δ𝑡

𝜏𝑝
 (P-P0)………………………………………………………. (13) 

where ω represents the isothermal compressibility, 𝜏𝑝 represents the relaxation constant, 

P0 is the pressure of the barostat, P, the momentary pressure at time t and ∆t is the time 

of step. The standard simulation package AMBER12 is used in the present work [169]. 

Pmemd, one of the AMBER modules carries out the molecular dynamics simulation. 

The various steps involved in setting up and running a MD simulation are discussed 

below in details and shown in the form of flowchart Figure 3.3. 
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3.1.1.8. Water molecule models: 

               Many molecular models have been proposed for describing water in MD 

simulation. These models can be categorized according to the number of sites, the 

structure (rigid or flexible), and the polarization effects. The 3-site models are the most 

popular one to be used in MD simulations because of the simplicity, reasonable 

structural and thermodynamic descriptions and computational efficiency. These kinds of 

models have three interaction sites which correspond to the three atoms of the water 

molecule. Each atom gets assigned a point charge. Only the oxygen atom has Lennard-

Jones parameters for interaction. Some of the popular 3-site models include transferable 

intermolecular potential three-point (TIP3P) model , simple point charge (SPC) model, 

extended simple point charge (SPC/E) model, etc. [170]. Most of these models use a 

rigid geometry matching the known geometry of the water molecule. The simulations in 

this thesis are carried out using TIP3P water model. The TIP3P water model used here 

is specified with the O-H bond length (rOH) and H-O-H bond angle (θHOH) to be 0.9572 

Å and 104.52° respectively which are equal to experimental gas-phase values. The 

simple model for TIP3P water is shown in Figure 3.4. 

                                     

          Figure 3.3. Schematic flowchart of steps involved in MD Simulation.  
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                  Figure 3.4. Schematic representation of TIP3P water model. 

3.1.1.9. Molecular dynamics steps: 

In order to propagate a molecular system using the above equations there are three 

typical stages 

i. Minimization 

ii. Equilibration 

iii. Dynamics 

(i) Minimization: 

Using the force field that has been assigned to the atoms in the system it is essential 

to find a stable point or a minimum on the potential energy surface in order to begin 

dynamics. At a minimum on the potential energy surface the net force on each atom 

vanishes. Constraints may be imposed during minimization, as well as during dynamics. 

These constraints may be based on data such as NOEs from an NMR experiment or they 

may be imposed by a template such that we force a ligand to find the minimum closest 

in structure to a target molecule. To minimize we need a function (provided by the force 

field) and a starting guess or set of coordinates. The magnitude of the first derivative 

can be used to determine the direction and magnitude of a step (i.e. change in the 

coordinates) required to approach a minimum configuration. The magnitude of the first 

derivative is also a rigorous way to characterize convergence.  
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Figure 3.5. A schematic one-dimensional energy surface. Minimisation methods move 

downhill to the nearest minimum. 

Most minimization algorithms can go downhill on the energy surface and so they 

can locate the minimum that is nearest to the starting point. Thus, Figure 3.5 shows a 

schematic energy surface and the minima that would be obtained starting from three 

points A, B and C. To locate more than one minimum or to locate the global energy 

minimum it requires generating different starting points, each of which is then 

minimized [171]. 

 A minimum energy is converged when the derivatives are close to zero. Prior to 

starting a MD simulation, it is important to perform energy minimization of the 

structure in order to remove the bad contacts, which may otherwise lead to structural 

distortion. There are three major protocols for minimization: 

A. Steepest descent 

B. Conjugate gradient 

C. Newton-Raphson 

A. The Steepest Descents Method: 

The steepest descent method determines the direction towards the minimum 

using the first derivative. It moves in the direction parallel to the net force. For 3N 

Cartesian coordinates this direction is most conveniently represented by a 3N-

dimensional unit vector, 𝒔𝑘. Thus: 

                                      𝒔𝑘 =  −𝒈𝑘/|𝒈𝑘| ………………………………. (14)        

Having defined the direction along which to move it is then necessary to decide 

how far to move along the gradient.  Consider the two-dimensional energy surface of 

Figure 3.6. The gradient direction from the starting point is along the line indicated if 

http://www4.ncsu.edu/~franzen/public_html/CH795N/lecture/IV/min/minimization.html
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we imagine a cross-section through the surface along the line; the function will pass 

through a minimum and then increase, as shown in the figure. We can choose to locate 

the minimum point by performing a line search or we can take a step of arbitrary size 

along the direction of the force [171]. 

                   

Figure 3.6.  A line search is used to locate the minimum in the function in the direction 

of the gradient(Adapted from [171]) . 

 

B. Conjugate Gradients Minimization: 

The conjugate method produces a set of directions which does not show the 

oscillatory behavior of the steepest descents method in narrow valleys. In conjugate 

gradients, the gradients at each point are orthogonal but the directions are conjugate. A 

set of conjugate directions has the property that for a quadratic function of M variables, 

the minimum will be reached in M steps. The conjugate gradients method moves in a 

direction 𝒗𝑘 from point 𝒙𝑘 where 𝒗𝑘 is computed from the gradient at the point and the 

previous direction vector 𝑣𝑘−1 [171]. 

 

C. Newton-Raphson Method: 

The Newton-Raphson method uses the second derivatives as well as the first 

derivatives. In addition to using the gradient information, it uses the curvature to predict 

where along the gradient of the function will change direction. It is the most 

computationally expensive method utilized to perform energy minimization.  

Prior to minimization, water molecules are added to solvate the system if 

required. A suitable large box of water that has already been equilibrated is used for 
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solvation purpose. The system is entirely covered by the water box and those water 

molecules that overlap the proteins are removed. At this point energy minimization 

should be done with the protein fixed in its energy minimized position. This allows the 

water molecules to readjust to the protein molecule. 

(ii) Equilibration: 

              Molecular dynamics solves the equations of motion for a system of atoms. The 

solution for the equations of motion of a molecule represents the time evolution of the 

molecular motions, the trajectory. Depending on the temperature at which a simulation 

is run MD allows barrier crossing and exploration of multiple configurations. In order to 

initiate MD we need to assign velocities initially. This is done using a random number 

generator using the constraint of the Maxwell-Boltzmann distribution. The temperature 

is defined by the average kinetic energy of the system according to the kinetic theory of 

gases. The internal energy of the system is U = 3/2 NkT. The kinetic energy is U = 1/2 

Nmv2. By averaging over the velocities of all of the atoms in the system the temperature 

can be estimated. It is assumed that once an initial set of velocities has been generated 

the Maxwell-Boltzmann distribution will be maintained throughout the simulation. 

Following minimization we can consider the temperature as being essential zero 

Kelvin. To initialize dynamics the system must be brought up to the temperature of 

interest. This is done by assigning velocities at some low temperature and then running 

dynamics according to the equations of motion. After a number of iterations of 

dynamics the temperature is scaled upwards. The most common means of temperature 

scaling is velocity scaling. Given a typical time step of 1 fs equilibration is run for at 

least 5 ps (5000 time steps) and often for 10 or 20 ps.  

 

(iii) Production dynamics: 

The dynamics stage is the stage of interest for determining thermodynamic averages 

or sampling new configurations. The stage used for these applications is sometimes 

known as production dynamics. During this stage of MD simulation thermodynamic 

parameters can be calculated.  Production run can be generated from some hundred      

ps-ns or more.  

3.1.2. Potential of mean force: 

            The potential of mean force (PMF) [172] is a central concept about the free 

energy changes as a function of some inter or intramolecular coordinates of molecular 

systems. The reaction coordinate may be the distance between two atoms, or the torsion 
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angle of a bond thus fundamentally related to that coordinate’s distribution function.     

The PMF incorporates solvent effects along with the intrinsic interaction between the 

two particles when the system is in a solvent. The transition state for the process is 

related to the point of highest energy on the free energy profile, from which rate 

constant can be derived. There exist various methods to calculate the PMF. The simplest 

type of PMF is the free energy change with reaction coordinate as the change in 

separation (r) between two particles and can be defined as [171] 

                                     A (r) = -kBT ln g (r) + constant ……………………………………… (15) 

The PMF may vary by several multiples of kBT over the relevant range of the 

parameter r. The logarithmic relationship between the PMF and radial distribution 

function means that a relatively small change in the free energy may correspond to g(r) 

changing by an order of magnitude from its most likely value. Unfortunately, MD 

simulation method does not adequately sample regions where the radial distribution 

function differs drastically from the most likely value, leading to inaccurate values from 

the PMF.  One of the most widely used sampling techniques to avoid this problem is the 

umbrella sampling (US). 

3.1.2.1. Umbrella sampling:  

US overcome the sampling problem by restraining a system to a specific region of 

its conformational space thereby modifying the potential function so that the 

unfavorable states are sampled appropriately.   The modification of the potential 

function can be written as: 

                             𝜗′ (𝑟𝑁) =  𝜗 (𝑟𝑁) + 𝑊 (𝑟𝑁)………………………………………… (16) 

Where W (rN) is a weighting function, which takes a quadratic form: 

                             𝑊 (𝑟𝑁) =  𝑘𝑊 (𝑟𝑁 − 𝑟0
𝑁)2…………………………………………... (17) 

For configurations that are far from equilibrium state r0
N the weighting function will be 

large and so a simulation using the modified energy function 𝜗′(𝑟𝑁) will be biased 

along some relevant ‘reaction coordinate’ (RC) away from the configuration r0
N. The 

resulting distribution will, of course, be non-Boltzmann. The corresponding Boltzmann 

averages can be extracted from the non-Boltzmann distribution using a method 

introduced by Torrie and Valleau [173]. The result is: 

                                 < 𝐴 > =  
<𝐴 (𝑟𝑁)exp [ +𝑊

𝑟𝑁

𝑘𝐵 𝑇
]> 𝑊

<exp [+
𝑊(𝑟𝑁)

𝑘𝐵 𝑇
]> 𝑊

 ……………………………. (18) 
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The subscript W indicates that the average is based on the probability PW (r
N), which in 

turn is determined by the modified energy function 𝜗′(𝑟𝑁). It is usual to perform an 

umbrella sampling calculation in a series of stages, each of which is characterized by a 

particular value of the coordinate and an appropriate value of the forcing potential W 

(rN). However, if the forcing potential is too large, the denominator in Equation 18 is 

dominated by contributions from only a few configurations with especially large values 

of exp [W (rN)] and the average takes too long to converge. 

3.1.2.2. Running the umbrella sampling calculations: 

With a relaxed starting structure one can run MD on the individual umbrella 

windows. The key point to remember when selecting the number of windows is that the 

end points must overlap, i.e. window 1 must sample some of window 2 etc. The force 

constant similarly has to be big enough to ensure that the subset of phase space are 

sampled but not too strong that the windows become too narrow and can’t overlap.  

                          

      "\" =    lower bound linear response region  

      "/" =    lower bound linear response region  

      "…" = parabola 

      "_" = flat region 

Normally one can vary the size of the windows and the constraints as a function of 

position along the pathway. The amount of simulation we do in each window needs to 

be such we can converge our sampling. To specify the harmonic restraint a reference 

file is employed where R1, R2, R3, R4 define a flat-welled parabola which becomes 

linear beyond a specified distance. Essentially between r1 and r2 it will be harmonic 
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with force constant rk2, between r2 and r3 it will be flat and between r3 and r4 it will be 

harmonic with force constant rk3. 

3.1.2.3. The Weighted Histogram Analysis Method (WHAM) for free-

energy calculations: 

The WHAM method [174] is an extension of the US method but it has a number 

of advantages over the conventional US method. The WHAM method, in addition to 

optimizing the links between simulations, also allows multiple overlaps of probability 

distributions for obtaining better estimates of the free-energy differences. The older 

method of obtaining a single distribution function by requiring that the probability 

distributions agree at some point in the overlap region will fail to yield unique free-

energies if three or more distributions are involved in the overlap region. This algorithm 

provides a built-in estimate of errors that give investigators objective estimates of the 

optimal location and length of additional simulations to improve the accuracy of their 

results. The WHAM method takes into account all the simulations that produce 

overlapping distributions. The WHAM method links the different simulations through 

the overlapping histograms in an optimal manner. The WHAM equations can also be 

readily used to generate PMFs and free energies as a function of the coupling 

parameter(s) hi and/or the temperature. This is useful as simulations can be carried out 

at a range of temperatures to improve conformational sampling and the results 

extrapolated (or interpolated) to the desired temperature [174]. 

3.1.3. PatchDock: 

PatchDock carries out rigid docking of molecules, whether protein–protein or 

protein–drug interaction, with surface variability which is addressed through 

intermolecular penetration [175]. It is based on local shape feature matching algorithm 

established by Kuntz [176]. At first, the docking method detects the molecular surface 

areas with a high probability in the binding site, while retaining the correct 

conformation. The algorithm which they use treats receptors and ligands of variable 

sizes and thus succeeds in docking of large proteins with small drug molecules. The 

algorithm functions through three major stages: 

(i) Molecular Shape Representation: In the first stage two types of surfaces for 

each molecule are computed. The calculated surface is then preprocessed into 

distance transform grid and multi-resolution surface which are later used in the 
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scoring routines. Furthermore, the distance transform grid is used in the shape 

representation stage of the algorithm. Next, a sparse surface representation is 

computed which is divided to patches of almost equal area of three types 

according to their shape geometry: concavities, convexities and flats. Next, the 

patches are subjected to filter; patches with high propensity to the hot spot 

residues are retained. 

(ii) Surface Patch Matching: A hybrid of the Geometric Hashing and Pose-

Clustering matching techniques is applied to match the critical points within 

the patches detected in the previous step. Concave patches are matched with 

convex and flat patches with any type of patches. Two techniques are used for 

matching the patches: 

A. Single Patch Matching: This type of matching is used for docking of small 

ligands, like drugs or peptides, wherein one patch from the receptor is 

matched with one patch from the ligand. 

B. Patch-Pair Matching: This type of matching is used for protein-protein 

docking, wherein two patches from the receptor are matched with two patches 

from the ligand. 

(iii)Filtering and Scoring: Unacceptable steric clashes between the receptor and 

ligand atoms are discarded in the last stage and score is given.   

A. Steric Clashes Test: In this stage the distance transform grid is extensively 

used. The transformation is applied on the surface points of the ligand. Next 

the distance transform grid of the receptor is matched with the coordinates of 

every surface point. If the distance is less than penetration threshold for each 

surface point, the transformation is retained for the next step, otherwise the 

transformation is disqualified. 

B. Geometric Scoring: The general idea is to divide the receptor into shells 

according to the distance from the molecular surface. Each shell is defined by 

a range of distances in the distance transform grid. The geometric score is a 

weighted average of all the shells, where candidate complexes with large 

number of points in the shell, and as little as possible points in the 

’penetrating’ shells are preferred.  
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3.1.4.  The molecular mechanics energies combined with the Poisson-

Boltzmann or generalized Born and surface area continuum 

solvation method (MM-PBSA and MM-GBSA): 

The MM-PBSA and MM-GBSA methods  was originally defined by Kollman et 

al. [177] are characterized by the use of Poisson-Boltzmann (PB) and Generalized Born 

(GB) models to compute the absolute binding free energy for the non-covalent 

association of any two molecules, A and B, in solution, that is.  

                      [A]aq + [B]aq ⇔ [A* B*] aq* ……………………………… (19) 

where [A]aq refers to the dynamical structure of molecule A free in solution, [B]aq refers 

to the dynamical structure of molecule B free in solution, and [A* B* ]aq* represents the 

complex formed from molecules A and B. The binding free energy for the noncovalent 

association of two molecules may be written in terms of thermodynamic quantities as: 

                          ∆G = ∆H -T∆S …………………………………………….. (20) 

Wherein, ∆H is the enthalpy, ∆S represents entropy and T is the temperature of the 

system at 300 Kelvin. The binding free energy (∆G) of a receptor-ligand complex is 

computed as: 

                        ∆Gbind = Gcom – [Grec + Glig]………………….….………… (21) 

Gcom is the absolute free energy of the complex, Grec is the absolute free 

energy of the receptor, and Glig is the absolute free energy of the ligand. The 

enthalpy term in equation 20 can be dissected into sub-energy terms: 

                        Htot = Hgas + Gsolv ……………………………………………………. (22) 

                      Hgas= Eel + EvdW+ Eint …………………………………………… (23) 

Hgas is the potential energy of the solute which is determined as the sum of van der 

Waals (Evdw), electrostatic (Eel) and internal energies (Eint) in gas phase. Gsolv is the 

solvation free energy for transferring the solute from vacuum into solvent and is a sum 

of electrostatic (Gel) and non-electrostatic (hydrophobic) contributions (Gnonel) as 

shown in equation 24: 

                     Gsolv = Gel + Gnonel ………………………………………………….. (24) 

The total entropy (Stot), as formulated in equation 25 arose from changes in the degree 

of freedom: 

                    Stot = Strans + Srot + Svib ………………………………………………. (25) 
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In equation 25, (Strans) is the translational, (Srot) the rotational, and (Svib) the 

vibrational entropy of each species. Considering all absolute energy terms as given in 

equation 21, the binding free energy ∆G takes the following form: 

                ∆Gbinding = [∆Hgas + ∆Gsolv] – T∆Stot ……………………………. (26) 

3.1.5. Contact Map Analysis: 

For a given PDB file, the ‘Contact Map Analysis’ server (CMA) evaluates 

residue–residue contacts between two chains or within a single one [178]. The interface 

contacts between the two chains in a given PDB file is considered and residue–residue 

contacts are represented as an interactive contact map.  The CMA server is based on 

LPC/CSU software which gives in detail information including names of the contacting 

atoms, distances and atom–atom contact areas. The program evaluates simultaneously 

contact surface area and solvent-accessible surface area. The analysis of ligand-protein 

interaction is based upon an approach termed surface complementarity [179]. The 

complementarity function is defined as: 

                                  CF = S1 – Si – E…………………………………. (27) 

Where S1 indicates the sum of all surface areas of ‘legitimate’ atomic contacts between 

ligand and receptor, Si indicates the surface areas of ‘illegitimate’ atomic contacts and E 

is a repulsive term. Legitimacy depends upon the hydrophobic/hydrophilic properties of 

the contacting atoms. As input, LPC software reads PDB formatted file consisting of 

coordinates of protein atoms and ligand(s). It then assigns atom class to every atom of 

protein and ligand based on legitimacy and interatomic distances. Two atoms are 

considered to be covalently bound if the distance between them is < 2.0 Å. 

 

3.1.6. PDBsum: 

PDBsum is a Web-based database [180].  The database provides a pictorial 

summary on each macromolecular structure deposited at the Protein Data Bank together 

with various analyses of their structural features. PDBsum server also provides a 

schematic depiction of the inter-molecular interactions as a LIGPLOT diagram [181]. 

The LIGPLOT program automatically generates schematic 2-D representations of 

protein-ligand complexes from standard Protein Data Bank file input. The output is a 

color, or black-and-white, PostScript file giving a simple and informative representation 

of the intermolecular interactions and their strengths, including hydrogen bonds, 

hydrophobic interactions and atom accessibilities. The program is completely general 
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for any ligand and can also be used to show other types of interaction in proteins and 

nucleic acids [182].  

 

3.1.7. Analysis of trajectories: 

(i) Root Mean Square Deviation (RMSD): The deviation of a structure with respect to a 

particular conformation is measured by RMSD. It is defined as:  

              RMSD= (
∑ (𝑅𝑖−𝑅𝑖

0)
2

𝑁

𝑁
)

1/2

……………………………………(28) 

where N is the total number of atoms/residues considered in the calculation, and Ri is 

for the vector position of particle i (target atom) in the snapshot, Ri
0 is the coordinate 

vector for reference atom i. RMSD was computed based on backbone atoms and taking 

the first frame of the simulation as the reference.  

 

(ii) Root Mean Square Fluctuation (RMSF): It is useful for characterizing local changes 

along the protein chain. It is calculated as:  

             RMSF = (
1

𝑇
∑ (𝑟𝑖(𝑡) − 𝑟𝑖

𝑟𝑒𝑓)
2𝑇

𝑡=1 )
1/2

………………………………….. (29) 

T is the trajectory time over which the average is taken, ri (t) is the position of the atoms 

in residue i and ri
ref is the reference position of particle i. 

 

(iii) Radius of Gyration (Rg): It calculates the distribution of the components of an 

object around the axis. It gives the compactness of a protein. It is calculated as: 

            Rg = (
1

𝑁
 ∑ (𝑟𝑖 − 𝑟𝑐𝑚)2

𝑖 )
1/2

……………………………………………………….. (30) 

 

where ri - rcm is the distance between atom i and the center of mass of the molecule. 

 

(iv)  Secondary Structure Analysis: The secondary structure content of each protein was 

calculated using DSSP algorithm which recognizes cooperative secondary structures 

as repeats of the elementary hydrogen-bonding patterns “turn” and “bridge.” 
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Repeating turns are “helices,” repeating bridges are “ladders,” connected ladders are 

“sheets. We consider that a secondary structure element is stable at a given position 

of the protein if it is the predominant in > 50% of the collected snapshots [183]. 

 

 


