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MRI : Magnetic Resonance Imaging 
MTBR : Microtubule Binding Region 
ns : nanosecond 
NAB : Nucleic Acid Builder 
NFT : Neurofibrillary Tangles 
NIA : National Institute on Ageing 
NMR : Nuclear Magnetic Resonance Spectroscopy 
ps : picosecond 
PB : Poisson-Boltzmann 
PDB : Protein Data Bank 
PET : Positron Emission Tomography 
PMF : Potential of Mean Force 
PSC : Pairwise Shape Complementarity 
PSEN : Presenilin 
RC : Reaction Coordinate 
REMD : Replica Exchange Molecular Dynamics 
Rg : Radius of Gyration 
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VMD : Visual Molecular Dynamics 
WHAM : Weighted Histogram Analysis Method 
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