
Chapter 3

On the Solution of DGLAP Evolution
Equation

Along with a qualitative analysis of the available methods to solve DGLAP equa-

tion, in this chapter we have allude the usefulness of two Q2 dependent Regge ansatz

in solving DGLAP equation in order to have the small-x behaviour of both the spin

independent and spin dependent non-singlet structure functions. By means of fitting

analysis, we have investigated the compatibility of the two ansatz with the available

experimental data and then studied the possible role played by them in evolving the

non-singlet structure functions in accord with DGLAP equation.

3.1 Introduction

It is widely believed that QCD is the correct theory of strong interaction. In

QCD, the structure functions are governed by a set of integro-differential equations,

the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi(DGLAP) evolution equations[24]. The

DGLAP equation is a renormalisation group equation for the quarks and gluon inside

hadron. It is one of the fundamental equations of perturbative quantum chromody-

namics (pQCD), being central to all theoretical predictions for lepton-hadron colliders.

The DGLAP evolutions are given in terms of a perturbative expansion of splitting

functions (Pij) which describe the probability of a parent parton i producing a daugh-

ter parton j with momentum fraction z by the emission of a parton with momentum

fraction 1 − z. For the flavor non-singlet (qNS = qi − q̄j), flavor-singlet(qs = qi + q̄i)

and gluon distributions(g), the DGLAP evolution equations read as follows:
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dqNS(x,Q2)

d lnQ2
=

α(Q2)

2π

∫ 1

x

dy

y
qNS(y,Q2)Pqq(

x

y
), (3.1)

d

d lnQ2

(
qs(x,Q2)

g(x,Q2)

)
=

α(Q2)

2π

∫ 1

x

dy

y

(
Pqq(

x
y
) Pqg(

x
y
)

Pgq(
x
y
) Pgg(

x
y
)

)(
qs(y,Q2)

g(y,Q2)

)
. (3.2)

Solutions of DGLAP equations give the Q2 evolution of both the parton distribu-

tion functions as well as various structure functions. Although QCD predicts the Q2

dependence of structure functions in accord with the DGLAP equations but they have

limitations on absolute prediction of structure functions. DGLAP equations cannot

predict the initial values from which the evolution starts, they can only predict the

evolution of structure functions with Q2, once an initial distribution is given. Fur-

ther, due to its complicated mathematical structure, an exact analytic determination

of the structure functions is currently out of reach and one needs to apply approx-

imated methods to arrive on predictions from the DGLAP equation. Accordingly

several approximate numerical as well as semi-analytical methods for the solution of

DGLAP equation have been discussed considerably over the past years [108–113]. In

literature there are essentially two main classes of approaches in order to have solutions

of DGLAP equations: those that solve the equation directly in x-space and those that

solve it for Mellin transformations of structure functions and invert the transformation

back to x-space. The approaches based on Mellin transformation method have been

achieved much interest because under Mellin transformation the integro-differential

DGLAP equation turns into a continuum of independent matrix differential equations,

one for each value of moments(N), which in turn makes the evolution more efficient

numerically. However, in this regard as the Mellin transformation of both the splitting

functions and the initial input is required, which may not be possible for all functions,

especially if higher-order corrections are included in the equations, therefore it is not

possible to have exact solution to DGLAP equation in moment space beyond leading

order. In contrast to Mellin space, the x-space method is more flexible, since the

inputs are only required in x-space; however it is generally considered to less efficient

numerically, because of the need to carry out the convolution in DGLAP equations.

Taking into account the advantage of being greater flexibility, despite the difficulty in

obtaining high accuracy, the x-space methods have been serving as the basis of many

widely used programs HOPPET[114], QCDNUM[108], CANDIA[113] etc., and being
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incorporated by the CTEQ[98], MRST/MSTW(see [107] and references therein) col-

laborations. In addition, several numerical and semi-analytical methods have been

developed[21, 100–103,107, 109–113,115, 138] and achieved significant phenomenolog-

ical success.

3.2 Methods of Solution of DGLAP Evolution Equa-

tion

There exist numerous techniques to solve DGLAP equations. Among them most pop-

ular techniques are the Laguerre polynomial method, Mellin transformation method

and Brute force method.

The Laguerre Polynomial method for numerical solution of the DGLAP evolution

equation is based on the expansion of the structure functions and splitting functions

in the basis of orthogonal Laguerre Polynmials[116,117].

In this method, initially an evolution function ENS(x, t) is defined which describes

the evolution of the structure functions from t = 0 to t as

FNS(x, t) =

∫ 1

x

dω

ω
ENS(

x

ω
, t)FNS(ω, t = 0), (3.3)

which satisfies

∂

∂t
ENS(x, t) =

∫ 1

x

dω

ω
PNS(

x

ω
, t)ENS(ω, t = 0). (3.4)

This integro-differential equation has the similar form as the original DGLAP equa-

tion. The advantage of introducing an evolution function is that it should be the delta

function at t = 0: ENS(x, t = 0) = δ(1− x) because of its definition in Eq.(3.3).

Here the functions are expanded in terms of the polynomials: PNS(e
−′x) =∑

n P
n
NSLn(′x) and ENS(e

−′x, t) =
∑

n E
n
NS(t)Ln(x

′), where P n
NS and En

NS(t) are the

expansion coefficients. The coefficient F n for a function F (x) is given by F n =∫ 1

0
Ln(′x)F (x), and it could be calculated analytically for a simple function. If the

two functions on the right-hand side of Eq.(3.4) are expanded, it becomes an inte-

gration of two Laguerre polynomials. Using the formula
∫ x′

0
dω′Ln(x

′ − ω′)Lm(ω
′) =

Ln+m(x
′)− Ln+m+1(x

′) for this integration, we obtain

d

dt
ENS(t) =

n∑
m=0

(P n−m
NS − P n−m−1

NS )Em(t). (3.5)

51



Chapter 3 On the Solution of DGLAP Evolution Equation

At t = 0 all the expansion coefficients are one, as the evolution function is a delta

function. Therefore, the solution of this equation gives a summation of the form:

Em
NS(t) = eP

0
NSt

m∑
k=0

tk

k!
Bk

m, B
K+1
m =

m−1∑
i=k

(Pm−i
NS − Pm−i−1

NS )Bk
i . (3.6)

This recursion relation is calculated with the relations B0
i = 1, B1

i =
∑i

j=1(P
j
NS −

P j−1
NS ) and Bk

0 = Bk
1 = ......... = Bk

k−1 = 0. After all, the evolution is calculated by

simple summation:

FNS(x, t) =
∑
n=0

NLag

n∑
m=0

[
En−m(t)− En−m−1(t)

]
Ln(− lnx)Fm

NS(t = 0). (3.7)

In this way, the integro-differential equation turns into a simple summation of

Laguerre expansion coefficients, so that this method is regarded as a significant and

very efficient numerical method for the numerical solution of the equation. However

the accuracy of this technique is limited and it is quite accurate up to x-values not

smaller than x ≈ 103. on the other hand for small x the convergence of the expansion

decreases. Therefore his method results no longer practical for the solution of DGLAP

equation within smaller-x region.

The Mellin transformation method is one of the popular evolution methods[118].

The reason behind popularity of the method is its ability to resolve the right hand side

of Eq.(3.1) into a simple product of to moments, namely the moments of distribution

function and the moments of splitting functions. In order to have solution in this

way, the moments of both the splitting function and distribution function are required.

Usually, the moments are well known and assuming a simple model for the distribution

functions at certain small Q2 such that its moments can be calculated easily, the

analytical solution of the equation can be obtained in moments space. Furthermore,

the computation time is fairly short. These are the reasons why this method has been

used as a popular method. For example, it is used for the χ2 analysis of experimental

data for obtaining polarized PDFs[119], whereas the brute-force method is employed

in Ref. [120].

The Mellin transformation and inversion are defined by

F̂NS(s, t) =

∫ 1

0

dxxs−1F (x, t), F (x, t) =
1

2πi

∫ c+i∞

c−i∞
dsx−sF̂ (s, t). (3.8)
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The Mellin inversion is a complex integral which consists of an arbitrary real constant

c, which should be chosen such that absolutely convergency is achieved in the integral∫ 1

0
dxF (x)xc−1. Under this transformation, the integro-differential equations become

very simple. For example, the nonsinglet evolution equation becomes

∂

∂t
F̂NS(s, t) = P̂NS(s)F̂NS(s, t). (3.9)

Its solution is simply given by

F̂NS(s, t) = ePNS(s)tF̂NS(s, t = 0). (3.10)

The moments of the distribution function F̂NS(s, t = 0), which is initially considered

at a certain Q2 = Q2
0, can be evaluated and using the well known moments of the

splitting functions P̂NS(s), the solution of Eq.(7.14) can easily be obtained in the

moment space. However, in order to have the distribution in x space, an inverse Mellin

transformation is required. In this regard, one important point to be noted is that, the

numerical Mellin inversion is relatively CPU time consumig, which happen even if the

analytical expressions of the moments of the initial conditions are well known[121].

Moreover, as discussed in [122], since x variable is associated with the invariant energy

W 2 of the virtual photon-hadron scattering process by W 2 = (1x)/x, x → 0 is the

infinite energy limit and thus can never experimentally be reached. As a consequence

of this all moments are plagued by an a priori infinite uncertainty, which can be

reduced by means of assumptions implying that any use of the evolution equations

for moments is model dependent.

The Brute-force method[122,123] is the simplest method in order to have numeri-

cal solution of integro-differential equation. For more complicated equations consisting

of higher twist terms[124], which could not be easily handled by other methods, such

as Mellin transformation as well as Laguerre-polynomial methods, the Brute-force

method is suitable, although it being seemed to be too simple. Furthermore, a com-

puter code is so simple that the possibility of a program mistake is small, which means

the code could be used for checking other numerical methods.

In the brute-force method, the two variables t and x are divided into small steps,

and then the differentiation and integration are defined by

∂FNS(x, t)

∂t
⇒ F (xi, tj+1)− F (xi, tj)

∆tj
,

∫
dxF (x, t) ⇒

Nx∑
k=1

∆xkF (xk, tj), (3.11)
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where ∆tj and ∆xk are the steps at the positions j and k, and they are given by

∆tj = tj+1 − tj and ∆xk = xk − xk−1. The numbers of t and x steps are denoted Nt

and Nx, respectively. Applying these equations to Eq.(3.1), we write the non-singlet

evolution from tj to tj+1 as

FNS(xi, tj+1) = FNS(xi, tj) + ∆tj

Nx∑
k=1

∆xk

xk

Pqq(xi/xk)FNS(xk, tj). (3.12)

If the initial distribution FNS is considered at t1 = 0, the next one FNS(x, t2) can be

determined by the above equation. Proceeding in this way, step by step, upto Nt1

times, the final distribution at tNt can be obtained. However, accuracy of the results

demands a large number of steps Nt and Nx.

In addition to these three, some other numerical as well as semi analytical methods

to solve DGLAP evolution equations are available in literature, such as Matrix ap-

proach method, Taylor expansion method, Regge theory method etc. and predict the

evolution of various structure functions with considerable phenomenological success.

3.3 A Regge Inspired Approach to Solve the DGLAP

Equation

Due to the unavailability of exact analytical way of solving the DGLAP equations, in

current analysis this set of equations are solved numerically by using an initial input

distribution for the structure function at a fixed Q2, in terms of some free param-

eters, the parameters are so adjusted that the parametrization best fit the existing

data. However, the consideration of a specific parametrization with large number of

parameters is potentially a source of bias, i.e. systematic error which is very difficult

to control. Furthermore, when a parametrization is fitted to the data, it is very hard

to obtain a determination not only of the best fitting parameters, but also of their

errors. Therefore, explorations of the possibility of obtaining accurate solutions of

DGLAP evolution equations without an initial input or with initial input, consisting

of less number of parameters are always interesting. Under this motivation, this thesis

is devoted to the exploration of a semi-analytic approach of solving DGLAP equation

for non-singlet structure functions using two Regge inspired model with less number

of parameters. Here particular emphasis is given to the non-singlet structure func-

tions because they are considered as the starting ground for theoretical description
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of DIS structure functions. Besides being interesting in themselves, another signifi-

cant advantage is that QCD analysis by means of non-singlet structure functions is

comparatively technically simpler.

In order to perform a fit, one must start with a particular ansatz for the structure

functions at some reference Q2
0. In most of the existing fitting analysis, including those

in the experimental papers it has been performed by assuming a simple power behavior

based on Regge theory. Regge theory predicts the x dependence of the structure

functions at fixed Q2 and at small x. In Regge theory the x dependency of the

non-singlet structure functions FNS
i , i = 2, 3 (i.e., FNS

i=2 = FNS
2 and FNS

i=3 = xF3 ) are

described with a power law, FNS
i (x) = BNS

i xλNS
i , for fixed Q2[13,59,127,128]. Besides

being x dependency, the structure functions, in accordance with QCD predictions, are

dependent on Q2 also. The Bjorken Scalling violation or the Q2 dependence of the

structure functions is one of the significant predictions of Quantum Chromodynamics

and recent experiments also reveal the evidence of Q2 dependency of the structure

functions even at small-x. Therefore in order to have Q2 behavior of non-singlet

structure functions we have to modify the Regge predictions by incorporating Q2

dependency either to the exponents (λNS
i ) only or to the coefficients (BNS

i ) or both.

Here, we have preferred to investigate the possibility of first two cases i.e., firstly, the

coefficients (BNS
i ) are Q2 dependent with constant exponents and next, the exponents

(λNS
i ) are Q2 dependent with constant coefficients.

3.3.1 Regge Ansatz with Q2 Dependent Coefficient and Con-
stant Intercept

There are many phenomenological models, developed within the Regge approach for

Deep Inelastic Scattering and structure functions. The simple Regge pole exchange

model predicts that, towards smaller values of x the non-singlet unpolarized structure

functions FNS
2 (x,Q2), xF3(x,Q

2) and xg1(x,Q
2) behave as

1

x
FNS
2 (x) = BNS

2 x−λNS
2 , (3.13)

xF3(x) = BNS
3 x.x−λNS

3 (3.14)

and

xgNS
1 (x) = BNS

g x.x−λNS
3 (3.15)
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respectively, with the exponents λNS
i = αA2(0). According to Regge theory, FNS

2 (x),

xF3(x) and xgNS
1 are governed by the A2 Regge trajectory with the intercept αA2(0).

For αA2(0) ≈ 0.5, the behaviors (3.13) and (3.15) are stable and considerable phe-

nomenological success is observed in this regards. As a consequence, the small x

behavior of the unpolarized non-singlet structure functions can be expressed as

FNS
2 (x) = BNS

2 x0.5, (3.16)

xF3(x) = BNS
3 x0.5 (3.17)

and

xgNS
1 (x) = BNS

g x.x0.5. (3.18)

Now, in accordance with QCD, we should expect all the dependence on Q2 to be

in BNS
(i=2,3,g), so that the Regge predictions, (7.13), (7.13) and (3.18) for x dependence

do not change. Therefore, incorporating the Q2 behavior of the structure functions

in terms of the functions BNS
(i=2,3,g)(Q

2), we have the QCD modified Regge like model

for both x as well as Q2 dependent non-singlet structure functions at small x as

FNS
2 (x,Q2) = BNS

2 (Q2)x0.5, (3.19)

xF3(x,Q
2) = BNS

3 (Q2)x0.5 (3.20)

and

xgNS
1 (x) = BNS

g x.x0.5. (3.21)

The non-singlet structure functions in this form does not contain any fitting

parameter. We just need to evaluate the Q2 dependent function Bi(Q
2) and it can be

obtained by means of solving the respective DGLAP evolution equations using these

ansatz as the initial input, which is discussed briefly in the section 3.5 and in detailed

in the chapters 4, 5, and 6.
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3.3.2 Regge Ansatz with Q2 Dependent Intercept and Con-
stant Coefficient

Instead of being constant, there are several predictions on the Q2 dependency of the

Regge intercept. There were predictions [129,130] that the exponent would be larger

at high values of Q2 and these types of predictions were born out from two different

equations of perturbative QCD: the DGLAP equation and BFKL equation. Although

this Regge model seems to legitimate as far the early data are concerned, which were

mostly taken at moderate Q2 (≈ 10GeV 2) and x values of around x ≥ 0.01 but the

recent measurement of FNS
i for available small-x in the interval 0.0001 < x < 0.01 can

be described with a single Regge type exchange FNS
i = Axα, in which the intercept

has a smooth Q2 dependence and varies like xα with −0.5 ≤ α ≤ 0. In the case

of gNS
1 similar behaviour was predicted with valon model[131] and a variation from

−0.13 to −0.3 was obtained within the interval of Q2 from 2GeV 2 to 10GeV 2. On

the other hand, Ref.[132] predicts a behaviour of the type, gNS
1 ≃

(
Q2

x2

)∆NS/2

, with

∆NS = 0.42 in which the asymptotic scaling of gNS
1 depends on only one variable

Q2

x2 . In addition there are several studies on Q2 dependency of the intercepts of the

non-singlet structure functions[133].

In this section we have investigated the possibility of a simple Regge ansatz of

the type FNS
i = Ax−bt with Q2 dependent intercept in order to describe the small-x

behaviour of the structure functions. The underlying idea behind the assumption

of this type of model is as follows: HERA measurements[134, 135] suggest that the

behavior of F2 structure function at low-x is consistent with a dependence F2(x,Q
2) =

Cx−λ(Q2), where the coefficient A is independent of Q2 and the exponent, defined by

λ(Q2) = a ln

(
Q2

Λ2

)
= at, is observed to rise linearly with lnQ2. Here Λ is the QCD cut

off parameter and t = ln

(
Q2

Λ2

)
. Thus we see that the rise of the un-polarized structure

function (F2(x,Q
2)) is much steeper than that predicted by Regge theory and gets

steeper and steeper as Q2 increases. Since this observation it has been the challenging

issue to resolve whether the Regge intercepts for F2(x,Q
2) structure function as well

as it’s non-singlet, singlet and gluon parts, along with the spin structure functions

are Q2 dependent or not. Further, before the observation at HERA, there are several

predictions on the Q2 dependency of the Regge intercept[129,130]. These predictions

as well as experimental observations at HERA motivated us to consider the possibility

that the Regge behaved non-singlet part, 1
x
FNS
2 of F2(x,Q

2) structure function is also
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satisfy a functional behaviour, FNS
2 (x,Q2) = Ax−b ln(Q

2

Λ2 ) = Ax−bt similar to F2(x,Q
2).

Again as the non-singlet structure functions, 1
x
FNS
2 and F3(x, t) and gNS

1 (x, t) are

Regge behaved[131,136], therefore their x dependency will be similar within smaller-

x region. Further, in QCD the Q2 behaviour of these structure functions are governed

by the same DGLAP equation. Therefore the x and Q2 dependency for all the non-

singlet structure functions are similar and in accord with F2, and hence FNS
2 here

we assume that the Q2 dependency of the Regge behaved structure function FNS
i is

dominated only by the intercept and it satisfies a relation of the type

FNS
i (x, t) = Aix

1−bit, (3.22)

where Ai and bi are arbitrary constants, which are to be determined by fitting ex-

pressions with respective available experimental results. Here for simplicity, FNS
i is

defined to represent all of FNS
2 (x, t), xFNS

3 (x, t) and xgNS
1 (x, t) structure functions.

3.4 Fitting Analysis of Our Models

The Regge like ansatz for FNS
i structure functions in the form of Eqs.(3.19-3.21) does

not consists of any parameters to be fitted. It will be seen in the following section

as well as next three chapters that the unknown Q2 dependent coefficient can be

obtained by means of solving the DGLAP equation with the ansatz as the initial

input. However the Regge like ansatz for FNS
i structure function in the form of Eq.

(3.22) consists of two parameters. This parametrization can be expressed in a different

form in terms of only one parameter b by eliminating the parameter A, as A has no

effect on the structure function in our approach, which is done as follows: The value

of the FNS
i structure function at any point (x0, t0) in the (x, t) coordinate system is

given by

FNS
i (x0, t0) = Aix

(1−bit0)
0 . (3.23)

Dividing (3.22) by (3.23) and rearranging a bit we get

FNS
i (x, t) = FNS

i (x0, t0)x
(1−bit)x

−(1−bit0)
0 . (3.24)

This reduced form of the structure function consists of only one fitting parameter,

the parameter bi and a known input point FNS
i (x0, t0), which can be taken from the

available experimental data. If the input point is more accurate and precise, we can
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Input point Value of b χ2

d.o.f
Kinematical region

FNS
2 0.010348± 0.006208 0.118± 0.028 0.85 x < 0.05 and Q2 ≤ 20

xF3 0.3298± 0.02605 0.0744± 0.0136 1.98 x < 0.05 and Q2 ≤ 20
xgNS

1 0.0133075± 0.0.001938 0.0759± 0.0107 1.41 x < 0.05 and Q2 ≤ 20

Table 3.1: Summary of best fitting results for different structure functions.

expect batter fitting. There are not any specific reason in choosing the input point.

Any one of the data points at a certain value of x = x0 and t = t0 can be considered

as the input point. Off course, the sensitivity of different inputs will be different.

However instead of choosing the input point on the basis of their sensitivity, in our

manuscript we have incorporated a suitable condition in determining the input point.

We have considered that particular point from the most recent measurements as the

input point in which experimental errors are minimum. Under this condition we have

selected the points, given in the Table:3.1, for different structure functions as the

initial input point and then fitted the expressions with all the available experimental

data. We have observed that the above parametrization fit best for the values of bi

which are collected in Table. 1 along with the corresponding χ2

d.o.f.
. In this analysis, we

have considered the QCD cut-off parameter λ to be fixed and the considered values

are 0.323 GeV2, 0.337 GeV2 and 0.300 GeV2 for FNS
2 , xF3 and xgNS

1 respectively.

Best fitted results are depicted in Figures 3.1, 3.2 and 3.3 for FNS
2 , xF3 and xgNS

1

respectively along with the available experimental data. In addition, we have shown

the band due to the uncertainty assoiated with input and the fitting parameter b. The

figures reflect a very good consistency between the ansatz and the experimental data.

As far the Figures are concerned, we see that the Regge ansatz Eq.(3.24) (with

Q2 dependent intercept) for the non-singlet structure functions are compatible with

their respective experimental data within kinematical region of our consideration.

3.5 Solution of DGLAP Equation for FNS
i with the

Regge Ansatz

We now investigate how the two analytic ansatz help in solving the DGLAP evolution

equations in order to have the Q2 behavior of non-singlet structure functions. For

simplicity, as an example, here we would like to discuss only the solution of LO

DGLAP equation for FNS
2 structure function. When the two ansatz are introduced

to the LO DGLAP evolution equation (3.1)
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Figure 3.1: Our best fit results of Eq.(3.24) for FNS
2 (x,Q2) structure functions

to NMC[63] results. For clarity, the points are offset by the amount given in
parenthesis.(Q2’s are taken in the unit of GeV 2).
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Figure 3.2: Our best fit results of Eq.(3.24) for xF3(x,Q
2) structure functions

to CCFR[66] results. For clarity, the points are offset by the amount given in
parenthesis. (Q2’s are taken in the unit of GeV 2).
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Figure 3.3: Our best fit results of Eq.(3.24) for xgNS
1 (x,Q2) structure functions

to the experimental data taken from SMC[74], HERMES[73], COMPASS[71] and
E143[75]. Here the results are plotted against x.

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}FNS

2 (x, t) + I1(x, t)

]
, (3.25)

and rearrange a bit, we obtain

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω{
1 + ω2

ω
ω(−0.5) − 2

}]
FNS
2 (x, t), (3.26)

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω{
1 + ω2

ω
ω(bt−1) − 2

}]
FNS
2 (x, t), (3.27)

which have the form ordinary differential equations

∂FNS
2 (x, t)

∂t
=

α(t)

2π
U(x)FNS

i (x, t), (3.28)
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∂FNS
2 (x, t)

∂t
=

α(t)

2π
U(x, t)FNS

i (x, t) (3.29)

respectively. These two equations can be easily solved to have

FNS
2 (x, t)

∣∣∣∣∣
LO

= C1 exp

[
U(x)

∫ (
α(t)

2π

)
LO

dt

]
(3.30)

and

FNS
2 (x, t)

∣∣∣∣∣
LO

= C1 exp

[∫ (
α(t)

2π

)
LO

U(x, t)dt

]
, (3.31)

respectively.

Now at a fixed value of x = x0, the t dependence of the structure function

FNS
2 (x, t) in accord with (4.20) is given by

FNS
2 (x0, t)

∣∣∣∣∣
LO

= C1 exp

[
U(x0)

∫ (
α(t)

2π

)
LO

dt

]
. (3.32)

Again the value of the structure function at x = x0 and t = t0 in accord with (4.26)

is

FNS
2 (x0, t0)

∣∣∣∣∣
LO

= C1 exp

[
U(x0)

∫ (
α(t)

2π

)
LO

dt

]∣∣∣∣∣
t=t0

. (3.33)

Dividing (4.26) by (4.27) and rearranging a bit we obtain the t evolution of FNS
2 (x, t)

in accord with the LO DGLAP equation with respect to the point FNS
2 (x0, t0) as

FNS
2 (x0, t)

∣∣∣∣∣
LO

= FNS
2 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
LO

dt

]
. (3.34)

Again in accord with our preassumptions (3.19), (3.20) and (3.21), the t depen-

dence of FNS
2 (x, t) at a particular value of x = x0 is given by

FNS
2 (x0, t) = B(Q2)x0.5

0 . (3.35)

Dividing any of (3.19), (3.20) and (3.21) by (4.29), we have the following relation

FNS
2 (x, t) = FNS

2 (x0, t)

(
x

x0

)0.5

, (3.36)
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which describes both t and x dependence of FNS
2 (x, t) structure function in terms of

the t dependent function FNS
2 (x0, t).

Now combining (4.28) and (4.30) we obtain the relation,

FNS
2 (x, t)

∣∣∣∣∣
LO

= FNS
2 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
LO

dt

](
x

x0

)0.5

, (3.37)

which describes both t and x dependence of FNS
2 (x, t) structure function in LO in

terms of the input point FNS
2 (x0, t0).

Proceeding in a similar way, from Eq. (4.37) we can have both t and x dependence

of FNS
2 (x, t) structure function as

FNS
2 (x, t)

∣∣∣∣∣
LO

= FNS
2 (x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
LO

U(x0, t)dt

](
x

x0

)(1−bt)

. (3.38)

As far the equations (4.31) and (4.49) are concerned, they are the analytic expres-

sions representing both x and Q2 dependence of FNS
2 (x,Q2) structure function jointly,

which are obtained by means of solving the DGLAP equations in LO incorporating

the Regge ansatz, FNS
2 (x,Q2) = A(Q2)x0.5 and FNS

2 (x,Q2) = Bx1−bt as the initial

inputs respectively. These expressions are consisting of an input point FNS
2 (x0, t0),

which can be taken from the available experimental data. Moreover, the Eq. (4.31)

does not contain any fitting parameter, however the Eq. (4.49) consists of only one

fitting parameter b. Using a suitable input point, FNS
2 (x0, t0) from experimental data,

we can obtain both x and Q2-evolution of FNS
2 (x,Q2) structure function with the best

fitted value of b. The calculation as well as phenomenological studies of un-polarised

and polarised structure functions, FNS
2 , xF3 and xgNS

1 with pQCD corrections upto

NNLO is discussed in detailed in the chapter 4, chapter 5 and chapter 6 respectively.
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