
Chapter 4

Small-x Behaviour of FNS
2 (x,Q2)

Structure Function

In this chapter I present the full calculation of non-singlet structure function FNS
2 (x,Q2)

by means of solving DGLAP equation with QCD corrections up to next-next-to-leading

order. Using the two ansatz, discussed in the previous chapter, developed by combin-

ing the features of perturbative Quantum Chromodynamics and Regge theory, as the

initial input we have solved the DGLAP equations. The solutions, along with the

ansatz allow us to obtain some analytic expressions which represent the joint Bjorken

x and Q2 dependence of FNS
2 (x,Q2) structure function. The expressions are studied

phenomenologically in comparison with experimental results taken from New Muon

Collaboration (NMC) and the results of NNPDF parameterizations. A great phe-

nomenological success is achieved in this regards, which signifies the capability of the

expressions in describing the small-x behaviour of the non-singlet structure function

and their usefulness in determining the structure functions with a reasonable precision.

4.1 Introduction

The structure function FNS
2 (x,Q2) is the non-singlet part of F2(x,Q

2) structure

function originated in the unpolarized charged lepton DIS and it is given by the

difference of proton and neutron structure functions as FNS
2 = F p

2 − F n
2 [59]. The

non-singlet structure function FNS
2 (x,Q2) provides a very good mean to investigate

QCD as a theory of strong interaction. Besides being interesting in themselves, the
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non-singlet structure functions are not marred by the presence of the sea quark and

gluon densities about which we have very poor information in particular in the small-x

region and hence theoretical analysis by means of them are comparatively technically

simpler. Therefore they are regarded as a starting ground for a theoretical description

of DIS structure functions.

The Gottfried sum rule[34, 35], associated with FNS
2 (x,Q2) is also an important

observable of QCD. The determination of the Gottfried sum rule requires knowledge

of FNS
2 (x,Q2) structure functions over the entire region of x ∈ (0; 1). However,

the experimentally accessible x range for DIS is limited for the available data and

therefore one should extrapolate results to x = 0 and x = 1. The extrapolation to

x → 0, where FNS
2 structure functions grow strongly, is much more important than

the extrapolation to x → 1, where structure functions vanish. Again, it is known that

maximum contribution (about 90%) to the Gottfried sum rule come from the small

x(≤ 0.1) region. Because of the large contribution to the Gottfried sum rule from

small x, the small x region is particularly important. Therefore this chapter is an

attempt to have the small-x behaviour of FNS
2 (x,Q2) structure function by means of

solving the DGLAP equation using the two Regge ansatz discussed in chapter 3 as

the initial input.

The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation[24]

which describe theQ2 behavior of unpolarised non-singlet structure function FNS
2 (x,Q2)

in perturbative Quantum Chromodynamics (QCD) formalism is given by

∂FNS
2 (x,Q2)

∂lnQ2
=

∫ 1

x

dω

ω
FNS
2 (

x

ω
,Q2)P (ω). (4.1)

Where, P (ω) is the splitting function associated with FNS
2 (x,Q2) structure function,

which is defined up to NNLO by[31]

P (ω) =
α(Q2)

2π
P (0)(ω) +

(α(Q2)

2π

)2
P (1)(ω) +

(α(Q2)

2π

)3
P (2)(ω). (4.2)

Here, P (0)(ω), P (1)(ω) and P (2)(ω) are the corresponding leading order(LO), next-to-

leading order (NLO) and next-next-to-leading order(NNLO) corrections to the split-

ting functions. Splitting functions are given in Appendices.

Again, in LO, NLO and NNLO, the running coupling constant α(Q2)
2π

has the

forms[23],

66



Chapter 4 Small-x Behaviour of FNS
2 (x,Q2) Structure Function

(
α(t)

2π

)
LO

=
2

β0t
, (4.3)

(
α(t)

2π

)
NLO

=
2

β0t

[
1− β1 ln t

β2
0t

]
, (4.4)

and

(
α(t)

2π

)
NNLO

=
2

β0t

[
1− β1 ln t

β2
0t

+
1

β2
0t

2

[(
β1

β0

)2

(ln2 t− ln t+ 1) +
β2

β0

]]
, (4.5)

where β0 = 11− 2
3
NF , β1 = 102− 38

3
NF and β2 =

2857
6

− 6673
18

NF + 325
54
N2

F are the one-

loop, two-loop and three-loop corrections to the QCD β-function. Here the running

coupling constant is expressed in terms of the variable t, which is defined by t = ln(Q
2

Λ2 ).

Substituting the respective splitting functions along with the corresponding run-

ning coupling constant in (4.1), the DGLAP evolution equations in LO, NLO and

NNLO become

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}FNS

2 (x, t) + I1(x, t)

]
, (4.6)

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
NLO

[
2

3
{3 + 4ln(1− x)}FNS

2 (x, t) + I1(x, t)

]

+

(
α(t)

2π

)2

NLO

I2(x, t), (4.7)

and

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
NNLO

[
2

3
{3 + 4ln(1− x)}FNS

2 (x, t) + I1(x, t)

]

+

(
α(t)

2π

)2

NNLO

I2(x, t) +

(
α(t)

2π

)3

NNLO

I3(x, t) (4.8)

respectively. Here Λ is the QCD cut-off parameter and the integral functions are given

by
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I1(x, t) =

∫ 1

x

dω

1− ω

{
1 + ω2

ω
FNS
2

(
x

ω
, t

)
− 2FNS

2 (x, t)

}
, (4.9)

I2(x, t) =

∫ 1

x

dω

ω
P (1)(ω)FNS

2

(
x

ω
, t

)
(4.10)

and

I3(x, t) =

∫ 1

x

dω

ω
P (2)(ω)FNS

2

(
x

ω
, t

)
. (4.11)

The DGLAP equations up to NNLO ((4.6)-(4.8)) can be solved analytically using

the ansatz FNS
2 (x, t) = A(t)x0.5 and FNS

2 (x, t) = Bx(1−at) as the initial inputs and I

have discussed bellow in detailed.

4.2 Solution of DGLAP Evolution Equations with

the Initial Input FNS
2 (x, t) = A(t)x0.5

On substitution of

FNS
2 (x, t) = FNS

2 (x, t) = A(t)x0.5 (4.12)

and hence

FNS
2 (

x

ω
, t) = FNS

2 (
x

ω
, t) = A(t)x0.5ω−0.5 = FNS

2 (x, t)ω−0.5 (4.13)

in the equations (4.6), (4.7) and (4.8), we obatin

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω{
1 + ω2

ω
ω−0.5 − 2

}]
FNS
2 (x, t), (4.14)

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
NLO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω−0.5

−2

}]
FNS
2 (x, t) +

(
α(t)

2π

)2

NLO

∫ 1

x

dω

ω
P (1)(ω)ω−0.5FNS

2 (x, t) (4.15)
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and

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
NNLO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω−0.5)

−2

}]
FNS
2 (x, t) +

(
α(t)

2π

)2

NNLO

∫ 1

x

dω

ω
P (1)(ω)ω−0.5)FNS

2 (x, t)

+

(
α(t)

2π

)3

NNLO

∫ 1

x

dω

ω
P (2)(ω)ω−0.5FNS

2 (x, t)(4.16)

respectively. These equations can be rearranged to have three ordinary differential

equations in terms of FNS
2 (x, t),

∂FNS
2 (x, t)

∂t
=

α(t)

2π
U(x)FNS

2 (x, t), (4.17)

∂FNS
2 (x, t)

∂t
=

[(
α(t)

2π

)
NLO

U(x) +

(
α(t)

2π

)2

NLO

V (x)

]
FNS
2 (x, t), (4.18)

and

∂FNS
2 (x, t)

∂t
=

[(
α(t)

2π

)
NNLO

U(x) +

(
α(t)

2π

)2

NNLO

V (x)

+

(
α(t)

2π

)3

NNLO

W (x)

]
FNS
2 (x, t) (4.19)

which can be easily solved to have

FNS
2 (x, t)

∣∣∣∣∣
LO

= C1 exp

[
U(x)

∫ (
α(t)

2π

)
LO

dt

]
, (4.20)

FNS
2 (x, t)

∣∣∣∣∣
NLO

= C2 exp

[
U(x)

∫ (
α(t)

2π

)
NLO

dt+ V (x)

∫ (
α(t)

2π

)2

NLO

dt

]
, (4.21)

and

FNS
2 (x, t)

∣∣∣∣∣
NNLO

= C3 exp

[
U(x)

∫ (
α(t)

2π

)
NNLO

dt+ V (x)

∫ (
α(t)

2π

)2

NNLO

dt

+W (x)

∫ (
α(t)

2π

)3

NNLO

dt

]
.(4.22)
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respectively. Here,

U(x) =
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω−0.5 − 2

}
, (4.23)

V (x) =

∫ 1

x

dω

ω
P (1)(ω)ω−0.5, (4.24)

W (x) =

∫ 1

x

dω

ω
P (2)(ω)ω−0.5, (4.25)

and C1, C2, C3 are the constants originated due to integration .

Now at a fixed value of x = x0, the t dependence of the structure function

FNS
2 (x, t) in LO is given by

FNS
2 (x0, t)

∣∣∣∣∣
LO

= C1 exp

[
U(x0)

∫ (
α(t)

2π

)
LO

dt

]
. (4.26)

Again the value of the structure function at x = x0 and t = t0 in accord with (4.26)

is

FNS
2 (x0, t0)

∣∣∣∣∣
LO

= C1 exp

[
U(x0)

∫ (
α(t)

2π

)
LO

dt

]∣∣∣∣∣
t=t0

. (4.27)

Dividing (4.26) by (4.27) and rearranging a bit we obtain the t evolution of FNS
2 (x, t)

in accord with the LO DGLAP equation with respect to the point FNS
2 (x0, t0) as

FNS
2 (x0, t)

∣∣∣∣∣
LO

= FNS
2 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
LO

dt

]
. (4.28)

Again in accord with our preassumption (4.12), the t dependence of FNS
2 (x, t) at

a particular value of x = x0 is given by

FNS
2 (x0, t) = A(t)x0.5

0 . (4.29)

Dividing (4.12) by (4.29), we have the following relation

FNS
2 (x, t) = FNS

2 (x0, t)

(
x

x0

)0.5

, (4.30)

which describes both t and x dependence of FNS
2 (x, t) structure function in terms of

the t dependent function FNS
2 (x0, t).

Now combining (4.28) and (4.30) we obtain the relation,
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FNS
2 (x, t)

∣∣∣∣∣
LO

= FNS
2 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
LO

dt

](
x

x0

)0.5

, (4.31)

which describes both t and x dependence of FNS
2 (x, t) structure function in LO in

terms of the input point FNS
2 (x0, t0).

Proceeding in the similar way we can obtain the expressions representing both x

and t dependence of FNS
2 (x, t) structure function in terms of an input point FNS

2 (x0, t0)

in NLO and NNLO as

FNS
2 (x, t)

∣∣∣∣∣
NLO

= FNS
2 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
NLO

dt

+V (x0)

∫ t

t0

(
α(t)

2π

)2

NLO

dt

](
x

x0

)0.5

(4.32)

and

FNS
2 (x, t)

∣∣∣∣∣
NNLO

= FNS
2 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
NNLO

dt

+V (x0)

∫ t

t0

(
α(t)

2π

)2

NNLO

dt

+W (x0)

∫ t

t0

(
α(t)

2π

)3

NNLO

dt

](
x

x0

)0.5

(4.33)

respectively.

4.3 Solution of DGLAP Evolution Equations with

the Initial Input FNS
2 (x, t) = Bx(1−bt)

Now considering the ansatz, FNS
2 (x, t) = Bx(1−bt) as the initial input we obtain the

DGLAP equations in LO, NLO and NNLO as

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω(bt−1)

−2

}]
FNS
2 (x, t), (4.34)
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∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
NLO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω(bt−1)

−2

}]
FNS
2 (x, t) +

(
α(t)

2π

)2

NLO

∫ 1

x

dω

ω
P (1)(ω)ω(bt−1)FNS

2 (x, t) (4.35)

and

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
NNLO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω(bt−1)

−2

}]
FNS
2 (x, t) +

(
α(t)

2π

)2

NNLO

∫ 1

x

dω

ω
P (1)(ω)ω(bt−1)FNS

2 (x, t)

+

(
α(t)

2π

)3

NNLO

∫ 1

x

dω

ω
P (2)(ω)ω(bt−1)FNS

2 (x, t)(4.36)

respectively, which can be easily solved to have

FNS
2 (x, t)

∣∣∣∣∣
LO

= C1 exp

[∫ (
α(t)

2π

)
LO

U(x, t)dt

]
, (4.37)

FNS
2 (x, t)

∣∣∣∣∣
NLO

= C2 exp

[∫ (
α(t)

2π

)
NLO

U(x, t)dt+

∫ (
α(t)

2π

)2

NLO

V (x, t)dt

]
.(4.38)

and

FNS
2 (x, t)

∣∣∣∣∣
NNLO

= C3 exp

[∫ (
α(t)

2π

)
NNLO

U(x, t)dt+

∫ (
α(t)

2π

)2

NNLO

V (x, t)dt

+

∫ (
α(t)

2π

)3

NNLO

W (x, t)dt

]
.(4.39)

respectively. Here

U(x, t) =
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω(bt−1) − 2

}
, (4.40)

V (x, t) =

∫ 1

x

dω

ω
P (1)(ω)ω(bt−1), (4.41)
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W (x, t) =

∫ 1

x

dω

ω
P (2)(ω)ω(bt−1) (4.42)

and C1, C2 and C3 are the constants originated due to integration.

At a fixed value of x = x0, the t dependence of the structure function in LO is given

by

FNS
2 (x0, t) = C1 exp

[∫ (
α(t)

2π

)
LO

U(x0, t)dt

]
. (4.43)

Again the value of the structure function at x = x0 and t = t0 in accord with

(4.43) is given by

FNS
2 (x0, t0) = C1 exp

[∫
α(t)

2π
U(x0, t)dt

]∣∣∣∣∣
t=t0

. (4.44)

Dividing (4.43) by (4.44) and rearranging a bit we obtain the t dependence of FNS
2 (x, t)

in accord with LO DGLAP evolution equation with respect to the point FNS
2 (x0, t0)

as

FNS
2 (x0, t) = FNS

2 (x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
LO

U(x0, t)dt

]
. (4.45)

Again, as both t and x dependence of FNS
2 (x, t) is assumed to satisfy

FNS
2 (x, t) = B.x(1−bt) (4.46)

relation, and at any fixed x = x0 we have

FNS
2 (x0, t) = B.x

(1−bt)
0 , (4.47)

which represents the t dependence of the structure function at any fixed value of

x = x0. Dividing (4.46) by (4.47) we have the following relation

FNS
2 (x, t) = FNS

2 (x0, t)

(
x

x0

)(1−bt)

, (4.48)

which gives both t and x dependence of FNS
2 (x, t) structure function in terms of the

t dependent function FNS
2 (x0, t) at fixed x = x0.
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Now combining (4.45) and (4.48) we obtain the expression representing both x and

t dependence of FNS
2 (x, t) structure function in terms of an input point FNS

2 (x0, t0)

in LO as

FNS
2 (x, t)

∣∣∣∣∣
LO

= FNS
2 (x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
LO

U(x0, t)dt

](
x

x0

)(1−bt)

. (4.49)

Similarly we may have the joint x and t dependence of FNS
2 (x, t) structure function

in NLO and NNLO as

FNS
2 (x, t)

∣∣∣∣∣
NLO

= FNS
2 (x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
NLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NLO

V (x0, t)dt

](
x

x0

)(1−bt)

(4.50)

and

FNS
2 (x, t)

∣∣∣∣∣
NNLO

= FNS
2 (x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
NNLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

V (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

W (x0, t)dt

](
x

x0

)(1−bt)

. (4.51)

4.4 Results and Discussion

The equations (4.31)-(4.33) and (4.49)-(4.51) are the analytic expressions representing

both x and Q2 dependence of FNS
2 (x,Q2) structure function jointly, obtained by

means of solving the DGLAP equations in LO, NLO and NNLO incorporating the

Regge ansatz, FNS
2 (x,Q2) = A(Q2)x0.5 and FNS

2 (x,Q2) = Bx1−bt as the initial inputs

respectively. These expressions are consisting of an input point FNS
2 (x0, t0), which can

be taken from the available experimental data. If the input point is more accurate and

precise, we can expect batter results. There are not any specific reason in choosing

the input point. Any one of the data points at a certain value of x = x0 and t = t0 can

be considered as the input point. Off course, the sensitivity of different inputs will be
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Figure 4.1: Q2 evolution of FNS
2 (x,Q2) structure functions in accord with (4.31)-

(4.33) in comparison with NMC[63] and NNPDF[101] results. For clarity, the points
are offset by the amount given in parenthesis. (Q2’s are taken in the unit of GeV 2).

different. However instead of choosing the input point on the basis of their sensitivity,

in our manuscript we have incorporated a suitable condition in determining the input

point. We have considered that particular point from the most recent measurements

as the input point in which experimental errors are minimum. Under this condition

we have selected the point FNS
2 (x0, t0) = 0.010348±0.006208 at x0 = 0.025 and Q2 =

2.34686GeV 2 from the experimental results of NMC[63]. Here we have considered

the central value of the input point. Further the expressions (4.49)-(4.51) consists of

the additional parameter b which has the value b = 0.118 ± 0.028 for FNS
2 (x,Q2) as

obtained in Chapter 3.

With the input point FNS
2 (x0, t0) = 0.010348, substituting the respective expres-

sions in LO, NLO and NNLO for running coupling constant, αs(t)
2π

and performing

the corresponding integrations, we have obtained both x as well as Q2 evolution of

FNS
2 (x,Q2) structure function in accord with the equations (4.31), (4.32) and (4.33)

respectively. The Q2 evolution results at fixed value of x are depicted in Fig. 4.1 in

comparison with the experimental data taken from NMC[63] and with the results of

NNPDF collaboration[101]. In Fig. 4.2, the x evolution of FNS
2 (x,Q2) for fixed values

of Q2 are depicted along with NMC and NNPDF results. In all figures, as indicated ,
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Figure 4.2: x evolution of FNS
2 (x,Q2) structure functions in accord with (4.31)-

(4.33) in comparison with NMC[63] results. For clarity, the points are offset by the
amount given in parenthesis.
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Figure 4.3: Q2(in the unit of GeV 2) evolution of FNS
2 (x,Q2) structure functions

in accord with (4.49)-(4.51) in comparison with NMC[63] results. For clarity, the
points are offset by the amount given in parenthesis. (Q2’s are taken in the unit of
GeV 2).
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Figure 4.4: x evolution of FNS
2 (x,Q2) structure functions in accord with (4.49)-

(4.51) in comparison with NMC[63] and NNPDF[101] results. For clarity, the points
are offset by the amount given in parenthesis.
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Figure 4.5: Q2 evolution of FNS
2 (x,Q2) structure functions in accord with (4.33)

and (4.51) in comparison with NMC[63] and NNPDF[101] results. For clarity, the
points are offset by the amount given in parenthesis. (Q2’s are taken in the unit of
GeV 2).
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Figure 4.6: x evolution of FNS
2 (x,Q2) structure functions in accord with (4.33)

and (4.51) in comparison with NMC[63] results. For clarity, the points are offset by
the amount given in parenthesis.
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Figure 4.7: Q2 evolution of FNS
2 (x,Q2) structure functions in accord with NNLO

corrections, (4.33) and (4.51) in comparison with NMC[63] results. For clarity, the
points are offset by the amount given in parenthesis. (Q2’s are taken in the unit of
GeV 2).
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the dotted curves represent the LO results, the dashed curves represent NLO results

and the solid lines are representing NNLO results. Experimental data are given with

vertical upper and lower error bars for total uncertainties of statistical and systematic

errors.

Again the results from equations (4.49), (4.50) and (4.51) for Q2 and x evolution

of FNS
2 (x,Q2) structure function with FNS

2 (x0, t0) = 0.010348 and b = 0.118 are

depicted in Fig. 4.3 and Fig. 4.4 respectively. The experimental results from NMC

and the results of NNPDF collaboration are also plotted along with our results. Here,

our LO, NLO and NNLO results are represented by the dotted, dashed and solid

curves respectively. The solid circles are used to represent the NMC data point and

they are along with vertical upper and lower error bars for total uncertainties of

statistical and systematic errors.

As far the figures, 4.1-4.4 are concerned, we observe a very good consistency

between theoretical and experimental as well as parametrization results within the

kinematical region x < 0.05 and Q2 ≤ 20GeV 2 of our consideration, especially, if

the NNLO results are concerned. The most consistent results, the NNLO results for

both the inputs along with NMC and NNPDF results are plotted in Figs. 4.5 and

4.6 . It reflects the comparative picture of the results obtained by means of the two

ansatz. However within our kinematical region of consideration we do not observe

any significant differences among them. This implies that the analytic expressions,

we have obtained by means of solving the DGLAP equations with both the ansatz

as the initial input, are applicable in describing the small x behaviour of FNS
2 (x,Q2)

structure function with a considerable precision.

In addition, we have shown in the Fig. 4.7, the band due to the uncertainty

associated with input and the fitting parameter b. Here the uncertainty due to the

fitting parameter is considerably less than that of due to input point.

4.5 Summary

We have employed the usefulness of two ansatz as the initial input in order to solve

DGLAP equation up to NNLO and obtain Q2 evolution of the unpolarized non-singlet

structure function FNS
2 (x,Q2). The structure function, evolved as the solutions of the

DGLAP equations are studied phenomenologically in comparison with the results

taken from NMC and NNPDF collaborations. We observe a very good agreement be-

tween our theoretical results and other experimental results as well as parametrization,
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within the kinematical range x < 0.05 and Q2 = 20GeV 2 of our consideration. The

phenomenological success achieved in this study suggests that the two simple QCD

featured Regge behaved ansatz FNS
2 (x,Q2) = A(Q2)x0.5 and FNS

2 (x,Q2) = Bx1−bt are

capable of evolving FNS
2 (x,Q2) structure functions with Q2 in accord with DGLAP

equations at small-x. However we could not distinguish the efficiencies among the

two models in comparison with experimental data within the kinematical range of

our consideration. We hope future experimental measurements at very very small

values of Bjorken x will clarify their differences and help us in batter understanding

of the structure of nucleon. ��
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