
Chapter 5

Small-x Behaviour of xF3(x,Q
2)

Structure Function

This chapter is devoted to the determination of Q2 and x evolutions of xF3(x,Q
2)

structure function in accord with the leading order(LO), next-to-leading order(NLO)

and next-next-to-leading order(NNLO) DGLAP evolution equations within the small-x

region. The DGLAP equation is solved up to NNLO for xF3(x,Q
2) structure function

using two Regge ansatz as initial input and solutions for both the inputs are compared

with the experimental data from CCFR, NuTeV, CDHSW and CHORUS experiments

as well as with the recent MSTW parametrization results. A great phenomenological

success is achieved in this regards, which signifies the capability of the expressions

in describing the small-x behaviour of this non-singlet structure function and their

usefulness in determining the structure functions with a reasonable precision.

5.1 Introduction

One of the significant contributions that neutrino-nucleon interaction has towards the

understanding of hadron structure is its ability to produce the parity violating term,

xF3(x,Q
2) which receives contributions from the non-singlet part of the co-efficient

function and reflects only the valence quark distribution[61]. It is not marred by the

presence of the sea quark and gluon densities about which we have very poor infor-

mation in particular in the small-x region. Therefore, the neutrino-nucleon scattering
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as well as xF3(x,Q
2) structure function are becoming more important theoretically

as well as experimentally for the study of different nuclear effects such as shadow-

ing, anti-shadowing, EMC in parton distribution in nuclei etc. Also the study of

neutrino interaction provides the understanding of neutrino propagation in matter,

whose importance is seen in astrophysics, cosmology and even geology application.

Further, the Gross-Llewellyn Smith(GLS) sum rule[33,38,39] associated with the

non-singlet xF3(x,Q
2) structure function measured in neutrino-nucleon (ν−N) scat-

tering is one of the best observables to investigate Quantum Chromodynamics(QCD)

as a theory of strong interaction. As xF3(x,Q
2) structure function is not marred by

the presence of the sea quark and gluon densities about which we have very poor

information in particular in the small-x region and higher order QCD calculations are

observed to be largely independent of renormalization scheme, the prediction of GLS

sum rule is considered as the robust prediction in pQCD. The determination of the

GLS sum rule requires knowledge of xF3(x,Q
2) structure functions over the entire

region of x ∈ (0; 1). The experimentally accessible x range for the neutrino DIS is

however limited for the available data and therefore one should extrapolate results to

x = 0 and x = 1. The extrapolation to x → 0, where F3 structure functions grow

strongly, is much more important than the extrapolation to x → 1, where structure

functions vanish. Again, it is known that maximum contribution (about 90%) to the

GLS sum rule come from the small x(≤ 0.1) region. Because of the large contribu-

tion to the GLS sum rule from small x, the small x region is particularly important.

Therefore this chapter is an attempt to have the small-x behaviour of xF3(x,Q
2)

structure function by means of solving the DGLAP equation using the two Regge

ansatz discussed in chapter 3 as the initial input.

The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation [24,

137] which describe the Q2 behavior of unpolarised non-singlet structure function

xF3(x,Q
2) in perturbative Quantum Chromodynamics (QCD) formalism is given by

∂xF3(x,Q
2)

∂lnQ2
=

∫ 1

x

dω

ω

x

ω
F3(

x

ω
,Q2)P (ω), (5.1)

where, P (ω) is the splitting function associated with xF3(x,Q
2) structure function,

which is defined up to NNLO by[31]

P (ω) =
α(Q2)

2π
P (0)(ω) +

(α(Q2)

2π

)2
P (1)(ω) +

(α(Q2)

2π

)3
P (2)(ω). (5.2)
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Here, P (0)(ω), P (1)(ω) and P (2)(ω) are the corresponding leading order(LO), next-to-

leading order (NLO) and next-next-to-leading order(NNLO) corrections to the split-

ting functions. These splitting functions are given in Appendices.

Again, in LO, NLO and NNLO, the running coupling constant α(Q2)
2π

has the

forms[23],

(
α(t)

2π

)
LO

=
2

β0t
, (5.3)

(
α(t)

2π

)
NLO

=
2

β0t

[
1− β1 ln t

β2
0t

]
(5.4)

and

(
α(t)

2π

)
NNLO

=
2

β0t

[
1− β1 ln t

β2
0t

+
1

β2
0t

2

[(
β1

β0

)2

(ln2 t− ln t+ 1) +
β2

β0

]]
, (5.5)

where β0 = 11− 2
3
NF , β1 = 102− 38

3
NF and β2 =

2857
6

− 6673
18

NF + 325
54
N2

F are the one-

loop, two-loop and three-loop corrections to the QCD β-function. Here the running

coupling constant is expressed in terms of the variable t, which is defined by t = ln(Q
2

Λ2 ).

For simplicity, defining xF3(x,Q
2) = FNS

3 (x,Q2) and then substituting the re-

spective splitting functions along with the corresponding running coupling constant

in (5.1), the DGLAP evolution equations in LO, NLO and NNLO become

∂FNS
3 (x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}FNS

3 (x, t) + I1(x, t)

]
, (5.6)

∂FNS
3 (x, t)

∂t
=

(
α(t)

2π

)
NLO

[
2

3
{3 + 4ln(1− x)}FNS

3 (x, t) + I1(x, t)

]

+

(
α(t)

2π

)2

NLO

I2(x, t), (5.7)

and

∂FNS
3 (x, t)

∂t
=

(
α(t)

2π

)
NNLO

[
2

3
{3 + 4ln(1− x)}FNS

3 (x, t)

+I1(x, t)

]
+

(
α(t)

2π

)2

NNLO

I2(x, t) +

(
α(t)

2π

)3

NNLO

I3(x, t) (5.8)
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respectively. Here Λ is the QCD cut-off parameter and the integral functions are given

by

I1(x, t) =

∫ 1

x

dω

1− ω

{
1 + ω2

ω
FNS
3

(
x

ω
, t

)
− 2FNS

3 (x, t)

}
, (5.9)

I2(x, t) =

∫ 1

x

dω

ω
P (1)(ω)FNS

3

(
x

ω
, t

)
(5.10)

and

I3(x, t) =

∫ 1

x

dω

ω
P (2)(ω)FNS

3

(
x

ω
, t

)
. (5.11)

The DGLAP equations up to NNLO ((5.6)-(5.8)) can be solved analytically using

the ansatz xF3(x, t) = A(t)x0.5 and xF3(x, t) = Bx(1−at) as the initial inputs and I

have discussed bellow in detailed.

5.2 Solution of DGLAP Evolution Equations with

the Initial Input xF3(x, t) = A(t)x0.5

On substitution of

xF3(x, t) = FNS
3 (x, t) = A(t)x0.5 (5.12)

and hence

xF3(
x

ω
, t) = FNS

3 (
x

ω
, t) = A(t)x0.5ω−0.5 = FNS

3 (x, t)ω−0.5 (5.13)

in the equations (5.6), (5.7) and (5.8) we obtain

∂FNS
3 (x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω{
1 + ω2

ω
ω−0.5 − 2

}]
FNS
3 (x, t), (5.14)

∂FNS
3 (x, t)

∂t
=

(
α(t)

2π

)
NLO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω−0.5

−2

}]
FNS
3 (x, t) +

(
α(t)

2π

)2

NLO

∫ 1

x

dω

ω
P (1)(ω)ω−0.5FNS

3 (x, t) (5.15)
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and

∂FNS
3 (x, t)

∂t
=

(
α(t)

2π

)
NNLO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω−0.5)

−2

}]
FNS
3 (x, t) +

(
α(t)

2π

)2

NNLO

∫ 1

x

dω

ω
P (1)(ω)ω−0.5)FNS

3 (x, t)

+

(
α(t)

2π

)3

NNLO

∫ 1

x

dω

ω
P (2)(ω)ω−0.5FNS

3 (x, t)(5.16)

respectively. These equations can be rearranged to have three ordinary differential

equations in terms of FNS
3 (x, t),

∂FNS
3 (x, t)

∂t
=

α(t)

2π
U(x)FNS

3 (x, t), (5.17)

∂FNS
3 (x, t)

∂t
=

[(
α(t)

2π

)
NLO

U(x) +

(
α(t)

2π

)2

NLO

V (x)

]
FNS
3 (x, t), (5.18)

and

∂FNS
3 (x, t)

∂t
=

[(
α(t)

2π

)
NNLO

U(x) +

(
α(t)

2π

)2

NNLO

V (x)

+

(
α(t)

2π

)3

NNLO

W (x)

]
FNS
3 (x, t), (5.19)

which can be easily solved to have

FNS
3 (x, t)

∣∣∣∣∣
LO

= C1 exp

[
U(x)

∫ (
α(t)

2π

)
LO

dt

]
, (5.20)

FNS
3 (x, t)

∣∣∣∣∣
NLO

= C2 exp

[
U(x)

∫ (
α(t)

2π

)
NLO

dt+ V (x)

∫ (
α(t)

2π

)2

NLO

dt

]
(5.21)

and

FNS
3 (x, t)

∣∣∣∣∣
NNLO

= C3 exp

[
U(x)

∫ (
α(t)

2π

)
NNLO

dt+ V (x)

∫ (
α(t)

2π

)2

NNLO

dt

+W (x)

∫ (
α(t)

2π

)3

NNLO

dt

]
(5.22)
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respectively. Here,

U(x) =
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω−0.5 − 2

}
, (5.23)

V (x) =

∫ 1

x

dω

ω
P (1)(ω)ω−0.5, (5.24)

W (x) =

∫ 1

x

dω

ω
P (2)(ω)ω−0.5, (5.25)

and C1, C2, C3 are the constants originated due to integration .

Now at a fixed value of x = x0, the t dependence of the structure function

FNS
3 (x, t) in LO is given by

FNS
3 (x0, t)

∣∣∣∣∣
LO

= C1 exp

[
U(x0)

∫ (
α(t)

2π

)
LO

dt

]
. (5.26)

Again the value of the structure function at x = x0 and t = t0 in accord with

(5.26) is

FNS
3 (x0, t0)

∣∣∣∣∣
LO

= C1 exp

[
U(x0)

∫ (
α(t)

2π

)
LO

dt

]∣∣∣∣∣
t=t0

. (5.27)

Dividing (5.26) by (5.27) and rearranging a bit we obtain the t evolution of FNS
3 (x, t)

in accord with the LO DGLAP equation with respect to the point FNS
3 (x0, t0) as

FNS
3 (x0, t)

∣∣∣∣∣
LO

= FNS
3 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
LO

dt

]
. (5.28)

Again in accord with our preassumption (5.12), the t dependence of FNS
3 (x, t) at

a particular value of x = x0 is given by

FNS
3 (x0, t) = A(t)x0.5

0 . (5.29)

Dividing (5.12) by (5.29), we have the following relation

FNS
3 (x, t) = FNS

3 (x0, t)

(
x

x0

)0.5

, (5.30)

which describes both t and x dependence of FNS
3 (x, t) structure function in terms of

the t dependent function FNS
3 (x0, t).

Now combining (5.28) and (5.30) we obtain the relation,
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FNS
3 (x, t)

∣∣∣∣∣
LO

= FNS
3 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
LO

dt

](
x

x0

)0.5

, (5.31)

which describes both t and x dependence of FNS
3 (x, t) structure function in LO in

terms of the input point FNS
3 (x0, t0).

Proceeding in the similar way we can obtain the expressions representing both x

and t dependence of FNS
3 (x, t) structure function in terms of an input point FNS

3 (x0, t0)

in NLO and NNLO as

FNS
3 (x, t)

∣∣∣∣∣
NLO

= FNS
3 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
NLO

dt

+V (x0)

∫ t

t0

(
α(t)

2π

)2

NLO

dt

](
x

x0

)0.5

(5.32)

and

FNS
3 (x, t)

∣∣∣∣∣
NNLO

= FNS
3 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
NNLO

dt

+V (x0)

∫ t

t0

(
α(t)

2π

)2

NNLO

dt

+W (x0)

∫ t

t0

(
α(t)

2π

)3

NNLO

dt

](
x

x0

)0.5

(5.33)

respectively.

5.3 Solution of DGLAP Evolution Equations with

the Initial Input xF3(x, t) = Bx(1−bt)

Now considering the ansatz, xF3(x, t) = Bx(1−bt) as the initial input we obtain the

DGLAP equations in LO, NLO and NNLO as

∂FNS
3 (x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω(bt−1)

−2

}]
FNS
3 (x, t), (5.34)
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∂FNS
3 (x, t)

∂t
=

(
α(t)

2π

)
NLO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω(bt−1)

−2

}]
FNS
3 (x, t) +

(
α(t)

2π

)2

NLO

∫ 1

x

dω

ω
P (1)(ω)ω(bt−1)FNS

3 (x, t), (5.35)

and

∂FNS
3 (x, t)

∂t
=

(
α(t)

2π

)
NNLO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω(bt−1)

−2

}]
FNS
3 (x, t) +

(
α(t)

2π

)2

NNLO

∫ 1

x

dω

ω
P (1)(ω)ω(bt−1)FNS

3 (x, t)

+

(
α(t)

2π

)3

NNLO

∫ 1

x

dω

ω
P (2)(ω)ω(bt−1)FNS

3 (x, t)(5.36)

respectively, which can be easily solved to have

FNS
3 (x, t)

∣∣∣∣∣
LO

= C1 exp

[∫ (
α(t)

2π

)
LO

U(x, t)dt

]
, (5.37)

FNS
3 (x, t)

∣∣∣∣∣
NLO

= C2 exp

[∫ (
α(t)

2π

)
NLO

U(x, t)dt+

∫ (
α(t)

2π

)2

NLO

V (x, t)dt

]
.(5.38)

and

FNS
3 (x, t)

∣∣∣∣∣
NNLO

= C3 exp

[∫ (
α(t)

2π

)
NNLO

U(x, t)dt+

∫ (
α(t)

2π

)2

NNLO

V (x, t)dt

+

∫ (
α(t)

2π

)3

NNLO

W (x, t)dt

]
.(5.39)

respectively. Here

U(x, t) =
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω(bt−1) − 2

}
, (5.40)

V (x, t) =

∫ 1

x

dω

ω
P (1)(ω)ω(bt−1), (5.41)
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W (x, t) =

∫ 1

x

dω

ω
P (2)(ω)ω(bt−1) (5.42)

and C1, C2 and C3 are the constants originated due to integration.

At a fixed value of x = x0, the t dependence of the structure function in LO is

given by

FNS
3 (x0, t) = C1 exp

[∫ (
α(t)

2π

)
LO

U(x0, t)dt

]
. (5.43)

Again the value of the structure function at x = x0 and t = t0 in accord with

(5.43) is given by

FNS
3 (x0, t0) = C1 exp

[∫
α(t)

2π
U(x0, t)dt

]∣∣∣∣∣
t=t0

. (5.44)

Dividing (5.43) by (5.44) and rearranging a bit we obtain the t dependence of FNS
3 (x, t)

in accord with LO DGLAP evolution equation with respect to the point FNS
3 (x0, t0)

as

FNS
3 (x0, t) = FNS

3 (x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
LO

U(x0, t)dt

]
. (5.45)

Again, as both t and x dependence of FNS
3 (x, t) is assumed to satisfy

FNS
3 (x, t) = B.x(1−bt) (5.46)

relation, and at any fixed x = x0 we have

FNS
3 (x0, t) = B.x

(1−bt)
0 , (5.47)

which represents the t dependence of the structure function at any fixed value of

x = x0. Dividing (5.46) by (5.47) we have the following relation

FNS
3 (x, t) = FNS

3 (x0, t)

(
x

x0

)(1−bt)

, (5.48)

which gives both t and x dependence of FNS
3 (x, t) structure function in terms of the

t dependent function FNS
3 (x0, t) at fixed x = x0.
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Now combining (5.45) and (5.48) we obtain the expression representing both x and

t dependence of FNS
3 (x, t) structure function in terms of an input point FNS

3 (x0, t0)

in LO as

FNS
3 (x, t)

∣∣∣∣∣
LO

= FNS
3 (x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
LO

U(x0, t)dt

](
x

x0

)(1−bt)

. (5.49)

Similarly we may have the joint x and t dependence of FNS
3 (x, t) structure function

in NLO and NNLO as

FNS
3 (x, t)

∣∣∣∣∣
NLO

= FNS
3 (x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
NLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NLO

V (x0, t)dt

](
x

x0

)(1−bt)

(5.50)

and

FNS
3 (x, t)

∣∣∣∣∣
NNLO

= FNS
3 (x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
NNLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

V (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

W (x0, t)dt

](
x

x0

)(1−bt)

. (5.51)

5.4 Results and Discussion

The equations (5.31)-(5.33) and (5.49)-(5.51) are the analytic expressions represent-

ing both x and Q2 dependence of xF3(x,Q
2) structure function jointly, obtained by

means of solving the DGLAP equations in LO, NLO and NNLO incorporating the

Regge ansatz, xF3(x,Q
2) = A(Q2)x0.5 and xF3(x,Q

2) = Bx1−bt as the initial inputs

respectively. These expressions are consisting of an input point xF3(x0, t0), which can

be taken from the available experimental data. If the input point is more accurate and

precise, we can expect batter results. There are not any specific reason in choosing

the input point. Any one of the data points at a certain value of x = x0 and t = t0

can be considered as the input point. Off course, the sensitivity of different inputs
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Figure 5.1: Q2 evolution of xF3(x,Q
2) structure functions in accord with (5.31)-

(5.33). For clarity, the points are offset by the amount given in parenthesis. (Q2’s
are taken in the unit of GeV 2).
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Figure 5.2: Q2 evolution of xF3(x,Q
2) structure functions in accord with (5.31)-

(5.33). For clarity, the points are offset by the amount given in parenthesis. (Q2’s
are taken in the unit of GeV 2).
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Figure 5.3: x evolution of xF3(x,Q
2) structure functions in accord with (5.31)-

(5.33) in comparison with CCFR[66] data. For clarity, the points are offset by the
amount given in parenthesis.
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Figure 5.4: x evolution of xF3(x,Q
2) structure functions in accord with (5.31)-

(5.33) in comparison with NuTeV[68] results. For clarity, the points are offset by
the amount given in parenthesis.
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Figure 5.5: Q2 evolution of xF3(x,Q
2) structure functions in accord with (5.49)-

(5.51) in comparison with CCFR[66] and MSTW[107] results. For clarity, the points
are offset by the amount given in parenthesis. (Q2’s are taken in the unit of GeV 2)

will be different. However instead of choosing the input point on the basis of their

sensitivity, in our manuscript we have incorporated a suitable condition in determin-

ing the input point. We have considered that particular point from the most recent

measurements as the input point in which experimental errors are minimum. Under

this condition we have selected the point xF3(x0, t0) = 0.3298 at x0 = 0.025 and

Q2 = 3.2GeV 2 from the experimental results of CCFR[66]. Here we have considered

the central value of the input point. Further the expressions (5.49)-(5.51) consists of

the additional parameter a which has the value b = 0.0744± 0.0136 for xF3(x,Q
2) as

obtained in Chapter 3.

With the input point xF3(x0, t0), substituting the respective expressions in LO,

NLO and NNLO for running coupling constant, αs(t)
2π

and performing the correspond-

ing integrations, we have obtained both x as well as Q2 evolution of xF3(x,Q
2) struc-

ture function in accord with the equations (5.31), (5.32) and (5.33) respectively. The

Q2 evolution results at fixed value of x are depicted in Fig. 5.1 and Fig. 5.2 in com-

parison with the experimental data taken from CCFR[66], NuTeV[68], CDHSW[69],

CHORUS[70] collaborations and with the parametrization results of MRST98[138],
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Figure 5.6: Q2 evolution of xF3(x,Q
2) structure functions in accord with (5.49)-

(5.51) in comparison with NuTeV[68], CHORUS[70], CDHSW[69] and MSTW[107]
results. For clarity, the points are offset by the amount given in parenthesis. (Q2’s
are taken in the unit of GeV 2)
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Figure 5.7: x evolution of xF3(x,Q
2) structure functions in accord with (5.49)-

(5.51) in comparison with CCFR[66] and MSTW[107] results. For clarity, the points
are offset by the amount given in parenthesis.
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Figure 5.8: x evolution of xF3(x,Q
2) structure functions in accord with (5.49)-

(5.51) in comparison with NuTeV[68], CHORUS[70] and CDHSW[69] results. For
clarity, the points are offset by the amount given in parenthesis.

CTEQ4[139], MSTW[107] and KPS[140] results. In Fig. 5.3 and Fig. 5.4, the x evolu-

tion of xF3(x,Q
2) for fixed values of Q2 are depicted along with CCFR[66], NuTeV[68]

results. In all figures, as indicated , the dotted curves represent the LO results, the

dashed curves represent NLO results and the solid lines are representing NNLO re-

sults. Experimental data are given with vertical upper and lower error bars for total

uncertainties of statistical and systematic errors.

Again the results from equations (5.49),(5.50) and (5.51)for Q2 and x evolution of

xF3(x,Q
2) structure function with xF3(x0, t0) = 0.3298 and b = 0.0744 are depicted

in Fig. 5.5, Fig. 5.6, Fig. 5.7 and Fig. 5.8 respectively. The experimental results from

CCFR, NuTeV, CDHSW, CHORUS collaborations and those of MRST98, CTEQ4,

MSTW and KPS results are also plotted along with our results. Here, our LO, NLO

and NNLO results are represented by the dotted, dashed and solid curves respectively.

As far the figures (Fig. 5.1 - Fig. 5.4) and (Fig. 5.5 - Fig. 5.8) are concerned, we

observe a very good consistency between our theoretical and experimental as well as

parametrization results within the kinematical region x < 0.05 and Q2 = 20GeV 2 of

our consideration, especially, if the NNLO results are concerned. The most consis-

tent results, the NNLO results for both the inputs along with other experimental and
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Figure 5.9: Q2 evolution of xF3(x,Q
2) structure functions in accord with (5.33)

and (5.51) in comparison with CCFR[66] data. For clarity, the points are offset by
the amount given in parenthesis. (Q2’s are taken in the unit of GeV 2)
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Figure 5.10: Q2 evolution of xF3(x,Q
2) structure functions in accord with

(5.33) and (5.51) in comparison with NuTeV[68], CHORUS[70], CDHSW[69] and
MSTW[107] results. For clarity, the points are offset by the amount given in paren-
thesis. (Q2’s are taken in the unit of GeV 2)
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Figure 5.11: NNLO results for xF3(x,Q
2) structure functions predicted by(5.51)

along with the uncertainty band associated with the fitting parameter b and the
chosen input point.Our results are compared with CCFR[66] data. For clarity, the
points are offset by the amount given in parenthesis.(Q2’s are taken in the unit of
GeV 2).

parametrization results are plotted in the figures Fig. 5.9 and Fig. 5.10. They reflect

the comparative picture of the results obtained by means of the two ansatz. However

within our kinematical region of consideration we do not observe any significant dif-

ferences among them. Further in Fig. 5.11 our NNLO results predicted by Eq.(5.51)

are plotted along with the uncertainty band associated with the fitting parameter and

the chosen input point. The uncertainties are observed to be small in both the cases

and the uncertainty due to the fitting parameter is considerably less than that of due

to input point. Along with the estimated uncertainties, we observe that the Eq.(5.51)

has the capability of describing the experimental results with considerable precession.

5.5 Summary

In this chapter the non-singlet structure function xF3(x,Q
2) has been calculated at

small-x. We have employed a unified approach incorporating QCD and Regge the-

ory in this regard. Our results for xF3(x,Q
2) structure function have been found for

two different input to the DGLAP equation. Both the inputs are Regge behaved.

One of them consists of constant intercept (= 0.5) with Q2 dependent residue and
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the other has Q2 dependent intercept with constant residue. The structure function,

evolved as the solutions of the DGLAP equations are studied phenomenologically

in comparison with the results taken from CCFR, NuTeV, CHORUS and CDHSW

experimental measurements. In addition, our results are compared with those ob-

tained by MRST98, CTEQ4, MSTW and KPS collaborations. We observe a very

good agreement between our theoretical results and other experimental results as

well as parametrization, within the kinematical range x < 0.05 and Q2 = 20GeV 2

of our consideration. The phenomenological success achieved in this study suggests

that the two simple QCD featured Regge behaved ansatz xF3(x,Q
2) = A(Q2)x0.5 and

xF3(x,Q
2) = Bx1−bt are capable of evolving xF3(x,Q

2) structure functions with Q2

in accord with DGLAP equations at small-x. However we could not distinguish the

efficiencies among the two models in comparison with experimental data within the

kinematical range of our consideration. We hope future experimental measurements

at very very small values of Bjorken x will clarify their differences and help us in

batter understanding of the structure of nucleon. ��
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