
Chapter 6

Small-x Behaviour of xgNS
1 (x,Q2)

Structure Function

This chapter encompasses the calculation of spin-dependent non-singlet structure func-

tion xgNS
1 (x,Q2) by means of solving DGLAP equation with QCD corrections up to

next-next-to-leading order. Using the two ansatz, discussed in the chapter 3, devel-

oped by combining the features of perturbative Quantum Chromodynamics and Regge

theory, as the initial input we have solved the DGLAP equations. The solutions, along

with the ansatz allow us to obtain some analytic expressions which represent the joint

Bjorken x and Q2 dependence of xgNS
1 (x,Q2) structure function. The expressions are

studied phenomenologically in comparison with experimental data taken from SMC,

E143, HERMES, COMPASS and JLab experiments. In addition, our results are com-

pared with some other strong analysis. We have achieved at a great phenomenological

success, which signifies the capability of the expressions in describing the small-x be-

haviour of this non-singlet structure function and their usefulness in determining the

structure functions with a reasonable precision.

6.1 Introduction

Proper understanding of the spin structure of nucleon and associated sum rules is

expected to offer an important opportunity to investigate Quantum Chromodynam-

ics(QCD) as a theory of strong interaction and hence these observables have been the

active frontiers in recent years [62,141–146]. Many successful experimental programs
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of polarized deep-inelastic lepton-nucleon scattering in combination with remarkable

theoretical efforts have been devoted in order to elucidate the internal spin structure of

the nucleon. Polarized deep inelastic lepton scattering experiment have been carried

out at SLAC, CERN, DESY and Jefferson Laboratory(JLab)[62]. With the advent of

dedicated experimental facilities, recent experiments were able to determine the spin

structure functions as well as different sum rules over a wide range of x and Q2 with

ever increasing precision. Simultaneously, tremendous progress is observed in the field

of theoretical investigation in determining and understanding the shape of quarks and

gluon spin distribution functions with perturbative QCD, non-perturbative QCD, chi-

ral perturbation theory[147], lattice QCD[148], anti-de Sitter/conformal field theory

(AdS/CFT)[149], etc., along with different reliable theoretical models. In addition, re-

cently available several dedicated phenomenological works[131,150–158] in extracting

polarized parton distribution function(PPDF) as well as spin structure functions from

different experiments within NLO QCD analysis have also significant contributions

towards the understanding of spin structure of the nucleon.

In Quantum Chromodynamics, the spin structure function g1(x,Q
2) is described

as Mellin convolutions between parton distribution functions (∆qi,∆g) and the Wilson

coefficients Ci [159]

g1(x,Q
2) =

1

2nf

n∑
i=1

e2i [CNS ⊗∆qNS + CS ⊗∆qS + 2nfCg ⊗∆g], (6.1)

which consists of three parts, non-singlet gNS
1 (x,Q2) = 1

2nf

∑n
i=1 e

2
i [CNS ⊗∆qNS], sin-

glet gS1 (x,Q
2) = 1

2nf

∑n
i=1 e

2
i [CS ⊗∆qS] and gluon ∆G(x,Q2) = 1

2nf

∑n
i=1 e

2
i [2nfCg ⊗

∆g]. The Q2 distribution of these spin dependent non-singlet, singlet and gluon distri-

bution functions are governed by a set of integro-differential equations, the Dokshitzer-

Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations which are given by [24]

Q2∂xg
NS
1 (x,Q2)

∂lnQ2
=

α(Q2)

2π
PNS
qq (x,Q2)⊗ xgNS

1 (x,Q2), (6.2)

Q2

∂

(
gS1 (x,Q

2)

∆G(x,Q2)

)
∂lnQ2

=

(
P S
qq(x,Q

2)

P S
gq(x,Q

2)

2nfP
S
qg(x,Q

2)

P S
gg(x,Q

2)

)
⊗
(

gS1 (x,Q
2)

∆G(x,Q2)

)
. (6.3)

Here Pi are the polarized splitting functions [24, 32]. These equations are valid to all

orders in the strong coupling constant α(Q2)
2π

.

100



Chapter 6 Small-x Behaviour of xgNS
1 (x,Q2) Structure Function

In this chapter we have concentrated on the non-singlet part of the polarized

nucleon structure function. Here we have investigated the small-x behaviour of xgNS
1

structure function. The investigation is based on the solution of the DGLAP evolu-

tion equation in LO, NLO and NNLO using the two ansatz xgNS
1 (x,Q2) = A(Q2)x0.5

and xgNS
1 (x,Q2) = Ax(1−at) as the initial inputs. We have performed a phenomeno-

logical analysis of these solutions in comparison with different experimental measure-

ments[71,73–75] as well as the predictions due to different models [131,160–162] and

achieved at a very good phenomenological success. The phenomenological success

achieved in this regard reflects, on one hand the acceptability of the Regge ansatz in

describing the small x behavior of the non-singlet part of spin structure function and

on the other hand, the usefulness of the Regge ansatz in evolving the spin structure

function, gNS
1 (x,Q2) in accord with DGLAP equation with a considerable precision

within smaller x region.

For simplicity, defining xgNS
1 (x,Q2) = gNS(x,Q2), the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi (DGLAP) evolution equation which describe the Q2 behavior of po-

larised non-singlet structure function xgNS
1 (x,Q2) in perturbative Quantum Chromo-

dynamics (QCD) formalism is given by

∂gNS(x, t)

∂t
=

α(t)

2π

∫ 1

x

dω

ω
gNS

(
x

ω
, t

)
PNS
qq (ω), (6.4)

in terms of the variable t = ln(Q
2

Λ2 ). Here the splitting function, PNS
qq (ω) is defined up

to next-next-to-leading order by

PNS
qq (ω) =

α(t)

2π
P (0)(ω) +

(
α(t)

2π

)2

P 1(ω) +
(α(Q2)

2π

)3
P 2
i (ω), (6.5)

where, P (0)(ω), P (1)(ω) and P (2)(ω) are the corresponding LO, NLO and NNLO cor-

rections to the splitting functions[24,32]. Splitting functions are given in Appendices.

Again, in LO, NLO and NNLO, the running coupling constant α(Q2)
2π

has the

forms[23],

(
α(t)

2π

)
LO

=
2

β0t
, (6.6)

(
α(t)

2π

)
NLO

=
2

β0t

[
1− β1 ln t

β2
0t

]
, (6.7)

101



Chapter 6 Small-x Behaviour of xgNS
1 (x,Q2) Structure Function

and

(
α(t)

2π

)
NNLO

=
2

β0t

[
1− β1 ln t

β2
0t

+
1

β2
0t

2

[(
β1

β0

)2

(ln2 t− ln t+ 1) +
β2

β0

]]
(6.8)

respectively, where β0 = 11 − 2
3
NF , β1 = 102 − 38

3
NF and β2 = 2857

6
− 6673

18
NF +

325
54
N2

F are the one-loop, two-loop and three-loop corrections to the QCD β-function.

Here the running coupling constant is expressed in terms of the variable t, which is

defined by t = ln(Q
2

Λ2 ). Substituting the respective splitting functions along with the

corresponding running coupling constant in (6.4) the DGLAP evolution equations in

LO, NLO and NNLO become

∂gNS(x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}gNS(x, t) + I1(x, t)

]
, (6.9)

∂gNS(x, t)

∂t
=

(
α(t)

2π

)
NLO

[
2

3
{3 + 4ln(1− x)}gNS(x, t) + I1(x, t)

]

+

(
α(t)

2π

)2

NLO

I2(x, t), (6.10)

and

∂gNS(x, t)

∂t
=

(
α(t)

2π

)
NNLO

[
2

3
{3 + 4ln(1− x)}gNS(x, t) + I1(x, t)

]

+

(
α(t)

2π

)2

NNLO

I2(x, t) +

(
α(t)

2π

)3

NNLO

I3(x, t) (6.11)

respectively. Here the integral functions are given by

I1(x, t) =

∫ 1

x

dω

1− ω

{
(1 + ω2)

ω
gNS

(
x

ω
, t

)
− 2gNS(x, t)

}
, (6.12)

I2(x, t) =

∫ 1

x

dω

ω
P (2)(ω)gNS

(
x

ω
, t

)
(6.13)

and

I3(x, t) =

∫ 1

x

dω

ω
P (3)(ω)gNS

(
x

ω
, t

)
. (6.14)
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We now solve the DGLAP equations up to NNLO ((6.9)-(6.11)) analytically using

the ansatz xgNS
1 (x, t) = A(t)x0.5 and xgNS

1 (x, t) = Bx(1−at) as the initial inputs. Here

in both the case we have discussed in detailed the LO solution and then the same

formalism is extended to have corresponding NLO and NNLO solutions.

6.2 Solution of DGLAP Evolution Equations with

the Initial Input xgNS
1 (x, t) = A(t)x0.5

If we consider that the non-singlet part of the spin structure function satisfies the

following Regge ansatz:

gNS
1 (x, t) = gNS(x, t) = A(t)x0.5, (6.15)

then the t dependence of xgNS
1 (x, t) structure function at a particular value of x = x0

is given by

gNS(x0, t) = A(t)x0.5
0 . (6.16)

Dividing (6.15) by (6.16) we have the following relation

gNS(x, t) = gNS(x0, t)

(
x

x0

)0.5

, (6.17)

which gives both t and x dependence of gNS(x, t) structure function in terms of the t

dependent function gNS(x0, t) at fixed x = x0. The t dependent function, gNS(x0, t)

can be obtained from the DGLAP equation.

Substituting gNS(x, t) = A(t)x0.5 and gNS( x
ω
, t) = ω−0.5gNS(x, t) in equation,

(6.9), we obtain

∂gNS(x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω{
1 + ω2

ω
ω−0.5 − 2

}]
gNS(x, t), (6.18)

which can be rearranged to have an ordinary differential equation and can be solved

easily to have

gNS(x, t)

∣∣∣∣∣
LO

= C1 exp

[
U(x)

∫ (
α(t)

2π

)
LO

dt

]
. (6.19)
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Here

U(x) =
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω−0.5 − 2

}
(6.20)

and C is the constant of integration.

Now at a fixed value of x = x0, the t dependence of the structure function gNS
1 (x, t)

in LO is given by

gNS(x0, t)

∣∣∣∣∣
LO

= C1 exp

[
U(x0)

∫ (
α(t)

2π

)
LO

dt

]
. (6.21)

Again the value of the structure function at x = x0 and t = t0 in accord with

(6.21) is

gNS(x0, t0)

∣∣∣∣∣
LO

= C1 exp

[
U(x0)

∫ (
α(t)

2π

)
LO

dt

]∣∣∣∣∣
t=t0

. (6.22)

Dividing (6.21) by (6.22) and rearranging a bit we obtain the t evolution of gNS(x, t)

in accord with the LO DGLAP equation with respect to the point gNS(x0, t0) as

gNS(x0, t)

∣∣∣∣∣
LO

= gNS(x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
LO

dt

]
. (6.23)

Now substituting gNS(x0, t)

∣∣∣∣
LO

from (6.23) in (6.17), we have a relation repre-

senting both x and t dependence of structure function in LO, in terms of the input

point gNS(x0, t0) given by

gNS(x, t)

∣∣∣∣
LO

= gNS(x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
LO

U(x0, t)dt

](
x

x0

)0.5

. (6.24)

Proceeding in the similar way we can obtain the relation for gNS(x, t) structure func-

tion in NLO and NNLO as

gNS(x, t)

∣∣∣∣∣
NLO

= gNS(x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
NLO

dt

+V (x0)

∫ t

t0

(
α(t)

2π

)2

NLO

dt

](
x

x0

)0.5

(6.25)

and
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gNS(x, t)

∣∣∣∣∣
NNLO

= gNS(x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
NNLO

dt+ V (x0)

∫ t

t0

(
α(t)

2π

)2

NNLO

dt

+W (x0)

∫ t

t0

(
α(t)

2π

)3

NNLO

dt

](
x

x0

)0.5

(6.26)

respectively, where

V (x) =

∫ 1

x

dω

ω
P (1)(ω)ω−0.5 (6.27)

and

W (x) =

∫ 1

x

dω

ω
P (2)(ω)ω−0.5. (6.28)

6.3 Solution of DGLAP Evolution Equations with

the Initial Input xgNS
1 (x, t) = Bx(1−bt)

Now we considered that the non-singlet part of the spin structure function satisfies

the following Regge ansatz:

gNS
1 (x, t) = Ax(−bt) (6.29)

and hence we have

xgNS
1 (x, t) = gNS(x, t) = A.x(1−bt). (6.30)

The t dependence of xgNS
1 (x, t) structure function at a particular value of x = x0

is givent by

gNS(x0, t) = A.x
(1−bt)
0 . (6.31)

Dividing (6.30) by (6.31) we have the following relation

gNS(x, t) = gNS(x0, t)

(
x

x0

)(1−bt)

, (6.32)

which gives both t and x dependence of gNS(x, t) structure function in terms of the t

dependent function gNS(x0, t) at fixed x = x0. The t dependent function, gNS(x0, t)

can be obtained from the DGLAP equation.
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Substituting gNS(x, t) = Ax1−bt and gNS( x
ω
, t) = ω−(1−bt)gNS(x, t) in equation

(6.9) and rearranging a bit we can convert the LO DGLAP equation into an ordinary

differential equation which can be easily solved to have

gNS(x, t)

∣∣∣∣
LO

= C exp

[∫ (
α(t)

2π

)
LO

U(x, t)dt

]
. (6.33)

Here

U(x, t) =
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω−(1−bt) − 2

}
, (6.34)

and C is the constant of integration.

At a fixed value of x = x0, the t dependence of the structure function in LO is

given by

gNS(x0, t) = C exp

[∫ (
α(t)

2π

)
LO

U(x0, t)dt

]
. (6.35)

Again the value of the structure function at x = x0 and t = t0 in accord with

(6.35) is given by

gNS(x0, t0) = C exp

[∫
α(t)

2π
U(x0, t)dt

]∣∣∣∣∣
t=t0

. (6.36)

Dividing (6.35) by (6.36) and rearranging a bit we obtain the t dependence of gNS(x0, t)

in accord with LO DGLAP evolution equation with respect to the point gNS(x0, t0)

as

gNS(x0, t) = gNS(x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
LO

U(x0, t)dt

]
. (6.37)

Now substituting gNS(x0, t)

∣∣∣∣
LO

from (6.37) in (6.32), we have a relation repre-

senting both x and t dependence of structure function in LO, in terms of the input

point gNS(x0, t0) given by

gNS(x, t)

∣∣∣∣
LO

= gNS(x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
LO

U(x0, t)dt

](
x

x0

)(1−bt)

. (6.38)

Proceeding in the similar way we can obtain the relation for gNS(x, t) structure func-

tion in NLO and NNLO as
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gNS(x, t)

∣∣∣∣
NLO

= gNS(x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
NLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NLO

V (x0, t)dt

](
x

x0

)(1−bt)

, (6.39)

and

gNS(x, t)

∣∣∣∣
NNLO

= gNS(x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
NNLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

V (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

W (x0, t)dt

](
x

x0

)(1−bt)

, (6.40)

respectively, where

V (x, t) =

∫ 1

x

dω

ω
P (1)(ω)ω−(1−bt) (6.41)

and

W (x, t) =

∫ 1

x

dω

ω
P (2)(ω)ω−(1−bt). (6.42)

6.4 Results and Discussion

The equations (6.24)-(6.26) and (6.38)-(6.40) are the analytic expressions representing

both x and Q2 dependence of xgNS
1 (x,Q2) structure function jointly, obtained by

means of solving the DGLAP equations in LO, NLO and NNLO incorporating the

Regge ansatz, xgNS
1 (x, t) = A(t)x0.5 and xgNS

1 (x, t) = Bx1−bt as the initial inputs

respectively. These expressions are consisting of an input point xgNS
1 (x0, t0), which

can be taken from the available experimental data. If the input point is more accurate

and precise, we can expect batter results. There are not any specific reason in choosing

the input point. Any one of the data points at a certain value of x = x0 and t = t0 can

be considered as the input point. Off course, the sensitivity of different inputs will be
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Figure 6.1: xgNS
1 structure function in accord with (6.24)-(6.26), compared with

the data taken from SMC[74], HERMES[73], COMPASS[71] and E143[75] experi-
ments and the results of TSA[131], AAC[160], BB[161] and GRSV[162] collabora-
tions.

different. However instead of choosing the input point on the basis of their sensitivity,

in our manuscript we have incorporated a suitable condition in determining the input

point. We have considered that particular point from the most recent measurements

as the input point in which experimental errors are minimum. Under this condition

we have selected the point gNS(x0 = 0.0143955, Q2
0 = 5GeV 2) = 0.0133075 at x0 =

0.0143955 and Q2 = 5GeV 2 from COMPASS[71] experimental data. Here we have

considered the central value of the input point. Further the expressions (6.38)-(6.40)

consists of the additional parameter b which has the value b = 0.0759 ± 0.0107 for

xgNS
1 as obtained in Chapter 3.

With the input point gNS(x0 = 0.0143955, Q2
0 = 5GeV 2) = 0.0133075, substitut-

ing the respective expressions in LO, NLO and NNLO for running coupling constant,
αs(t)
2π

and performing the corresponding integrations, we have obtained the x evolu-

tion of xgNS
1 (x,Q2) structure function in accord with the equations (6.24), (6.25) and

(6.26) respectively. The x evolution results for two fixed value of Q2 = 5.0GeV 2 are

depicted in Fig. 6.1. However, as there are not any available experimental results for
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Figure 6.2: xgNS
1 structure function in accord with (6.38)-(6.40), compared with

the data taken from SMC[74], HERMES[73], COMPASS[71] and E143[75] experi-
ments and the results of TSA[131], AAC[160], BB[161] and GRSV[162] collabora-
tions.

differentQ2, we could not have comparative analysis of ourQ2 evolution results. Our x

evolution results are plotted along with the experimental results taken from SMC[74],

HERMES[73], COMPASS[71] and E143[75] experiments. In addition to these, we

have also included the predictions made by Taghavi-Shahri and Arash(TSA)[131],

Asymmetry Analysis Collaboration(AAC)[160], Blumlein and Bottcher(BB)[161] and

Gluck, Reya, Startmann and Vogelsang(GRSV)[162] based on various models, in our

comparative analysis. We see that gNS(x,Q2) structure functions evolved with respect

to the input point are consistent with those of experimental measurements as well as

other models. This implies that the expressions, we have obtained by means of solving

the DGLAP equations analytically, are applicable in describing small x behaviour of

xgNS
1 (x,Q2) structure function with a considerable precision.

Again the results from equations (6.38),(6.39) and (6.40) for x evolution of

xgNS
1 (x,Q2) structure function with xgNS

1 (x0, Q
2
0) = 0.0133075 and b = 0.0759 are

depicted in Fig. 6.2. In this case also as we do not have experimental data point for

various Q2, we could not perform the comparative analysis of our Q2 evolution results.
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Figure 6.3: xgNS
1 structure function in accord with (6.26) and (6.40) and in

comparison with the data taken from SMC[74], HERMES[73], COMPASS[71] and
E143[75] experiments.

However, the x evolution results are compared with SMC, E143, HERMES and COM-

PASS experimental results and with several predictions made in Ref [131, 160–162]

based on various model.

Also we have estimated the uncertainty associated with the fitting parameter

b and the chosen input point and the respective uncertainty bands are shown in

Fig. 6.4 separately. Here the uncertainty due to the fitting parameter is considerably

less than that of due to input point. However both the uncertainties are observed to

be decreasing as x decreases.

As far the figures, 6.2 - 6.4 are concerned, we observe a very good consistency

among our theoretical results and other experimental as well as parametrization re-

sults within the kinematical region x < 0.05 of our consideration. Our x evolution

results for both the inputs along with other experimental results are plotted in Fig. 6.3.

It reflects the comparative picture of the results obtained by means of the two ansatz.

However within our kinematical region of consideration we do not observe any sig-

nificant differences among them. This implies that the analytic expressions, we have

obtained by means of solving the DGLAP equations with both the ansatz as the ini-

tial input, are applicable in describing the small x behaviour of xgNS
1 (x,Q2) structure
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Figure 6.4: xgNS
1 structure function in accord with (6.40)and in comparison with

different experimental data and theoretical as well as phenomenological analysis,
along with the uncertainty band associated with the fitting parameter(b) and the
chosen input point.

function with a considerable precision.

6.5 Summary

In this paper we have obtained some expressions for the non-singlet part of spin

structure function, xgNS
1 (x,Q2) at small-x by means of analytical solution of DGLAP

equation in LO, NLO and NNLO using a Regge like ansatz with Q2 dependent in-

tercept as the initial input. Both the Regge inspired ansatz in accord with DGLAP

equations provides a very good description of the small-x behaviour of gNS
1 (x,Q2),

which are consistent with other experimental results. The consistency of the results

for xgNS
1 (x,Q2) due to the Regge like models gNS(x, t) = Ax0.5 and gNS(x, t) = Ax1−bt

with different experimental results taken from SMC[74], HERMES[73], COMPASS[71]

and E143[75] and other strong analysis [131,160–162] signifies that the model is appli-

cable in describing the small-x behaviour of xgNS
1 (x,Q2) structure function although

it being simple. Moreover, in this method we do not require the knowledge of initial

distributions of structure functions at all values of x from 0 to 1. Here, we just require

one input point at any fixed x and Q2 and with respect to that point both the x and
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Q2 evolution of structure functions can be obtained. ��
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