
Chapter 7

Sum Rules Associated with
Non-singlet Structure Functions

In this chapter, we have determined the three sum rules viz., the Gottfired Sum

rule(GSR), the Gross-Llewellyn Smith sum rule(GLSSR) and the Bjorken sum rule(BSR),

which are associated with the non-singlet structure functions FNS
2 , xF3 and xgNS

1 re-

spectively with QCD corrections up to NNLO. The determination of sum rules requires

the knowledge of structure functions only at small-x and these requirements are ob-

tained from the previous chapters, where we have successfully evolved the non-singlet

structure functions in accord with DGLAP equation through an approach unifying

Regge theory and pQCD. We have also perform a phenomenological analysis of our

results for various sum rules in comparison with their respective experimental and

parametrization results.

7.1 Introduction

Deep inelastic structure functions obey a series of Sum rules, which are integrals

over structure functions or parton distributions, expressing usually the conservation

law for some quantum number of the nucleon. These sum rules provide information

about the distribution of quarks inside nucleon and are very useful to reveal new

physics if a sum rule is observed to be satisfied or broken. Perturbative Quantum

Chromodynamics has predictions of a wide variety sum rules and they are expected

to provide us with a stringent test of QCD. Because, the sum rules are expressed as

the integrals of the form
∫ 1

0
dxF (x,Q2) = A, and in this representation, one gets rid

of the unknown x-dependence which is due to non-perturbative effects. Further, sum
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rules can be computed up to much higher orders in perturbative QCD than other

quantities. Therefore the sum rules have been the subject of great experimental,

theoretical as well as phenomenological investigation.

In order to investigate the validity of QCD as a theory of strong interaction by

means of sum rules, many successful experimental programs of both polarized and

unpolarized deep-inelastic lepton nucleon scattering have been performed. With the

advent of dedicated experimental facilities the recent measurements of the structure

functions of both polarized and un-polarized DIS[7] in the wide interval of the x = Q2

2pq

variable open the possibility of a more precise determination of the number of the DIS

sum rules. In view of this experimental progress the detailed studies of the theoretical

predictions for the DIS sum rules started to attract special attention.

Brief overview of the basic parton model sum rules have already been given in

section 1.5 and commented on the status of their available QCD corrections. QCD

corrections to sum rules mainly fall into two classes; those that are strongly suppressed

at high energy (higher twist corrections) and those that vanish only logarithmically

with the momentum transfer. The latter are fully calculable in terms of the coupling

constant αs of QCD.

The determination of these sum rules requires knowledge of the corresponding

structure functions over the entire region of x ∈ (0; 1). The experimentally accessible

x range for the lepton DIS is however limited for the available data and therefore

one should extrapolate results to x = 0 and x = 1. The extrapolation to x → 0,

where structure functions 1
x
FNS
2 , F3 and gNS

1 grow strongly, is much more important

than the extrapolation to x → 1, where structure functions vanish. Again, it is known

that maximum contribution (about 90%) to the GSR, GLSSR and BSR come from the

small x(≤ 0.1) region. Because of the large contribution to these sum rules from small

x, the small x region is particularly important. In the following sections we will observe

that the determination of sum rules requires the knowledge of structure functions only

at small-x and the requirements are obtained from the previous chapters, where we

have successfully evolved the non-singlet structure functions in accord with DGLAP

equation through a unified approach unifying Regge theory and pQCD.

This chapter is divided into six sections. In the next section 7.2, we have presented

a generalized formalism which is adopted in the determination of various sum rules.

Then the same formalism is extended to incorporate the sum rules, GSR, GLSSR and

BSR in the section 7.3, 7.4 and 7.5 respectively. In the respective sections we have
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Figure 7.1: General interpretation of sum rule. The curve represents the variation
of the structure function FNS

i with x and the area under the curve represents the
sum rule.

also provided a detailed analysis of our results for the sum rules in comparison with

other available experimental and parametrization results. In the last section 7.6, the

works performed and results obtained in this chapter are summarised.

7.2 The General Strategy Adopted in Determining

Sum Rules

Away from Q2 → ∞, the Sum Rules, GSR, GLSSR and BSR are expressed in terms

of a sum of two series in powers of the strong coupling constant αs(Q
2) (leading twist

pQCD correction)and in powers of 1
Q2 (nonperturbative higher twist corrections):

Si(Q
2) =

∫ 1

0

dx

x
FNS
i (x,Q2) = SpQCD

i +
∞∑
i=2

µp−n
2i (Q2)

Q2i−2
, (7.1)

where Si denotes the sum rules associated with FNS
i = FNS

2 , xF3, xg
NS
1 . Here the

leading twist term (bracket term) consists of pQCD results and the second term on

the r.h.s. is known as higher twist term. The higher order pQCD corrections and

higher twist power corrections are significant at low-Q2 region(see Ref. [163,164] and

references therein). In this chapter we have paid attention to only the first part i.e.,

the pQCD corrected term, SpQCD
i .

In general the integral associated with the sum rules represents the area under

the curve FNS
i (x,Q2) from x = 0 to x = 1 (Shown in Fig. 7.1), which can be resolved
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as

Si(Q
2) =

∫ xmin

0

FNS
i (x,Q2)

x
dx+

∫ 1

xmin

FNS
i (x,Q2)

x
dx (7.2)

and it gives

Si(xmin, Q
2) =

∫ 1

xmin

FNS
i (x,Q2)

x
dx = Si(Q

2)−
∫ xmin

0

FNS
i (x,Q2)

x
dx. (7.3)

The integral on the left hand side of (7.3) represents the area under the curve
FNS
i (x,Q2)

x

from x = xmin to x = 1. For x = xmin → 0, this integral will tend to cover the whole

area under the curve from x = xmin = 0 to x = 1, that is, it will represent the whole

integral associated with the sum rule. Again the second part on the right side of

(7.3) represents the part of total area
∫ 1

0

FNS
i (x,Q2)

x
dx, laying under the curve

FNS
i (x,Q2)

x

within smaller x region i.e., from x = 0 to any smaller value x = xmin. Thus we

see that in order to investigate the sum rules, we just require the knowledge of cor-

responding structure function FNS
i (x,Q2) within smaller x region. This requirement

can be fulfilled by using the solutions of DGLAP equations obtained in our previous

chapters.

Based on this general formalism, in the following sections we have investigated the

GSR, GLSSR and BSR with pQCD corrections up to NNLO utilising the well behaved

solutions of the DGLAP evolution equations for FNS
2 , xF3 and xgNS

1 obtained in the

previous chapters 4, 5 and 6 respectively.

7.3 Determination of Gottfried Sum Rule

The Gottfried Sum Rule(GSR)[34] is associated with the non-singlet structure func-

tion F ep
2 − F en

2 , the difference of F2 measured on proton and on neutron in charged

lepton scattering. In accord with parton model this sum rule expresses the fact that

there is one more u valence quark than d valence quark in the proton and is only valid

under the assumption that the seas of u and d quarks in the proton are equal(ū = d̄).

It is written as
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SGSR(Q
2) =

∫ 1

0

dx

x

[
F ep
2 (x,Q2)− F en

2 (x,Q2)

]
=

∫ 1

0

dx

[
1

3
(uv(x,Q

2)− dv(x,Q
2)) +

2

3
(ū(x,Q2)− d̄(x,Q2))

]
=

1

3
+

2

3

∫ 1

0

[
ū(x,Q2)− d̄(x,Q2)

]
dx. (7.4)

In fact if the sea were flavour symmetric, namely ū = d̄, we expect

SGSR =
1

3
. (7.5)

However, the most detailed analysis of muon-nucleon DIS data of NMC Collaboration

gives the following result[65]

SGSR(Q
2 = 4GeV 2) = 0.235± 0.026, (7.6)

which in turn indicates the violation of theoretical expression of Eq. 7.5 and neces-

sitates more detailed investigations of different effects, related to the Gottfried sum

rule.

In QCD, the leading twist pQCD correction up to NNLO for GSR is expressed

as a series in powers of the strong coupling constant αs(Q
2)[35] :

SGSR(Q
2) =

∫ 1

0

dx

x
FNS
2 (x,Q2) =

1

3

[
1 + 0.0355

αs

π
− 0.811

(
αs

π

)2]
. (7.7)

Here the GSR consists of pQCD results up to second order of αs(Q
2).

In accord with Eq. 7.3, the GSR integral can be represented as

SGSR(xmin, Q
2) =

∫ 1

xmin

FNS
2 (x,Q2)

x
dx = SGSR(Q

2)−
∫ xmin

0

xgNS
1 (x,Q2)

x
dx. (7.8)

From Eq. 7.8, it is clear that in order to calculate the integral on the l.h.s., which

represents the GSR for xmin → 0 limite, we need to know FNS
2 (x,Q2) structure

function within smaller x region. This requirement can be fulfilled by using the

solutions of DGLAP equations for FNS
2 , obtained in the chapter 4, which provide well

description of the small-x behaviour of FNS
2 (x,Q2) structure function. Therefore,

substituting (4.49), (4.50) and (4.51) in (7.8) (although the expressions (4.31)-(4.33))

117



Chapter 7 Sum Rules Associated with Non-singlet Structure Functions

and using the corresponding expressions for SGSR in LO, NLO and NNLO, we obtain

the GSR integral with LO, NLO and NNLO pQCD corrections as

SGSR(xmin, Q
2)

∣∣∣∣
LO

= SGSR(Q
2)

∣∣∣∣
LO

−
∫ xmin

0

dx

x

[
FNS
2 (x0, t0)(

x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
LO

P (x0, t)dt

}]
, (7.9)

SGSR(xmin, Q
2)

∣∣∣∣
NLO

= SGSR(Q
2)

∣∣∣∣
NLO

−
∫ xmin

0

dx

x

[
FNS
2 (x0, t0)(

x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
NLO

P (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NLO

Q(x0, t)dt

}]
(7.10)

and

SGSR(xmin, Q
2)

∣∣∣∣
NNLO

= SGSR(Q
2)

∣∣∣∣
NNLO

−
∫ xmin

0

dx

x

[
FNS
2 (x0, t0)

(
x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
NNLO

P (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

Q(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

R(x0, t)dt

}]
(7.11)

respectively. Considering a known input point FNS
2 (x0, t0) from experimental data,

we will be able to calculate the GSR integral up to NNLO corrections using the

expressions, (7.9), (7.10) and (7.11) respectively.

In our calculation of GSR, we have used the NMC[63] experimental data point,

FNS
2 (x0, t0) = 0.010348± 0.006208 at x0 = 0.025 and Q2 = 2.34686GeV 2 as the input

point. With this input point we have calculated the Gottfired Sum rule and the results

in accord with equations (7.9), (7.10) and (7.11) are depicted in Fig. 7.2 and Fig. 7.3

as a function of Q2 in comparison with the results predicted by QCD in accord with

Eq.(7.7).
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Figure 7.2: LO, NLO and NNLO results for GSR along with parton model and
pQCD predictions. (Q2’s are taken in the unit of GeV 2).

0 2 4 6 8 10
0.20

0.25

0.30

0.35

0.40

Q2

S
G
SR

 NNPDF results
 Paton model prediction
 QCD NNLO prediction
 Our NNLO results

Figure 7.3: Our NNLO results for GSR in comparison with parton model and
NNLO pQCD predictions as well as the results of NNPDF collaboration. (Q2’s are
taken in the unit of GeV 2).
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Figure 7.4: GSR as a function of xmin in comparison with NMC, NNPDF and
KMRS results. The uncertainty band shown here is the uncertainty associated with
the iput point.

In Fig. 7.3, the NNLO results are compared with the NNPDF[101] results. In

Fig. 7.4 our results for GSR are depicted as a function of low x limit of integration

xmin in comparison with those obtained by NMC, NNPDF and KMRS. Here we have

also shown the estimated uncertainty band associated with the chosen input point.

Although our result for GSR, as far the figures 7.2, 7.3 and 7.4 are concerned, do

not agree well with those of NMC, NNPDF as well as KMRS, however a very good

agreement with pQCD predictions is observed.

7.4 Determination of Gross-Llewellyn Smith Sum

Rule

The Gross-Llewellyn Smith(GLS) sum rule[38, 39] associated with the non-singlet

xF3(x,Q
2) structure function measured in neutrino-nucleon (ν −N) scattering is one

of the best observables to investigate Quantum Chromodynamics(QCD) as a theory

of strong interaction. Perturbative Quantum Chromodynamics (pQCD) predicts the

value of the GLS integral up to next-next-to-leading order(NNLO) as a function of
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strong coupling constant(αs), the four momentum transfer(Q2) and the number of

accessible quark flavour (nf ). Up to NNLO pQCD corrections, the GLS integral can

be written as[39]

SGLS(Q
2) =

∫ 1

0

dx

x
xF3(x,Q

2) = 3

[
1− αs

π
− a(nf )

(
αs

π

)2

− b(nf )

(
αs

π

)3]
, (7.12)

where the flavour dependent functions are given by a(nf ) = 55
12

− nf

3
and b(nf ) =

41.441− 8.02nf + 0.177n2
f .

As xF3(x,Q
2) structure function is not marred by the presence of the sea quark

and gluon densities about which we have very poor information in particular in the

small-x region and higher order QCD calculations are observed to be largely inde-

pendent of renormalization scheme [165], this prediction is considered as the robust

prediction in pQCD. In order to verify the GLS sum rule, experiments have been

performed by CCFR collaboration[166] and obtained a precision of roughly 3% in

accordance with the analysis in Ref. [167], using a leading-order(LO) QCD-based fit

to extrapolate all data to Q2 = 3.2GeV 2. However, some small but important correc-

tions due to quark mass thresholds, target mass or higher twist effects, which were

not included in previous analysis were reported in Ref. [165, 168–172]. In addition

to these, some small but significant corrections arising from strange quark distribu-

tions and from charge symmetry violating parton distributions were also investigated

recently in Ref. [173]. However, in this chapter we have focused only on the pQCD

corrections up to NNLO.

In order to determine GLS sum rule we have adopted the similar formalism used

in determining GSR. Here firstly we have resolved the GLS integral as

SGLS(Q
2) =

∫ xmin

0

xF3(x,Q
2)

x
dx+

∫ 1

xmin

xF3(x,Q
2)

x
dx, (7.13)

which gives

SGLS(xmin, Q
2) =

∫ 1

xmin

xF3(x,Q
2)

x
dx = SGLS(Q

2)−
∫ xmin

0

xF3(x,Q
2)

x
dx. (7.14)

The integral on the left hand side of (7.14) similarly represents the area under the

curve xF3(x,Q2)
x

from x = xmin to x = 1. For x = xmin → 0, this integral will tend

to cover the whole area under the curve from x = xmin = 0 to x = 1, that is, it will

represent the GLS integral. Again the second part on the right side of (7.14) represents
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the part of total area lying under the curve, xF3(x,Q2)
x

within smaller x region i.e., from

x = 0 to any smaller value x = xmin. Thus we see that in order to investigate the

GLS integral, we just require the knowledge of xF3(x,Q
2) structure function within

smaller x region, not the entire region.

We have already obtained the small-x behaviour of xF3(x,Q
2) structure function

by means of solving DGLAP evolution equation in chapter 5 and they are observed

to be consistent with other experimental as well as parametrization results. Which

implies that the analytical expressions, we have obtained in chapter 5 for xF3(x,Q
2)

are applicable in describing small x behaviour of xF3(x,Q
2) structure function with a

considerable precision and therefore those expressions can be successfully incorporated

in
∫ xmin

0
xF3(x,Q2)

x
dx for xF3(x,Q

2) term and hence we can obtain the GLS integral

(7.14) with LO, NLO and NNLO corrections as

SGLS(xmin, Q
2)

∣∣∣∣
LO

= SGLS(Q
2)

∣∣∣∣
LO

−
∫ xmin

0

dx

x

[
FNS
3 (x0, t0)

(
x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
LO

P (x0, t)dt

}]
, (7.15)

SGLS(xmin, Q
2)

∣∣∣∣
NLO

= SGLS(Q
2)

∣∣∣∣
NLO

−
∫ xmin

0

dx

x

[
FNS
3 (x0, t0)

(
x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
NLO

P (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NLO

Q(x0, t)dt

}]
(7.16)

and

SGLS(xmin, Q
2)

∣∣∣∣
NNLO

= SGLS(Q
2)

∣∣∣∣
NNLO

−
∫ xmin

0

dx

x

[
FNS
3 (x0, t0)

(
x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
NNLO

P (x0, t)dt+

∫ t

t0

(
α(t)

2π

)2

NNLO

Q(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

R(x0, t)dt

}]
(7.17)
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Figure 7.5: Results for the Gross - Llewellyn Smith sum rule at LO, NLO and
NNLO, as a function of Q2. The data are from the CCFR experiment [67]. The
LO, NLO and NNLO curves are offset by the amount given in parenthesis. (Q2’s
are taken in the unit of GeV 2).

respectively. Considering the input point, xF3(x0 = 0.025, t0 = 3.2GeV 2) = 0.3298

from CCFR data we have calculated the GLS sum rule with QCD corrections up to

NNLO using the expressions (7.15), (7.16) and (7.17) respectively and the results are

depicted in Fig. 7.5, Fig. 7.6 and Fig. 7.7.

The Q2 dependence of GLS integral as obtained from Eqs.(7.15), (7.16) and (7.17)

are depicted in Fig. 7.6 in comparison with the experimental data taken from CCFR

collaborations and the corresponding perturbative QCD predictions Eq.(7.12) in LO,

NLO and NNLO. Here the inner error bar shows statistical errors and the outer one,

a combination of statistical and systematic errors associated with CCFR data. Our

results for LO, NLO and NNLO are represented by solid curves with the corresponding

dashed curves representing theoretical QCD predictions Eq.(7.12) using higher-order

QCD corrections (LO, NLO and NNLO) from [39]. Fig. 7.6 reflects the comparative

picture of our NNLO results with those of CCFR data and theoretical predictions of

QCD at NNLO and results obtained by Kataev and Sidorov(KS) in Ref. [167]. In Fig.

7.7 our results of GLSSR are plotted as a function of xmin in comparison with CCFR

measurements. Here the uncertainties due to the chosen input is also estimated and
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Figure 7.6: Our NNLO results for the Gross-Llewellyn Smith sum rule, for various
values of Q2, along with QCD predictions Eq.(7.12) in NNLO, in comparison with
CCFR experiment [67]. The results with up triangle symbols along with uncertainty
bars are the KS[167] results. (Q2’s are taken in the unit of GeV 2).
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Figure 7.7: Results for the Gross-Llewellyn Smith sum rule, for various values of
x. The data are taken from the CCFR experiment [67].
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they are shown by the green band. From these figures one can see that our LO, NLO

and NNLO results are within the statistical uncertainties of measurements by CCFR

collaboration and also consistent with QCD predictions as well as KS results.

7.5 Determination of Bjorken Sum Rule

The Bjorken sum rule is associated with the spin dependent non-singlet structure

function xgNS
1 (x,Q2). BSR relates the difference of proton and neutron structure

functions integrated over all possible values of Bjorken variable, x to the nucleon

axial charge gA. At infinite four-momentum transfer squared, Q2, the sum rule reads

SBSR =

∫ 1

0

dx

x
xgNS

1 (x,Q2) =
gA
6
. (7.18)

In accord with QCD prediction, the leading twist pQCD correction up to NNLO

for BSR is expressed as follows :

SBSR(Q
2) =

∫ 1

0

dx

x
xgNS

1 (x,Q2) =
gA
6

[
1− αs

π
− 3.583

(
αs

π

)2

− 20.215

(
αs

π

)3]
,(7.19)

which can be resolved to have

SBSR(xmin, Q
2) =

∫ 1

xmin

xgNS
1 (x,Q2)

x
dx = Sp−n

1 (Q2 −
∫ xmin

0

xgNS
1 (x,Q2)

x
dx. (7.20)

Using the solutions of DGLAP equations, obtained in chapter 6, which provide well

description of the small-x behaviour of xgNS
1 (x,Q2) structure function we can deter-

mine the integral on l.h.s. of Eq. 7.20, which will tend to represent the BSR for the

limit x = xmin → 0. Therefore, substituting (6.38),(6.39) and (6.40) in (7.20) and

using the corresponding expressions for SBSR in LO, NLO and NNLO, we obtain the

Bjorken integral with LO, NLO and NNLO QCD corrections as

SBSR(xmin, Q
2)

∣∣∣∣
LO

= SBSR(Q
2)

∣∣∣∣
LO

−
∫ xmin

0

dx

x

[
gNS(x0, t0)(

x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
LO

P (x0, t)dt

}]
, (7.21)
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SBSR(xmin, Q
2)

∣∣∣∣
NLO

= SBSR(Q
2)

∣∣∣∣
NLO

−
∫ xmin

0

dx

x

[
gNS(x0, t0)(

x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
NLO

P (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NLO

Q(x0, t)dt

}]
(7.22)

and

SBSR(xmin, Q
2)

∣∣∣∣
NNLO

= SBSR(Q
2)

∣∣∣∣
NNLO

−
∫ xmin

0

dx

x

[
gNS(x0, t0)(

x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
NLO

P (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NLO

Q(x0, t)dt

}]
+

∫ t

t0

(
α(t)

2π

)3

NNLO

R(x0, t)dt

}]
(7.23)

respectively. Considering a known input point gNS(x0, t0) from experimental data,

we will be able to calculate the BSR integral up to NNLO corrections using the

expressions, (7.21), (7.22) and (7.23) respectively. In our calculations we have used

gNS(x0 = 0.0143955, Q2
0 = 5GeV 2) = 0.0133075 as the input point, which is taken

from the COMPASS[71] experimental data. With this input point we have calculated

the Bjorken integral and the results in accord with equations (7.21), (7.22) and (7.23)

are depicted in Fig. 7.8 and Fig. 7.9.

In Fig. 7.8, we have plotted our results for BSR integral in LO, NLO and NNLO

as a function of low x limit of integration xmin, in comparison with COMPASS and

HERMES measurements along with the results due to valon model(TSA)[131]. The

uncertainties due to the parameter, b and the input point are estimated only for

the NNLO results and as seen from the Fig. 7.8, they decrease with decrease in

xmin. From Fig. 7.8 we observe an overall batter description of both COMPASS and

HERMES data by our results with respect to the predictions due to valon model.

Again our approach expects batter results for xmin → 0, but there are no COMPASS

measurement beyond x ≈ 0.004 and HERMES measurement beyond x ≈ 0.02 for our

comparative analysis. Saturation of the COMPASS data for BSR is observed within

x > 0.004, however available HERMES results have not saturated at x ≈ 0.01− 0.02.
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Figure 7.8: The results of Bjorken integral as a function of the low x limit of
integration, xmin, in LO, NLO and NNLO in comparison with COMPASS [71]
and HERMES[73] experimental data along with the predictions based on Valon
model[131].
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Figure 7.9: The results of Bjorken integral as a function of momentum transfer
squared Q2 in LO, NLO and NNLO against COMPASS [71] and HERMES[73]
E143[75] and JLab [76–78] experimental data along with the theoretical as well as
phenomenological analysis, Ref. [176–179]. (Q2’s are taken in the unit of GeV 2).
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Figure 7.10: Our results of Bjorken integral in comparison with the QCD predic-
tions up to NNLO[39]. (Q2’s are taken in the unit of GeV 2).

Thus we may expect to occur saturation within the smaller x region and within this

region both HERMES and COMPASS results might agree with each other and reach

an overall compatibility with our measurements.

The Q2 dependency of Bjorken Sum Rule, as predicted by our expressions 7.21,

7.22 and 7.23 is depicted in Fig. 7.9. Here our results are compared with differ-

ent experimental data taken from COMPASS [71], HERMES[73], E143[75] and JLab

experiments [76–78] and with the theoretical as well as phenomenological analysis,

Ref. [176–179]. The results depicted in this figure are calculated using the value of

Λ = 0.300GeV . Here we have also estimated the uncertainty associated with the

NNLO results due to the fitting parameter, b and the input point, and they are

observed to be very small in this regard. It is also observed that the uncertainty

decreases with decrease in Q2.

In Fig. 7.10, we have compared our results with theoretical pQCD predictions

(7.19) for Bjorken integral up to NNLO. Here our results are calculated with Λ =

0.300GeV . Within the estimated uncertainty our results show a very good consistency

with those of pQCD predictions.
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7.6 Summary

In the above sections we have presented some analytical expressions for the determi-

nation of the Gottfired sum rule, the Gross-Llewellyn Smith sum rule and the Bjorken

sum rule. The expressions for sum rules are consisting of the solutions of the DGLAP

evolution equations for FNS
2 , xF3(x,Q

2) and xgNS
1 (x,Q2) respectively, which are ob-

tained in previous chapters, along with the input points FNS
i (x0, t0). Considering

suitable input point as mentioned above, we have calculated the sum rule with pQCD

corrections up to NNLO. We would like to emphasize that our results for various

sum rules are in a overall good agreement with the corresponding experimental re-

sults as well as several strong theoretical, phenomenological predictions and also with

the QCD predictions up to NNLO. These agreement, suggests that the Regge ansatz

along with available data and QCD formalism allows to have a clean test of QCD

predictions for various sum rule. ��
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