
Chapter 8

Nuclear Effects in Non-Singlet
Structure Functions and Sum Rules

In this chapter we present an analysis of the non-singlet structure functions and

related sum rules taking into account the nuclear effects. In this regard, special at-

tention is given to the nuclear shadowing effect as we are mostly concerning with the

small-x region. The corrections due to nuclear shadowing effect, predicted in several

earlier analysis are incorporated to our results of structure function and sum rules

for free nucleon and calculate the nuclear structure functions as well as sum rules for

nuclei. The calculations are analysed phenomenologically in comparison with avail-

able experimental data and achieved at a very good phenomenological success in this

regard.

8.1 Introduction

Higher order pQCD corrections have a significant contribution towards the precise

predictions of the structure functions as well as the sum rules. In the Chapters 4, 5, 6

and 7 we have discussed in detailed about the evolution of non-singlet structure func-

tions and associated sum rules in accord with pQCD, along with their QCD corrections

up to NNLO. In addition to pQCD corrections there are several non-perturbative ef-

fects such as higher twist effects, nuclear corrections, target mass corrections etc., to

be included into the joint QCD analysis of structure functions and sum rules. In this

chapter we present an analysis of the non-singlet structure functions and related sum

rules taking into account the nuclear effects. Particular emphasise is given to the
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shadowing effect as we are mostly dealing with the small-x region.

We have already given a brief introduction about the nuclear effects in section 1.7.

The fact that the structure functions of bound and free nucleons are not equal was

discovered in a deep inelastic muon experiment carried out by the European Muon

Collaboration at CERN in 1982[52]. Since then the nuclear effect has been actively

investigated with ever more sophisticated and ingenious deep inelastic scattering ex-

periment with charged lepton and neutrinos.

Available experimental information on nuclear structure functions are mainly

from charged-lepton scattering DIS experiments performed at CERN [180–186], SLAC

[187, 188], DESY [189], FNAL[190, 191] and recently at JLab [192, 193]. In addition,

data from the DrellYan reaction of protons off nuclear targets are also available [194].

The experiments usually measures the ratio R2 of the structure function F2 of a

complex nucleus to deuterium. The studies on the behaviour of the ratio R2 as a

function of x for a given fixed Q2 reflects four distinct region of characteristic nuclear

effects: shadowing region(x < 0.1), anti-shadowing region(0.1 < x < 0.3), EMC

region (0.3 < x < 0.8) and fermi motion region(x > 0.8). In addition there are

several theoretical treatments that predicts a Q2 dependent nuclear effect only in the

shadowing region, while for 0.1 < x < 0.8 R2 is almost Q2 independent. However, the

data available on the Q2 dependence of nuclear effects are still scarce. In this thesis

we have not take into account the Q2 dependent nuclear corrections and considered

only the x-dependency of nuclear effects for structure functions.

A quantitative understanding of the nuclear effects in deep inelastic nuclear scat-

tering is important for a number of reasons. A proper interpretation of experimental

data can provide valuable insights into the origin of nuclear force and helps us in

understanding the possible modification of the properties of hadrons in a nuclear

medium. Further, nuclear data provides the opportunity to have reliable information

on the hadrons, otherwise not accessible directly. As for example, the extraction of

the neutron structure function usually requires the deuterium and proton data, which

in turn requires a proper understanding of nuclear effects[195]. Similarly, the use of

charged-lepton and neutrino nuclear DIS data in global analysis of QCD observables

aiming towards better determination of the proton and neutron pdfs and the higher

twist terms [196–198] are the other examples in this regard.

The understanding of nuclear effects is particularly relevant for neutrino physics.

For precision measurements in neutrino physics the use of heavy nuclear targets is
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required in order to collect a significant number of interactions. The presence of

an axial-vector component in the weak current and the quark flavour selection dis-

tinguishes neutrinos from charged leptons and imply a more complex description of

nuclear effects in neutrino scattering. The role of nuclear corrections to neutrino

structure functions has been recently emphasized[199] after the NuTeV collaboration

reported a deviation from the Standard Model prediction for the value of the weak

mixing angle (sin2ΘW ) measured in neutrino DIS [200]. It must be mention that

nuclear effects are important not only in the determination of electroweak param-

eters, but also for the understanding of neutrino masses and mixing. The recent

high-intensity NuMI[201] and JPARC [202] neutrino facilities offer the possibility to

perform a detailed study of nuclear effects in neutrino interactions on a relatively

short time scale. The construction of a future neutrino factories[203] are expecting to

reach the ultimate precision of the neutrino probe.

8.2 Shadowing Effect in Nuclear Deep Inelastic Scat-

tering

As this thesis is concerned with the small-x behaviour of the non-singlet structure

functions and sum rules, we would like to concentrate only on the shadowing effect.

Shadowing effect is the most pronounced nuclear effect in lepton nuclear DIS. Sev-

eral theoretical models to this shadowing have been proposed. In literature there are

essentially two main classes of approaches in order to have information about shad-

owing effect: one concerns with the origin of the shadowing effect and the other one

addresses the evolution of shadowing effect by means of parameterizations.

Some models associated with the origin of shadowing effect provides a qualitative

understanding using the fact that that in the rest frame of the nucleus the incoming

photon splits into a qq̄ pair long before reaching the nucleus, and this qq̄ pair interacts

with it with typical hadronic cross sections, which results in absorption [204–210]; in

this way nuclear shadowing is a consequence of multiple scattering which in turn is

related to diffraction [207, 211, 212]. On the other hand, in a frame in which the

nucleus is moving fast, gluon recombination due to the overlap of the gluon clouds

from different nucleons reduces gluon density in nucleus with mass number A by A

times that in a free nucleon[213,214]. These studies have received a great theoretical

impulse with the development of semiclassical ideas in QCD and the appearance of

133



Chapter 8 Nuclear Effects in Non-Singlet Structure Functions and Sum Rules

non-linear equations for evolution in x in this framework(see [215–217] and references

therein.).

Other models do not address the origin of the nuclear shadowing but contains

a parametrization at Q2
0, which is obtained from a fit to experimental data. Dis-

tribution of partons inside nucleus are parameterized at some scale Q2
0 and then

evolved using the DGLAP[24] evolution equations. Nuclear effects are usually stud-

ied through a global χ2 analysis method by using all the available charged-lepton DIS

data, and then by adding Drell-Yan data to the data set[218]. In order to determine

nuclear effects, various global analysis have been reported[219–224]. The analysis

performed by Eskola et al.[225] and Hirai et al.[218, 224] are based on the leading-

order(LO) Dokshitzer-Gribov-Lipatov-Altarelli-Parisi(DGLAP) evolution, while the

next-to-leading-order (NLO) evolution was performed by de Florian and Sassot[219].

In 1999, Eskola, Kolhinen, Ruuskanen and Salgado(EKRS)proposed a set of nu-

clear parton distributions by using the FA
2 /FD

2 data in deep inelastic lA collisions

and the nuclear Drell-Yan dilepton cross sections measured in pA collisions and

their results were observed to agree very well with the relevant EMC data and

the E772 data at Fermilab[226] within the kinematical ranges 106 ≤ x ≤ 1 and

2.25GeV 2 ≤ Q2 ≤ 104GeV 2. A reasonable explanation of the measured data of F2

was provided by Hirai, Komano and Miyama(HKM)[224] based on two (quadratic

and cubic) types of nuclear parton distributions whose parameters were determined

by a χ2 global fit to the available experimental data, except those from the proton-

nucleus Drell-Yan process. The covered kinematical ranges were 109 ≤ x ≤ 1 and

1GeV 2 ≤ Q2 ≤ 105GeV 2 for deuteron and heavy nuclear targets. Further, in 2004,

Hirai, Komano and Nagai(HKN)[218] re-analyzed the measured ratios of nuclear struc-

ture functions FA
2 /FA′

2 and the ratios of Drell-Yan cross sections between different

nuclei for obtaining another parton distribution function in nuclei.

In Ref. [219–222] the nuclear parton distribution have been determined, whereas

Ref. [223] concentrated on the determination of nuclear structure functions using

conventional nuclear models. The results from different models usually depend on

additional semi-phenomenological assumptions and often contradict each other. Some

recent parametrization are provided bellow as examples

• FS04[219](Q2
0 = 0.4GeV 2): f

N/A
i (x) =

∫
dy
y
Wi(y,A, Z)f

N
i (x/y)
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Wi(y, A, Z) =

{ A[avδ(1− εv − y) + (1− av)δ(1− ε′v − y)]

+nv(y/A)
αv(1− y/A)βv + ns(y/A)

αs(1− y/A)βs (i = V )

Aδ(1− y) + ai
Ni
( y
A
)αi (1−

y
A
)βi (i = s, g)

• HKN07[220](Q2
0 = 1GeV 2): fA

i (x) = Wi(y,A, Z)
1
A
[Zfp

a (x) + (A− Z)fn
a (x)]

Wi(y, A, Z) = 1 + (1− 1
Aα )

ai+bix+cix
2+dix

3

(1−x)β

• SYKMOO08[221](Q2
0 = 1.69GeV 2): fA

i (x) = Wi(y, A, Z)
1
A
[Zf

p/A
a (x) + (A −

Z)f
n/A
a (x)]

xf
N/A
i (x) =

{
A0x

A1(1− x)A2eA3x(1 + eA4x)A5 (i = uv, dv, g, ū+ d̄, s̄)

A0x
A1(1− x)A2 + (1 + A3x)(1− x)A4 (i = d̄/ū)

• EPS09[222] (Q2
0 = 1.69GeV 2): fA

i (x) = RA
i (x)

1
A
[Zfp

a (x) + (A− Z) ∗ fn
a (x)],

RA
i (x) =

{ a0 + (a1 + a2x)[e
−x − e−xa ] (x ≤ xa : shadowing)

b0 + b1x+ b2x
2 + b3x

3 (xa ≤ x ≤ xe : antishadowing)

c0 + (c1 − c2x)(1− x)−β (xe ≤ x ≤ 1 : EMC and Fermi Motion)

Here fA
i is the nuclear parton distribution function for the parton type i and f p

i

and fn
i are the corresponding proton and neutron contribution. The parameters in

these equations are determined by global χ2 analyses of world experimental data on

nuclear structure functions. Experimental data are generally obtained in different Q2

points from Q2
0. The standard DGLAP evolution equations are used for evolving the

distributions to the experimental points. There are three conditions to be satisfied

for the NPDFs, so that three parameters should be fixed by the following relations

[218,224]:

• Baryon number: A
∫
dx[1

3
uA
v (x) +

1
3
dAv (x)] = A

• Charge: A
∫
dx[2

3
uA
v (x)− 1

3
dAv (x)] = Z

• Momentum:A
∑

i=q,q̄,g

∫
dxxfA

i (x) = A

Like the charged-lepton DIS, the deep inelastic neutrino scattering is also a signif-

icant process for investigating the structures of hadrons and nuclei. In neutrino-DIS

process, the structure functions F2(x,Q
2) and the parity-violating structure function

xF3(x,Q
2) can simultaneously be measured. Big European Bubble Chamber Collab-

oration (BEBC) published the antineutrino-neon/deuterium DIS data in 1984, within

the kinematic region of 0 < x < 0.7 and 0.25 < Q2 < 26GeV 2[229]. BEBC results

for differential cross section ratio in the high Q2 and 0.3 < x < 0.6 region[229] is

135



Chapter 8 Nuclear Effects in Non-Singlet Structure Functions and Sum Rules

compatible with the muon and electron scattering data from EMC and SLAC. In

the same year, CERN-Dortmund-Heidelberg-Saclay Collaboration (CDHS) measured

events originating in a tank of liquid hydrogen and in the iron of detector in the 400

GeV neutrino wide-band beam of the CERN Super Proton Synchrotron(SPS)[230].

In their measurements on total cross sections, differential cross sections and structure

functions for hydrogen and iron, no significant difference between the structure func-

tions for proton and iron was observed. E545 Collaboration at Fermilab [231], once

more measured the cross sections in the deep inelastic neutrino scattering on neon or

deuterium. However they were not able to give a definite conclusion due to substan-

tial statistical uncertainties. In fact, many neutrino DIS experiments were carried out

with their own primary physical goals, for instance the structure of proton, the mixing

angles of electro-weak interaction etc., but none of them can individually confirm the

EMC effect.

Although there is no individual neutrino experiment on EMC effect, the differ-

ential cross sections and structure functions have been measured in neutrino-nucleus

experiments in CCFR[66, 232] and NuTeV[68] at Fermilab, and in CDHSW[69] and

CHORUS[70] at CERN. These experimental data would help us to understand the

nuclear effects in the neutrino-nucleus interaction further.

Along with the experimental efforts, several groups have been performed theo-

retical as well as phenomenological analysis of the nuclear effects in neutrino-nucleus

DIS. Among them most prominent are the Kulagin and Petti(KP)[223,227], Qiu and

Vitev(QV)[233] and Hirai, Komano and Nagai(HKN) groups, which have predicted

the nuclear corrections in the low x region. Kulagin and Petti’s approach is quite

different from the above ones in the sense that they try to calculate the nuclear

corrections in conventional nuclear models as far as they can, and then they try to

attribute remaining factors to off-shell effects of bound nucleons for explaining the

data.

8.3 Nuclear Shadowing Effect in the Non-singlet

Structure Functions

In our previous chapters 4,5, and 6, we have calculated the non-singlet structure

functions by means of solving DGLAP equations using two Regge ansatz as the initial

input. Our calculations predicts the structure functions for a nucleon(single or free)

136



Chapter 8 Nuclear Effects in Non-Singlet Structure Functions and Sum Rules

as

Fi(x, t) = Fi(x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
NNLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

V (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

W (x0, t)dt

](
x

x0

)(1−bt)

. (8.1)

However in predicting the free nucleon structure functions, we need to consider the

input point Fi(x0, t0), a free nucleon structure function at x = x0 and t = t0. In our

previous analysis, the points were taken from the available experimental data. It is

known that the experimental data for nucleon structure functions are extracted from

nuclear targets and hence they are with several nuclear effects. Thus the experimental

input points, we considered in our previous analysis are nothing but nuclear struc-

ture function FA
i (x0, t0), which in turn leads to inaccuracy in predicting free nucleon

structure function. Therefore accurate prediction of free nucleon structure function

requires a nuclear effect free input point.

The experimental results are the structure functions for bound nucleon FA
i which

is related to the free nucleon structure function as

R(x, t) =
FA(x, t)

FN(x, t)
. (8.2)

Here FA(x, t) represents the nucleon structure function per nucleon and FN(x, t), the

free nucleon structure function. At x = x0 and t = t0, if we consider the value of the

nuclear correction factor to be R(x, t) = R0, the input point in (8.1) can be replaced

with FN
i (x0, t0) =

FA
i (x0,t0)

R0
and provides

FN
i (x, t) =

FA
i (x0, t0)

R0

exp

[∫ t

t0

(
α(t)

2π

)
NNLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

V (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

W (x0, t)dt

](
x

x0

)(1−bt)

. (8.3)
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Structure functions/ Referred analysis References
FNS
2 S. A. Kulagin and R. Petti [227]

xF3 S. A Kulagin and R. Petti [227]
xgNS

1 V. Guzey and M. Strikman [228]

Table 8.1: Summary of referred analysis in our study of nuclear effects in various
structure functions and sum rules.

Above expression is capable of predicting the free nucleon structure function

through the experimental data FA
i (x0, t0) along with the correction factor R0.

Moreover, due to the unavailability of free nucleon structure function data, direct

phenomenological analysis of (8.3) is not possible. In order to perform phenomeno-

logical analysis of our results with the experimental data either we need to remove

nuclear effects from the data points or include the corresponding effects to our results

of free nucleon. Here we have considered the later one, i.e., we have incorporated the

nuclear correction factor R(x) with our calculations as

FA
i (x, t) = R(x)FN

i (x, t) = R(x)
FA
i (x0, t0)

R0

exp

[∫ t

t0

(
α(t)

2π

)
NNLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

V (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

W (x0, t)dt

](
x

x0

)(1−bt)

, (8.4)

in order to describe properly the experimental results.

The results for the nuclear correction factor R(x) predicted in different analysis

for different structure functions, which are utilized in our analysis are summarised in

Table8.1. Incorporating these nuclear effects we have calculated the nuclear structure

functions. Here we have also considered the fact that the nuclear effects in the non-

singlet parts FNS
2 and gNS

1 are equivalent to the corresponding structure functions F2

and g1[55].

8.3.1 Shadowing Effect in FNS
2 (x,Q2)

In accord with (8.4), our expressions obtained in chapter 4 for FNS
2 nucleon structure

functions predicts the corresponding nuclear structure functions as
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Figure 8.1: Our NNLO results for FNS
2 structure function with and without

nuclear effect, in comparison with the NMC measurement.

F
NS(A)
2 (x, t) = R2(x)F

NS(N)
i (x, t) = R2(x)

F
NS(A)
2 (x0, t0)

R0

×

exp

[∫ t

t0

(
α(t)

2π

)
NNLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

V (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

W (x0, t)dt

](
x

x0

)(1−bt)

. (8.5)

In this regard we have used the results for nuclear correction factor, R2 from Ref.[218,

227, 233]. Incorporating the corrections to our calculations of FNS
2 structure func-

tion, we have obtained the nuclear structure function F
NS(A)
2 and depicted it in Fig.

8.1. Here we have shown only the modification of our NNLO results in comparison

with NMC experimental data. We observe that our results for free nucleon structure

functions, along with nuclear effect predicted by KP provides a well description of

available experimental data for nuclear structure functions.
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Figure 8.2: Our NNLO results for xF3 structure function with and without nuclear
effect, in comparison with the CCFR data.

8.3.2 Shadowing Effect in xFNS
3 (x,Q2)

Our result (5.51) for xF3 nucleon structure functions along with necessary corrections

due to nuclear effect predicts the nuclear structure functions as

xF
(A)
3 (x, t) = R3(x)xF

(N)
3 (x, t) = R3(x)

xF
(A)
3 (x0, t0)

R0

×

exp

[∫ t

t0

(
α(t)

2π

)
NNLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

V (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

W (x0, t)dt

](
x

x0

)(1−bt)

. (8.6)

In this case we have used the results for nuclear correction factor, R3 from KP[227].

Incorporating the corresponding corrections to our calculations of xF3 structure func-

tion, we have obtained the nuclear structure function xF
(A)
3 and depicted them in Fig.

8.2. Here we have shown only the modification of our NNLO results in comparison
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Figure 8.3: Our NNLO results for xgNS
1 structure function with and without

nuclear effect, in comparison with SMC, HERMES, COMPASS and E143 data.

with CCFR, NuTeV, CHORUS and CDHSW experimental data. We observe that

our results for free nucleon structure functions, along with nuclear effect predicted by

KP provides a well description of available experimental data for nuclear structure

functions.

8.3.3 Shadowing Effect in xgNS
1 (x,Q2)

Similarly using the results for Rg obtained in [228] we can obtain the spin dependent

nonsinglet nuclear structure functions as

xg
NS(A)
1 (x, t) = Rg(x)xg

NS(N)
1 (x, t) = Rg(x)

xg
NS(A)
1 (x0, t0)

Rg

×

exp

[∫ t

t0

(
α(t)

2π

)
NNLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

V (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

W (x0, t)dt

](
x

x0

)(1−bt)

. (8.7)
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The results for (8.7) are depicted in Fig. 8.3. In this regard our results including

nuclear effects are observed to be compatible with the experimetal data.

8.4 Shadowing Effect in the Sum Rules

Analogous to the structure functions, experimental determination of the DIS sum

rules consists of considerable nuclear effects. As DIS sum rules are associated with

the underlying symmetry as well as conservation laws of interactions, they provide

strong normalization constraints on the structure functions. Therefore the sum rules

are expected to provide an important bridge between different nuclear effects.

In this section we briefly discuss the nuclear effects in DIS sum rules, specifically

in the GSR, GLSSR and BSR based on several earlier analysis. We then incorporate

possible nuclear corrections to our results of sum rules, obtained in the previous

chapter and perform phenomenological analysis in comparison with the experimental

measurements.

8.4.1 Shadowing Correction to Gottfried Sum Rule

In the NMC experiment, due to the unavailability of fixed target for neutron, deuteron

is usually used for measuring neutron structure function and combining the relations

F p
2 − F n

2 = 2F d
2

1− F n
2 /F

p
2

1 + F n
2 /F

p
2

, (8.8)

F n
2

F p
2

= 2
F d
2

F p
2

− 1 (8.9)

and

F d
2 = F p

2 + F n
2 (8.10)

together with world averaged deuteron structure functions, the difference F p
2 − F n

2 is

calculated and these calculations are used in determining the GSR. The results can be

compared with the GSR only if there is no nuclear modification in the deuteron. How-

ever it is well known that nuclear structure functions are modified and the major con-

tribution to the modification comes from the small-x region i.e., shadowing region. Nu-

clear corrections in the deuteron to the GSR, in particular the shadowing effect, were
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calculated in various models[234–240]. So far, VMD, Pomeron and meson-exchange

mechanisms have been studied. In Ref. [240], using VMD model, including ρ, ω and ϕ

as the vector mesons, estimated the shadowing correction δSGSR = −0.039to−0.017 to

the GSR SGSR = SNMC
GSR + δSGSR. There are other studies in the Pomeron and meson

exchange models. Historically, the first estimate of shadowing contribution to SGSR

is discussed by the Pomeron exchange model[234, 235]. A possible way of describing

the high-energy scattering in the diffractive region is in terms of Pomeron exchange.

The virtual photon transforms into a qq̄ pair which then interacts with the deuteron.

In the diffractive case, the target is remain intact and only vacuum quantum number,

namely the Pomeron, could be exchanged between the qq̄ pair and the nucleons. In the

earlier works, the shadowing correction in this model was rather large δSGSR ≈ −0.08

[235, 238]. However, the Pomeron contribution is reduced if more realistic deuteron

wave functions are used according to Ref. [239]. Next, meson-exchange corrections

were investigated in Refs. [236,239]. The studied mesons are π, ω and σ in Ref. [236],

and ρ is also included in Ref.[239]. If the corrections due to the π, ω and σ mesons

were taken into account, the NMC result became SGSR = 0.29±0.03 [236]. Therefore,

meson-exchange contributions reduce the discrepancy between the NMC data and the

Gottfried sum rule.

As far Figs.7.2, 7.3 and 7.4 are concerned, it is observed that our results do

not agree well with the available experimental data of NMC. Again as the nuclear

effects predicted by the available analysis(discussed above), are observed to be large

and inclusion of these effects to our results will deviate from the experimental data

farther, hence we have not included the nuclear corrections to our results of GSR.

8.4.2 Shadowing Correction to GLS Sum Rule

Experimental measurements of GLS sum rule was performed by CCFR and the results

were extracted from Fe target. In order to compare our results for GLS sum rule

obtained in chapter7, we refer the nuclear corrections estimated in [223, 241]. The

detailed investigation on the nuclear corrections to GLS sum rule was performed in

Ref. [223]. They explicitly separated the nuclear corrections to the GLS integral as

SA
GLS = SN

GLS + δSGLS, where SN
GLS refers to the GLS integral for nucleon. In accord

with their predictions, the nuclear corrections to the GLS sum rule cancel out as x → 0

in the leading order, which is due to the baryon charge conservation. They have also

calculated the GLS integral SGLS for different nuclear targets. In Ref. [223, 241],
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they obtained the corrections for iron and deuteron nuclei as
δSFe

GLS

3
= −4.0×10−3

Q2 and
δSD

GLS

3
= −6.3×10−4

Q2 respectively. In Ref. [223] they have nicely presented their result

in Fig. 10. From Fig. 10 we observe that the nuclear correction δGLS decreases

progressively by increasing Q2.

The GLS sum rule for nuclei can be expressed as

SA
GLS(xmin, Q

2)

∣∣∣∣
NNLO

= SN
GLS(Q

2) + δSGLS, (8.11)

where the first term on the right hand side of above equation represents the GLS sum

rule for free nucleon and the second term for the nuclear correction. Using the NNLO

pQCD corrected expression 7.17, obtained in chapter 7 as SN
GLS(Q

2) we get

SA
GLS(xmin, Q

2)

∣∣∣∣
NNLO

= SGLS(Q
2)

∣∣∣∣
NNLO

−
∫ xmin

0

dx

x

[
FNS
3 (x0, t0)

(
x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
NNLO

P (x0, t)dt+

∫ t

t0

(
α(t)

2π

)2

NNLO

Q(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

R(x0, t)dt

}]
+ δSGLS. (8.12)

Now incorporating the KP[223,241] prediction
δSFe

GLS

3
= −4.0×10−3

Q2 , for the nuclear

correction term, we have calculated SA
GLS and depicted the results in Fig. 8.4, in

comparison with CCFR measurements of xF3 structure function with Fe as the target.

In addition, we have plotted our NNLO results and the results of KS[179] prediction.

From the figure we see that the our NNLO expression for GLSSR along with necessary

nuclear correction has the capability of describing the experimental data of GLSSR

for nuclei.

8.4.3 Shadowing Correction to Bjorken Sum Rule

Aiming at measuring the polarized structure functions of protons and neutrons and

in order to test the Bjorken sum rule several experiment have been performed. The

measurement of gn1 (x) involves necessarily nuclear targets and several experiments

have been performed using 2H and 3He targets. However 3He target has advantage
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Figure 8.4: Our NNLO results for Gross-Llewelln Smith sum rule with and without
nuclear effect, in comparison with those of CCFR measurements. (Q2’s are taken
in the unit of GeV 2).
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Figure 8.5: Our NNLO results for Bjorken sum rule with and without nuclear
effect, in comparison with several experimental data as indicated in the figure.
(Q2’s are taken in the unit of GeV 2).
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over 2H target. On the other hand the use of heavy nucleus as target yields nuclear

effects. Nuclear effects for the Bjorken sum rule were first discussed in Ref. [242] and

Ref. [243]. In particular it was pointed out in Ref. [243] that convolution models and

three nucleon description of A = 3 system lead to results for g1A=3 inconsistent with

the Bjorken sum rule. This observation was left unnoticed in Ref. [244, 245] and in

all analyses of the experimental data. In Ref.[55], the ratio of the Bjorken sum rule

for A = 3 to A = 1 within impulse approximation was found to be

R =

∫ 1

0
dx

[
gHe
1 (x,Q2)− gH1 (x,Q2)

]
∫ 1

0
dx

[
gn1 (x,Q

2)− gp1(x,Q
2)

] =
G

3H
A

GA(n)
, (8.13)

where GA is the axial coupling constant for β decay of the nucleus A. Combining the

most recent experimental data on
G

3H
A

GA(n)
for tritium β-decay [246] it was found to be

G
3H
A

GA(n)
= 0.9634 ± 0.003. However, for the case of 7Li the ratio was obtained to be

0.73. Further in Ref. [55], this value was estimated to be
G

3H
A

GA(n)
= 0.922± 0.006.

Using the values of
G

3H
A

GA(n)
obtained in Ref. [55, 246], we can calculate the BSR

integral SA
BSR =

∫ 1

0
dx

[
gHe
1 (x,Q2) − gH1 (x,Q2)

]
using our NNLO results for SBSR =∫ 1

0
dx

[
gn1 (x,Q

2)− gp1(x,Q
2)

]
, obtained in chapter 7 as

SA
BSR =

G
3H
A

GA(n)

[
SBSR(Q

2)

∣∣∣∣
NNLO

−
∫ xmin

0

dx

x

[
gNS(x0, t0)

(
x

x0

)(1−bt)

×

exp

{∫ t

t0

(
α(t)

2π

)
NLO

P (x0, t)dt+

∫ t

t0

(
α(t)

2π

)2

NLO

Q(x0, t)dt

}

+

∫ t

t0

(
α(t)

2π

)3

NNLO

R(x0, t)dt

}]]
. (8.14)

In Fig. 8.5, we have shown the results for BSR in accord with Eq.(8.14) along

with other experimental. Nuclear correction incorporated results are observed to be

consistent with other measurements.

8.5 Summary

In this chapter we present an analysis of the non-singlet structure functions and

related sum rules taking into account the nuclear effects. In this regard, special
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attention is given to the nuclear shadowing effect as we are mostly concerning with

the small-x region. Incorporating the results of corrections due to shadowing nuclear

effect obtained in several earlier analysis for different structure functions as well as

sum rules to our results of the structure functions and sum rules for free nucleon, we

obtain structure functions and sum rules for nuclei. Nuclear correction incorporated

results are studied phenomenologically and it is observed that along with the nuclear

correction, our NNLO results of the non-singlet structure functions and sum rules

have the capability of providing well description of their respective experimental data

collected using nuclear target. capable of describing well the obtained in previous

chapters analysis in comparison with the available data and parametrization. ��
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