List of Figures

1.1	Schematic representation of deep inelastic scattering	6
1.2	A $(2 \longrightarrow 2)$ scattering process	13
1.3	An interaction of two particles via the exchange of a Reggeon	13
1.4	Plot of particle mass squared (in GeV^2) versus spin (in units of \hbar)	14
1.5	Leading Order splitting functions diagrams	17
1.6	Examples of next-to-leading Order splitting functions diagrams	18
1.7	Schematic representation of the applicability of various QCD evolution	
	equations across the $x-Q^2$ plane	19
1.8	The contribution from target mass corrections (TMC) to ${\cal F}_2^{NS}$ structure	
	function. Figure is taken from $[50]$	25
1.9	Examples of higher twist QCD diagrams	26
1.10	x dependence of the ratio $R_{F_2}^A(x,Q^2)$ for a given fixed Q^2	28
2.1	Schematic diagram of the NMC spectrometer	31
2.2	NMC measurements [63] of ${\cal F}_2^{NS}$ structure function along with BCDMS	
	data. (Fig. taken from [80].)	32
2.3	NMC measurements of Gottfried sum rule[65]	33
2.4	Schematic diagram of the CCFR Dtector	33
2.5	CCFR measurements of xF_3 structure function[66]	34
2.6	CCFR measurements of GLS sum rule as a function of $x[67]$	35
2.7	CCFR measurements of GLS sum rule as a function of $Q^2[67]$	35
2.8	xF_3 structure function measured by NuTeV[68], CCFR[66] and CDHSW[69]]. 3
2.9	Schematic diagram of the CHORUS detector	37
2.10	CHORUS measurements of xF_3 structure function along with CCFR	
	and CDHSW data	38
2.11	Schematic diagram of the Spin Muon Collaboration spectrometer	39
2.12	Schematic diagram of the COMPASS spectrometer	41

2.13	Spin-dependent non-singlet structure function xg_1^{NS} , measured by var-	
	ious experimental collaborations	41
2.14	Experimental results for Bjorken Sum Rule. (Q^2) 's are taken in the unit	
	of GeV^2)	42
2.15	Schematic diagram of the HERMES spectrometer	43
3.1	Our best fit results of Eq.(3.24) for $F_2^{NS}(x,Q^2)$ structure functions to	
	NMC[63] results	60
3.2	Our best fit results of Eq.(3.24) for $xF_3(x,Q^2)$ structure functions to CCFR[66] results	61
3.3	Our best fit results of Eq.(3.24) for $xg_1^{NS}(x,Q^2)$ structure functions to	O1
0.0	the experimental data $\dots \dots \dots \dots \dots \dots \dots \dots$	62
4.1	Q^2 evolution of $F_2^{NS}(x,Q^2)$ structure functions in accord with (4.31)-	
	(4.33) in comparison with NMC[63] and NNPDF[101] results	75
4.2	x evolution of $F_2^{NS}(x,Q^2)$ structure functions in accord with (4.31)-	
	(4.33) in comparison with NMC[63] results	76
4.3	Q^2 (in the unit of GeV^2) evolution of $F_2^{NS}(x,Q^2)$ structure functions in	
	accord with (4.49)-(4.51) in comparison with NMC[63] results	76
4.4	x evolution of $F_2^{NS}(x,Q^2)$ structure functions in accord with (4.49)-	
	(4.51) in comparison with NMC[63] and NNPDF[101] results	77
4.5	Q^2 evolution of $F_2^{NS}(x,Q^2)$ structure functions in accord with (4.33)	
	and (4.51) in comparison with NMC[63] and NNPDF[101] results	77
4.6	x evolution of $F_2^{NS}(x,Q^2)$ structure functions in accord with (4.33) and	
	(4.51) in comparison with NMC[63] results	78
4.7	Q^2 evolution of $F_2^{NS}(x,Q^2)$ structure functions in accord with NNLO	
	corrections, (4.33) and (4.51) in comparison with NMC[63] results	78
5.1	Q^2 evolution of $xF_3(x,Q^2)$ structure functions in accord with (5.31)-(5.33)	91
5.2	Q^2 evolution of $xF_3(x,Q^2)$ structure functions in accord with (5.31)-(5.33)	91
5.3	x evolution of $xF_3(x,Q^2)$ structure functions in accord with (5.31)-(5.33)	92
5.4	x evolution of $xF_3(x,Q^2)$ structure functions in accord with (5.31)-(5.33)	92
5.5	Q^2 evolution of $xF_3(x,Q^2)$ structure functions in accord with (5.49)-(5.51	93
5.6	Q^2 evolution of $xF_3(x,Q^2)$ structure functions in accord with (5.49)-(5.51)	94
5.7	x evolution of $xF_3(x,Q^2)$ structure functions in accord with (5.49)-(5.51)	94
5.8	x evolution of $xF_3(x,Q^2)$ structure functions in accord with (5.49)-(5.51)	95

5.9	Q^2 evolution of $xF_3(x,Q^2)$ structure functions in accord with (5.33) and (5.51)
5.10	Q^2 evolution of $xF_3(x,Q^2)$ structure functions in accord with (5.33) and (5.51)
5.11	NNLO results for $xF_3(x, Q^2)$ structure functions predicted by (5.51) along with the uncertainty band associated with
	atong with the directioning band associated with
6.1	xg_1^{NS} structure function in accord with (6.24)-(6.26), compared with the data taken from
6.2	xg_1^{NS} structure function in accord with (6.38)-(6.40), compared with
	the data taken from
6.3	xg_1^{NS} structure function in accord with (6.26) and (6.40) and in com-
6.4	parison with the data taken from $\dots \dots \dots$
0.4	xg_1^{NS} structure function in accord with (6.40)and in comparison with different experimental data and theoretical as well as
7.1	General interpretation of sum rule. The curve represents the variation
	of the structure function F_i^{NS} with x
7.2	LO, NLO and NNLO results for GSR along with parton model and
7.0	pQCD predictions
7.3	Our NNLO results for GSR in comparison with parton model and
 4	NNLO pQCD predictions as well as the results of NNPDF collaboration.119
7.4	GSR as a function of x_{min} in comparison with NMC, NNPDF and
	KMRS results. The uncertainty band shown here is the uncertainty
	associated with the iput point
7.5	Results for the Gross - Llewellyn Smith sum rule at LO, NLO and
- 0	NNLO, as a function of Q^2
7.6	Our NNLO results for the Gross-Llewellyn Smith sum rule, for various
	values of Q^2 , along with QCD predictions
7.7	Results for the Gross-Llewellyn Smith sum rule, for various values of
- 0	x. The data are taken from the CCFR experiment [67]
7.8	The results of Bjorken integral as a function of the low x limit of inte-
	gration, x_{min} , in LO, NLO and NNLO
7.9	The results of Bjorken integral as a function of momentum transfer
	squared Q^2 in LO, NLO and NNLO

7.10	Our results of Bjorken integral in comparison with the QCD predictions
	up to NNLO[39]
8.1	Our NNLO results for ${\cal F}_2^{NS}$ structure function with and without nuclear
	effect, in comparison with the NMC measurement
8.2	Our NNLO results for xF_3 structure function with and without nuclear
	effect, in comparison with the CCFR data
8.3	Our NNLO results for xg_1^{NS} structure function with and without nu-
	clear effect, in comparison with SMC, HERMES, COMPASS and E143
	data
8.4	Our NNLO results for Gross-Llewelln Smith sum rule with and without
	nuclear effect, in comparison with those of CCFR measurements 145
8.5	Our NNLO results for Bjorken sum rule with and without nuclear effect,
	in comparison with several experimental data as indicated in the figure. 145
9.1	Higher twist corrections to F_2^{NS} structure function at NNLO. (Q^2 's are
	taken in the unit of GeV^2)
9.2	Higher twist corrections to xF_3^{NS} structure function at NNLO. (Q^2 's
	are taken in the unit of GeV^2)
9.3	Hgher Twist corrections to GLS sum rule at NNLO. (Q^2 's are taken in
	the unit of GeV^2)
9.4	Hgher Twist corrections to BSR at NNLO. (Q^2 's are taken in the unit
	of GeV^2)