
Chapter 1

Introduction

In this chapter we have given a brief introduction to our current views of the basic

building blocks of matter, deep inelastic scattering, structure functions, parton model,

Regge theory and Quantum Chromodynamics and higher order corrections, various

sum rules, non-perturbative QCD corrections such as nuclear effect, higher twist effect

etc.

1.1 Our Current Views of Nature’s Building Blocks

Particle physics is a quest for the fundamental building blocks of the matter, and the

fundamental forces that operate to control and shape them. The pursuit for finding

the “real” nature of the Universe is not only a means to satisfy instinctive curiosity

but also a principal tool for the advancement and progress of civilization[1].

The search for the elementary constituents of nature has occupied generations

of human beings since the speculations of the early Greek philosophers and other

philosophers from different parts of the world. As far it is known, in the sixth cen-

tury B.C. Thales proposed that all things reduced to water, and, coming out of the

Greek-Roman eras and for centuries to come, the four basic elements were thought

to be earth, water, fire, and air. Chinese (in Pinyin, Wu Xing) believed that these

were earth, wood, metal, fire and water. Indians (Samkhya-Karika by Isvarakrsna)

visualized the world as made of five elements: space, air, fire, water and earth. In

about 400 B. C. the Greek philosophers Democritus and Leucippus proposed that

matter is composed of indivisible particles called atoms, a word derived from a-(not)
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and tomos (cut or divided)[2]. This idea lingered in the background for centuries un-

til experimental support and through the work of eighteenth- and nineteenth-century

chemists, brought atoms to the fore as the basic building blocks of matter.

The macroscopic quantities of homogeneous material can be divide or cut into

parts such that each part retains the basic character of the original. But how far can

such division be carried? If we cut a piece of gold into smaller and smaller snips, do

we always get pieces of the gold? Is it possible that the divisions can go on forever,

generating smaller and smaller snips of gold, or is there a limit such that no further

divisions can be made or at least no further pieces leaving the parts as gold? If so what

the final divisions consist of? Is there any constituent which is further indivisible?

From the earliest concepts to the resulting periodic table of elements, many small

steps had been taken in our pursuit of the fundamental building blocks of nature

and up to the end of nineteenth century the answer of this question was “atom”.

People believed that atoms are immutable and indivisible objects. By the close of

the nineteenth century, however, the atoms were also under criticize and evolved the

next question, “What are atoms made of?”. Before discussing ”What are atoms made

of?”, we would like to discuss something about elementary particles and how they are

investigated.

The elementary particles are those particles which have no known structure, i.e.,

they are structure less or point like. They cannot be resolved into two or more parts.

In order to investigate the possible structure of an object firstly we need to probe

it by a probing beam which is scattered from the object. Analysing the diffraction

pattern of scattered beam, we can remark on their structure. But whether a particle

is point like or not it depends on the spatial resolution of the apparatus used. In case

of an optical microscope, where the probing beam is light, the resolution is given by

∆r ≃ λ

sinθ
(1.1)

where λ is the de Broglie wavelength of the incident beam of particles, which is given

by λ = h
p
. Here p is the beam momentum and θ is the angular aperture of the light

beam used to view the structure of an object. For the improvement of resolution

we need larger θ and smaller λ. Thus we see that the resolution depends on the

initial momenta of the incident particle and to resolve an object we must have a

probe whose wavelength is comparable or smaller than the size of the object. Again
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from the uncertainty principle we have the relation, ∆p.∆x ≥ ~c ≈ 0.2GeV fm,

which suggests that smaller the distance we want to probe, the beam energy must be

higher. This is the underlying idea that is used to study the structure of particles and

depending on the energy of the probing beam, the concept of elementary particle has

been changing.

To resolve an atom we must have a probe whose wavelength is comparable or

smaller than the size of the atom. The requirement of such type of probe was fulfilled

by the alpha particle (ionized Helium atoms), which was the result of discovery of

radioactivity of the substances in 1886 through the work of French physicist Henri

Becquerel. It was observed that the alpha particles can be deflected in magnetic fields

and therefore one could expect them to serve as natural weapons to study the atomic

structure, in particular its charge distribution. Rutherford utilized this opportunity

to investigate the basic structure of atoms. In 1911, he performed an experiment

where a beam of alpha particles of a few MeV was fired into a thin sheet of gold

foil. He observed that most of the alpha particles passed through the gold completely

undisturbed, but a few of them bounced off at wild angles. Based on these observations

Rutherford concluded that the positive charge, and virtually all of the mass of the

atom was concentrated at the center occupying only a tiny fraction of the volume of

the atom[3]. Furthermore, Rutherford was able to show by explicit calculation that

the angular distribution of the scattered a particles agreed with that expected if they

indeed interacted with a massive scattering center of positive charge Ze and which is in

support his intuitive picture of the atom. The nucleus of the lightest atom (hydrogen)

was given the name proton by Rutherford and thus the proton was inferred and later it

was isolated in the laboratory. However before this, J. J. Thomson demonstrated the

existence of a tiny particle which is much smaller in mass than hydrogen, the lightest

atom. This was the electron, the first elementary particle which was discovered by

Thomson in 1897[4]. In 1932 James Chadwick discovered the other constituent of

nucleus, the neutron[5].

The dimension of the atom is typically ∼ 1Å = 10−10m ≫ 10−15m, the dimension

of proton. So the low energetic α particles could only resolved the atom and observed

that an atom is made of a hard compact nucleus consisting of proton and neutron

surrounded by a cloud of electrons. Due to the poor resolution, the proton and the

neutron were regarded as point like or elementary particles. Up to 1950, the electron,

proton and neutron were considered as the elementary particles.
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By the early 1960s, accelerators reached higher energies, ∆E ≫ 1GeV , which is

required to probe proton. A parallel sequence of events occurred with the proton and

neutron. In the 1960s very high energy electron beams were utilized at the Stanford

Linear Accelerator Center (SLAC)[6] in an experiment that was analogous to the old

alpha particle one in which the atomic structure was revealed. The electron beam

was fired at protons and it was observed that the beam of electrons suffered violent

collisions when it met the nucleons. The observation of these violent collisions sug-

gested that the proton’s charges were concentrated on some discrete scattering centres

within, which in turn indicates the evidence of substructure of the proton. Compari-

son of the data on electron scattering with the analogous probing by neutrino beams

has enabled us to learn about the nature, or quantum numbers, of the constituents of

the proton. As a result of the above experiments, we have learned that the proton and

neutron are therefore not elementary, but are made instead of the pointlike “quarks”.

The quarks are referred as point like because they have no internal structure or, more

probably, that we have not yet resolved any constituent that they may have.

We observe that to Rutherford the nucleus appeared pointlike; more powerful

beams of electrons reveal the inner structure of the nuclei and progressively resolved

the neutrons and protons and finally using higher energy beams or equivalently shorter

wavelength probes the substructure of the proton was uncovered. The use of high-

energy particles showed that as the energies of the probing beam of the particles

were increased, even smaller particles were obtained, which indicates the possibility

of uncovering the substructure of quarks with further higher energetic beams. The

quest, “What are the building blocks of nature?” has progressed from everyday objects

to molecules, molecules to atoms, atoms to electrons and nuclei, nuclei to protons

and neutrons, and protons and neutrons to quarks. Whether this progression to

smaller and smaller components go on forever, or there will be the end with a single

fundamental particle, that will be reflected in future particle physics research.

The birth of modern experimental particle physics in which particles were used to

probe the structure of composite objects began with the famous alpha particle scat-

tering experiment of Rutherford. The experimental effort originated by the end of the

19th century and the beginning of the 20th century with physicists, like Thompson,

Rutherford, Chadwick and so on, discovering the presence of subatomic particles like

electrons, nucleus etc. The use of high-energy particles as probe showed that as the

energies of the colliding particles were increased, even smaller particles were obtained.
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This led to the subsequent discovery of many particles like mesons, baryons, antiparti-

cles, neutrinos etc. From the world of these particles, which are the outcome of many

years of international effort through experiments, theoretical ideas and discussions,

physicists have developed a theory called “The Standard Model” that explains the

current understanding of elementary particle physics. The standard model is a simple,

comprehensive, beautiful as well as the most successful theory in nature. The beauty

of the Standard Model is twofold. On one hand it establishes the identity of all the

elementary constituents of matter and on the other hand describes the fundamental

forces that operate to control and shape matter. In accord with this model all the

known matter particles are composites of quarks and leptons, held together by fun-

damental forces which are represented by the exchange of particles known as gauge

bosons. The standard model is summarised in Table 1.1

J Name Symbol Observed
0 Higgs Scalar H Yes
1
2

Leptons e, µ, τ , νe, νµ, ντ Yes
Quarks u, d, c, s, t, b Yes
Photon γ Yes

1 Vector Mesons W+, W−, Z0 Yes
Gluons g Yes

2 Graviton G No

Table 1.1: Particles in the Standard Model.

1.2 Deep Inelastic Scattering

Deep Inelastic Scattering(DIS)(cf. e.g. [7]) experiments have had an enormous impact

towards the understanding of the fundamental constituents of matter. DIS provides

one of the cleanest possibilities to probe the space-like short distance structure of

nucleon through the interactions

l± +N −→ l± +X, (1.2)

νl(ν̄l) +N −→ l± +X, (1.3)

and

l∓ +N −→ νl(ν̄l) +X. (1.4)
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Figure 1.1: Schematic representation of deep inelastic scattering.

In DIS a charged lepton(l = e, µ), or a neutrino (νl = νe,µ,τ ) is scattered off the

nucleon(N) and produces a lepton and a shower of hadrons(X) in the final state.

In this regard as the high energetic particles(lepton) probe deep within the tar-

get(nucleon), and as the target is disrupted after scattering, it is known as deep

inelastic scattering. Various deep inelastic charged and neutral current interactions

provide complementary sensitivity to reveal the quark flavor and gluonic structure of

the nucleon. Moreover, polarized lepton scattering off polarized targets helps in the

investigation of the spin structure of the nucleons.

1.2.1 Kinematics and Variables in DIS

The DIS processes at Born level can be illustrated as shown in Fig. 1.1. Here a

lepton with momentum l scatters off a nucleon of mass M and momentum P via the

exchange of a virtual vector boson (photon or Z0 or W±) with four momentum q.

The four momenta of the outgoing lepton and the hadronic final states are l′ and

PF respectively. The virtual boson has space like momentum with a virtuality Q2,

defined by

Q2 ≡ −q2, (1.5)

where the four momentum transferred q is

q = l − l′ = PF − P. (1.6)

In addition to Q2 and q2, other two important Lorentz invariant kinematic variables

that describe the interaction are
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s ≡ (P + l)2 (1.7)

and

W 2 = (P + q)2 = P 2
F , (1.8)

where s is the total center of mass energy squared and W represents the invariant

mass of the hadronic final state. Further, in order to describe the scattering process,

the Bjorken scaling variable x, the inelasticity y, and the total total energy transfer ν

of the lepton to the nucleon in the nucleon’s rest frame are usually referred and they

are defined by

ν ≡ P.q

M
, (1.9)

x ≡ −q2

2P.q
=

Q2

2Mν
, (1.10)

y ≡ P.q

P.l
=

2Mν

s−M2
. (1.11)

1.2.2 Deep Inelastic Scattering Differential Cross Sections

Case 1: Charged Lepton DIS

The deep inelastic scattering differential cross section can be written in terms of

products of two tensors, the leptonic tensor Lαβ and the hadronic tensor Wαβ:

d2σ

dE ′dΩ′ ∝ LαβW
αβ. (1.12)

The leptonic tensor describes the lepton-photon interaction. Denoting the spin pro-

jections of the initial and final lepton by s and s′ and then summing over s′ the lepton

tensor can be expressed in terms of two pieces which are symmetric and antisymmetric

with respect to the Lorentz indices α and β:

Lαβ = Ls
αβ + iLA

αβ, (1.13)

where Ls
αβ(k, k

′) = 2(kαk
′
β + kβk

′
α) + gα,βq

2 and LA
αβ = 2mϵαβµνs

µqβ, with the lepton

spin vector defined by 2msµ = ūγµγ5u. For unpolarized lepton scattering the average
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over the initial lepton polarizations is performed and hence only the symmetric term,

Ls
αβ, remains.

The hadronic tensor, Wαβ provides complete information about the target re-

sponse. The hadronic tensor can split into symmetric and antisymmetric parts:

Wαβ = W s
αβ +WA

αβ. (1.14)

Lorentz and gauge invariance and symmetry properties together with parity conser-

vation of the electromagnetic interaction imply the most general forms of these terms:

W s
αβ = W1(ν,Q

2)

(
qαqβ
q2

− gαβ

)
+

W2(ν,Q
2)

M2

(
Pα − P.q

q2
qα

)(
Pβ −

P.q

q2
qβ

)
(1.15)

and

WA
αβ = iϵαβµνq

α

[
G1(ν,Q

2)Sν +
G2(ν,Q

2)

M2
(SνP.q − P νS.q)

]
. (1.16)

This defines four response functions W1(ν,Q
2), W2(ν,Q

2), G1(ν,Q
2) and G2(ν,Q

2).

The first two can be measured in the unpolarized scattering, while the latter two

require scattering of polarized leptons on polarized nucleons for their determination.

In the description of deep inelastic scattering process the response functions

W1,2(ν,Q
2) and G1,2(ν,Q

2) are often replaced by the dimensionless structure func-

tions F1,2(x,Q
2) and g1,2(x,Q

2), expressed in terms of the Bjorken variable x together

with Q2:

F1(x,Q
2) = MW1(ν,Q

2), (1.17)

F2(x,Q
2) = νW2(ν,Q

2), (1.18)

and

G1(x,Q
2) = MνG1(ν,Q

2), (1.19)

G2(x,Q
2) = ν2νG2(ν,Q

2). (1.20)

In terms of these structure functions, the unpolarized and polarized differential cross

sections can be written as(with spin denoted by ⇑⇓)
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d2σ

dxdy
=

2πα2

MEx2y2

[(
1− y − Mxy

2E

)
F2 + xy2F1

]
(1.21)

and

d2σ ↑⇓
dxdy

− d2σ ↑⇑
dxdy

=
4α2

MExy

[(
2− y − Mxy

E

)
G1 −

2Mx

E
G2

]
(1.22)

respectively.

Case 2: Neutrino DIS

Like charged lepton DIS, neutrino-nucleon(ν − N) DIS experiments provide a good

opportunity to study the structure of nucleon. The advantage of ν-DIS measurements

over charged lepton experiments is that ν−N experiments can measure the structure

function xF3, in addition to F1 and F2. In the neutrino nucleon scattering, neutrino

interacts weakly with the nucleon and due to parity violation in their weak interaction

the third structure function xF3 originates and the resultant differential cross section

is given by

d2σν(ν̄)

dxdy
=

G2
FMEν

π(1 +Q2/M2
W )2

[
y2xF1 +

(
1− y − MNxy

2Eν

)
F2 ± (y − y2

2
)xF3

]
, (1.23)

Where GF is the Fermi weak coupling constant and MW is the mass of the W boson

mediating the interaction. Here +(−) sign corresponds to the neutrino(antineutrino)

scattering cross-section.

1.2.3 Bjorken Scaling

If the nucleon has substructure and that are resolvable for Q, ν ≫ M , then these W

terms would be functions of the kinematic variables ν and Q2:

W1 −→ W1(Q
2, ν), where 2MW1(Q

2, ν) =
Q2

2Mν
δ(1− Q2

2Mν
), (1.24)

W2 −→ W2(Q
2, ν), where νW2(Q

2, ν) = δ(1− Q2

2Mν
), (1.25)

W3 −→ W3(Q
2, ν), where νW3(Q

2, ν) = δ(1− Q2

2Mν
). (1.26)
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On the basis of analysis of various sum rules, Bjorken predicted that in the

deep inelastic regime, where Q2 → ∞ and ν → ∞, the structure functions do not

depend individually on (ν,Q2) but only on their ratio x = Q2

2Mν
. The variable x was

first introduced by Bjorken and this feature is known as “Bjorken scaling”[8]. Soon

after this prediction, approximate scaling behavior was observed experimentally in

electron-proton scattering at SLAC[6]. The fact that the structure functions become

independent of Q2 indicates that the objects inside the nucleon from which one is

scattering have no spatially extended structure, that is, one is scattering from point

like constituents, known as “partons”, about which we have discussed in the section

1.3.1. The scaling behavior of the structure functions are expressed as

MW1 −→ F1(x), (1.27)

νW2 −→ F2(x), (1.28)

and

νW3 −→ F3(x). (1.29)

A similar scaling behavior is expected for the spin-dependent structure functions

g1(x,Q
2) = M2νG1(ν,Q

2), (1.30)

and

g2(x,Q
2) = Mν2G2(ν,Q

2), (1.31)

which likewise reduce to functions of x only when the limit Q2 → ∞ is taken.

However, in the later experiments a smallQ2 dependence of the structure functions

was also observed and this phenomena is known as scaling violation. Scaling violation

is an important observable of QCD and discussed in the section 1.4.

1.3 Theoretical Models for the DIS Structure Func-

tions

The first electron-proton scattering experiment was carried out at SLAC[6]. Immedi-

ately after these experiments several models were proposed to explain the behaviour
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of the structure functions. The most prominent among them are Light Cone Expan-

sion[9], Quark Parton Model(QPM)[10], Vector Meson Dominance Model(VMD)[11],

Regge Pole Model[12, 13] and Dual Resonance Models[14]. Here we have provided a

brief introduction to Quark Parton Model and Regge theory.

1.3.1 Quark Parton Model

In the early measurements, nucleon structure function in DIS, a weak dependence of

structure functions on Q2 was revealed, which in turn led to the conclusion that the

virtual photon sees point-like constituents in the nucleon. In order to describe the

composite nature of nucleons, the quark-parton model[10] was developed. In accord

with quark-parton model, the nucleon is composed of free pointlike constituents, the

partons, identified later as quarks and gluons. The basis of parton model is the intro-

duction of parton distribution functions, qi(x) and q̄i(x) for quarks and anti-quarks

respectively, where qi(x)dx(q̄i(x)dx) signifies the probability of finding a quark(anti-

quark) of flavor i in a nucleon, which carries a fraction x to x + dx of the parent

hadron’s four-momentum p. Here x is the fractional four-momentum of the parent

nucleon carried by a parton. On the basis of these ideas we can have a simple inter-

pretation of nucleon structure functions F1 and F2 measured in charged lepton DIS

as

F1(x) =
1

2

∑
i=u,d,...

e2i [qi(x) + q̄i(x)], (1.32)

and

F2(x) =
1

2

∑
i=u,d,...

e2ix[qi(x) + q̄i(x)]. (1.33)

They are thus related by the Callan-Gross relation[15],

F2(x) = 2xF1(x). (1.34)

The Callan-Gross relation connecting F1 and F2 reflects the spin- 1
2
nature of the

quarks.

The interpretation of structure functions measured in neutrino-DIS in accord with

parton model is
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F
ν(ν̄)
2 (x) =

∑
i=u,d,...

x[q
ν(ν̄)
i (x) + q̄

ν(ν̄)
i (x)] (1.35)

xF
ν(ν̄)
3 (x) =

∑
i=u,d,...

x[q
ν(ν̄)
i (x)− q̄

ν(ν̄)
i (x)] (1.36)

In the the naive parton model the spin-dependent structure functions g1 and g2

are given by

g1(x) =
1

2

∑
i=u,d,...

e2i∆qi(x) (1.37)

and

g2(x) = 0. (1.38)

where

∆qi(x) = q↑i (x)− q↓i (x) + q̄↑i (x)− q̄↓i (x). (1.39)

Here the helicity distributions ∆qi(x) = q↑i (x) − q↓i (x) and ∆q̄i(x) = q̄↑i (x) − q̄↓i (x)

involve the differences of the quark or antiquark distributions with helicities parallel

and antiparallel with respect to the helicity of the target nucleon. The interpretation

of g1(x) structure function can be understood from the fact that a virtual photon with

spin projection +1 can only be absorbed by a quark with spin projection −1
2
, and

vice versa. In parton model, however the trasverse spin structure function g2 vanishes

identically and has been the subject of much theoretical debate [16].

1.3.2 Regge Theory

The study of scattering of hadronic particles, in the days before QCD was established,

was based on Regge theory [12, 13]. The pre-QCD method, Regge theory relied ba-

sically on assumptions on the scattering matrix, such as Lorentz invariance, crossing

symmetry, unitarity, causality, analyticity, asymptotic states etc., which determines

the asymptotic behaviour of cross sections in the high energy limit regardless the

strength of the coupling, i.e., independently of perturbation theory.

In accord with Regge theory the scattering amplitude for a two body scattering

of hadrons ( 2 −→ 2 process) ( Fig. 1.2) is given by the functional form[13]
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Figure 1.2: A (2 −→ 2) scattering process.

A(s, t) ≈ sα(t). (1.40)

for asymptotically large s, such as s ≫ t. Here s is the center of mass energy,

t = (p1p3)
2, the momentum transfer and α(t) is a function of the momentum transfer

t. Fig. 1.3 represents a typical diagram for the amplitude in Regge theory of the form

Eq.(1.40).

The interactions in Regge theory that gives rise to an amplitude of the form

Eq.(1.40) is successfully described by the exchange of a quasi-particle called Reggeon.

Reggeons, like elementary particles, are characterized by quantum numbers such as

charge, spin, etc. The spin of the Reggeons is a function of the momentum transfer

t, and more specifically their spin is the function α(t) which appears in the equation

for the amplitude Eq.(1.40).

Figure 1.3: An interaction of two particles via the exchange of a Reggeon.

Although Reggeons are not real particles, but there are resonances at (half) integer

spins and correspond to real particles of mass m and spin j, where j = α(m2). By
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plotting the square of the masses of various particles versus their spin, as shown in

Fig. 1.4, it is observed that they lie along straight lines. These lines are the Regge

trajectories

α(t) = α(0) + α′t, (1.41)

which correspond to the various quasi-particles in Regge theory. Here the intercept

of the trajectory is α(0) and α′ is the slope.

Figure 1.4: Plot of particle mass squared (in GeV 2) versus spin (in units of ~). It
can be seen that the particles plotted lie along a linear trajectory, data taken from
[17].

By utilising the Regge trajectories, asymptotic s dependence of the differential

cross section can be obtained as

dσ

dt
∝ s2(α(0)+α′t−1), (1.42)

where the singularity in α(t) with the largest real part, known as the leading singular-

ity, determines the asymptotic behaviour of the scattering amplitude. The scattering

amplitude helps in determining the total cross section and in the large s regime, where

s ≫ t, the behaviour of the total cross section is given by

σtot ∝ sσ(0)−1. (1.43)

It is observed that the requirement for the growth of cross section is α(0) > 1,

i.e., the intercept has to be greater than one. However, the exchange which leads
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to this growth in cross section can not be from a charged exchange as this would

cause the cross section to vanish asymptotically. Instead the exchange requires to

have the quantum numbers of the vacuum: no charge, no isospin, and a parity of +1.

The experimental results on proton-proton scattering signifies a significant growth of

the total cross section and this behaviour can be well explained by an exchange of a

Reggeon with the trajectory [18]

α(t) = 1.08 + (0.25GeV 2)t. (1.44)

Such an exchange which satisfies this trajectory is known as the Pomeron. More

specifically this is referred to as the “soft” Pomeron to differentiate it from a “hard”

Pomeron. No particle resonances have been observed on the Pomeron trajectory,

however a particle that may lie along this path is proposed to be the glueball [19].

Although these models were seemed to be legitimate as far the early data are con-

cerned, but their predictions show significant deviation from the recent measurements.

With the advent of dedicated experimental facilities, now it is possible to determine

the structure functions as well as different sum rules over a wide range of x and Q2

with far greater precision than before. Recent experimental results are well described

by Quantum Chromodynamics(QCD) and it is believed that QCD is a correct theory

of strong interaction.

1.4 Quantum Chromodynamics

The Quantum Chromodynamics(QCD)(cf. e.g., [7, 20, 21]) is a theory of strong in-

teraction – interactions between hadrons and, in particular, between their inner con-

stituents. The Quark Parton Model(QPM) is based on the idea that DIS scattering

cross sections may be determined from free quarks which are bound within the nucleon

which is an apparent contradiction. Although QPM was very successful at being able

to take parton distribution functions(PDFs) from one scattering process and predict-

ing cross sections for other scattering experiments; it has several difficulties. Firstly

QPM fails to describe accurately the violations of scaling and scale dependence of DIS

cross sections. The fact that partons are strongly bound into colourless states is an ex-

perimental fact, but why they behave as free particles when probed at high momenta

is inexplicable in QPM. The QPM is also unable to account for the total momentum

of the proton via measurements of the momentum sum rule indicating the existence
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of gluon. It is only by including the effects of the gluon and gluon radiation in hard

scattering processes that an accurate description of experimental data can be given.

These developments led to the formulation of Quantum Chromodynamics(QCD).

The successes of QCD in describing the strong interactions are summarized by two

terms: asymptotic freedom and confinement. Asymptotic freedom refers to the weak-

ness of the short distance interaction, while the confinement of quarks follows from its

strength at long distance. It is an extraordinary feature of QCD that it accommodates

both kinds of behaviour. Asymptotic freedom states that, as the distance between

two quarks diminishes so does the effective strength of their interaction; and the par-

ticles become asymptotically free. On the other hand, as the distance between quarks

increases, so does the effective interaction strength. Asymptotic freedom explains the

absence of observed free quarks.

In perturbative QCD(pQCD), calculations are performed by expanding terms in

a perturbation series in the coupling strength αs. This is only valid when αs is small,

i.e., at high Q2 (see Figs.1.5 and 1.6). The calculation of a scattering cross section

in pQCD reduces to summing over the amplitudes of all possible intermediate states.

Each graph is a symbolic representation for a term in the perturbative calculation.

Leading Order(LO) term corresponds to the quark parton model and is considered to

be of order α0
s in the perturbative expansion. LO Feynman diagrams have no gluon

vertices as shown in Fig. 1.5. Next-to-Leading Order (NLO) diagrams add quark-

gluon interactions to this pictures. NLO graphs have one gluon vertex and correspond

to terms of order α1
s in the perturbative expansion. NLO Feynman diagrams for hard

scattering are illustrated in Fig. 1.6. Similarly higher order terms such as NNLO,

NNNLO etc., would correspond to addition of more gluon vertices two, three etc).

The four-momentum is conserved at each vertex. However, including higher order

diagrams, the momentum circulating in the loop is not constrained. The integration

over all momentum space for a loop diagram leads to logarithmic divergences when

momentum goes to infinity. These type of divergences are treated in a systematic way

by the renormalization technique. However the renormalization procedure introduces

an arbitrary parameter µ, which has the dimension of mass.

Any physical observable F must be independent of the choice for µ, therefore we

impose the following condition:

µ2 ∂F

∂µ2
=

(
µ2 ∂

∂µ2
+ µ2∂αs

∂µ2

∂

∂αs

)
= 0. (1.45)
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Figure 1.5: Leading Order splitting functions diagrams.

Hence, any explicit dependence of the physical observable on the renormalization scale

must be cancelled by a proper renormalization scale dependence of αs. The strong

coupling αs is determined by renormalization group equation given by

Q2 ∂αs

∂Q2
= β(αs) = −β0

4π
α2
s(Q

2)− β1

16π2
α3
s(Q

2)− β2

64π3
α2
s(Q

2) +O(α5
s), (1.46)

where the coefficients β0, β1 and β2 depends on the number of active quark flavors nf

and scale Q2 as

β0 = 11− 2

3
nf , (1.47)

β1 = 102− 38

3
nf , (1.48)

and

β2 =
2857

6
− 6673

18
nf +

325

54
n2
f . (1.49)

Expansion of the β-function is carried out to three loops, which corresponds to a

NNLO analysis.
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Figure 1.6: Examples of next-to-leading Order splitting functions diagrams.

The solution to renormalization group Eq.(1.46) provides the scale dependence

of the strong coupling αs, i.e. the “running” of αs. Perturbative QCD predicts the

scale dependence of the strong coupling, but αs at a specific scale is obtained from

experiment. Therefore, αs at a reference scale is a fundamental parameter of the

theory of QCD. Measuring the strong coupling from various experiments at different

characteristic energy scales is an important test of QCD.

Moreover, one can introduce a dimensional parameter, ΛQCD,[22] to provide a

parametrization of the scale dependence of the strong coupling αs. In accordance

with the convention of Ref.[22], ΛQCD is defined by writing the solution of the renor-

malization group equation at LO, NLO and NNLO as[23]:(
α(t)

2π

)
LO

=
2

β0t
, (1.50)

(
α(t)

2π

)
NLO

=
2

β0t

[
1− β1 ln t

β2
0t

]
, (1.51)

(
α(t)

2π

)
NNLO

=
2

β0t

[
1− β1 ln t

β2
0t

+
1

β2
0t

2

[(
β1

β0

)2

(ln2 t− ln t− 1) +
β2

β0

]]
,

where, t = Q2

Λ2
QCD

and ΛQCD represents the scale at which perturbative QCD be-

comes strongly coupled, i.e. the scale for which the coupling αs is large and pertur-

bative QCD theory breaks down. The scale is comparable with the masses of the
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Figure 1.7: Schematic representation of the applicability of various QCD evolution
equations across the x−Q2 plane.

light hadrons(≈ 0.5GeV ). In other words, ΛQCD determines the boundary between

quasi-free state of interacting quarks and gluons (weak coupling) and the state where

hadrons are formed (strong coupling).

• QCD Evolution Equations

There exist several QCD evolution equations to obtain the quark and gluon dis-

tribution functions such as the Dokshitzer-Gribov-Lipatov-Alterelli-Parisi(DGLAP)

equation[24], the Balitsky-Kuraev-Fadin-Lipatov(BKFL) equation[25], the Gribov-

Levin-Ryskin(GLR) equation[26] and the Ciafaloni-Catani-Fiorani-Marchesini(CCFM)

equation[27]. In spite of them, some other equations are also proposed like the Modi-

fied DGLAP equation (by Zhu and Ruan)[28], the Modified BKFL or BK[29] equation

(by Balitsky and Kovchegov) and the JIMWLK[30] equation (by Jalilian-Marian,

Iancu, McLerran, Weigert, Leonidov and Kovner) etc., in different kinematical re-

gions. Schematic representation of the applicability of various QCD evolution equa-

tions across the x−Q2 plane is depicted in Fig.1.7. Among these evolution equations,

BFKL or GLR equations are more appealing at small-x, but still the DGLAP evo-

lution equation is used to study various parton distrbution functions as well as the

structure functions because this equation is a simple perturbative tool which is rele-

vant for the presently accessible x−Q2 range of structure functions.

Nucleon structure functions systematically exhibit a Q2-dependence, even at large

Q2. These scaling violations can be described within the framework of the QCD-

improved parton model which incorporates the interaction between quarks and gluons
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in the nucleon in a perturbative way. The scale at which this interaction is resolved is

determined by the momentum transfer. The Q2-dependence of parton distributions,

e.g.

F2(x,Q
2) =

∑
e2ix[qi(x,Q

2) + q̄i(x,Q
2)], (1.52)

xF3(x,Q
2) =

∑
x[qi(x,Q

2)− q̄i(x,Q
2)] (1.53)

and

g1(x,Q
2) =

1

2

∑
e2ix[∆qi(x,Q

2) + ∆q̄i(x,Q
2)] (1.54)

are described by the DGLAP evolution equations. They are different for flavor non-

singlet and singlet distribution functions. Typical examples of non-singlet combina-

tions are the difference of quark and anti-quark distribution functions, or the differ-

ence of up and down quark distributions. The difference of the proton and neutron

structure function, F p
2 −F n

2 , also behaves as a flavor non-singlet, whereas the deuteron

structure function F d
2 is an almost pure flavor singlet combination. For the flavor non-

singlet quark distribution, qNS, and the flavor-singlet quark and gluon distributions,

qS and g, the DGLAP evolution equations read as follows[24]:

dqNS(x,Q2)

d lnQ2
=

α(Q2)

2π

∫ 1

x

dy

y
qNS(y,Q2)Pqq(

x

y
), (1.55)

d

d lnQ2

(
qs(x,Q2)

g(x,Q2)

)
=

α(Q2)

2π

∫ 1

x

dy

y

(
Pqq(

x
y
) Pqg(

x
y
)

Pgq(
x
y
) Pgg(

x
y
)

)(
qs(y,Q2)

g(y,Q2)

)
. (1.56)

Here α(Q2) is the running QCD coupling strength. The splitting functions Pij(x/y)

are calculable in perturbative QCD as a power series of αs(Q
2):

Pij(z, αs(Q
2)) = P

(0)
ij (z) +

αs

2π
P

(1)
ij (z) +

(αs

2π

)2
P

(2)
ij (z). (1.57)

Splitting functions are known up to NNLO[31,32]. The splitting functions Pij(
x
y
) give

the probability of parton j with momentum fraction y be resolved as parton i with

momentum fraction x < y. They are calculated perturbatively to a given order in

αs. LO and NLO splitting function diagrams are shown in Figs. 1.5-1.6. Evolution

equations describe the physical picture in which valence quarks are surrounded by a
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cloud of virtual particles which are continuously emitted and absorbed. The quarks

are also emitting and absorbing virtual particles of their own, corresponding to the

branching probability densities. This picture explains why the structure of the hadron

appears to change as it is seen at different distance scales. Thus, at low Q2 there are

fewer partons and their PDFs are skewed to high momentum fractions. At high Q2,

the momentum is shared through the parton branchings, and hence the low x region

is filled with gluons and sea quarks which have a high probability to undergo g → gg,

g → qq̄ branchings. QCD doesn’t predict the PDFs at any scale, rather it predicts

how PDFs evolve with the scale through the evolution equations.

1.5 DIS Sum Rules

The structure functions which parameterize the deeply inelastic scattering cross sec-

tion obey a series of sum rules to which QCD corrections are also available[7,33] and

one may perform QCD tests using these relations. Sum rules are integrals over struc-

ture functions or parton distributions and they are associated with the conservation

law for some quantum number of the nucleon. Parton model sum rules provide infor-

mation about the distribution of quarks inside nucleon and are very useful to reveal

new physics if a sum rule is found to be satisfied or broken. In the following subsec-

tions, we have discussed briefly about some important sum rules along with available

pQCD corrections.

1.5.1 Gottfried Sum Rule

The Gottfried Sum Rule(GSR)[34,35] involves the difference of F2 measured in proton

and neutron targets using a charged lepton. In accord with parton model it is governed

by

SG =

∫ 1

0

F µp
2 − F µn

2

x
dx =

1

3
. (1.58)

There are pQCD corrections to GSR up to 3-loop corrections[35] and it is given by

SG =

∫ 1

0

F µp
2 − F µn

2

x
dx =

1

3

[
1 + 0.0355

αs

π
− 0.811(

αs

π
)2
]
. (1.59)
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1.5.2 Adler Sum Rule

The Adler Sum Rule[36,37] predicts the integrated difference between neutrino-neutron

and neutrino-proton structure functions. It states

SA =

∫ 1

0

F νn
2 − F νp

2

2x
dx = 1. (1.60)

The ASR is exact and receives neither QCD nor mass corrections, but its experi-

mental verification is at a very low level of accuracy[37].

1.5.3 Gross-Llewellyn Smith Sum Rule

The Gross-Llewellyn Smith Sum Rule(GLSSR)[38,39] involves an integration over the

non-singlet neutrino structure function, xF3(x,Q
2), which is obtained by subtracting

the antineutrino differential cross section on an isoscalar target from the corresponding

neutrino cross section. It is the most accurately tested sum rule. The GLSSR predicts

that the number of valence quarks in a nucleon, up to finite Q2 corrections, is three.

In the QPM, the GLS sum rule reads[38]:

SGLS =

∫ 1

0

xF3

x
dx =

1

3
, (1.61)

and pQCD correction to GLS sum rule up to NNLO is given by[39]

SGLS(Q
2) =

∫ 1

0

dx

x
xF3(x,Q

2) = 3

[
1− αs

π
− a(nf )

(
αs

π

)2

− b(nf )

(
αs

π

)3]
. (1.62)

1.5.4 Unpolarized Bjorken Sum Rule

The Unpolarized Bjorken Sum Rule(UBSR)[40] refers to the integrated difference

between neutrino-neutron and neutrino-proton charged current structure functions

F1.

SBj =

∫ 1

0

F νn
1 − F νp

1

d
x = 1. (1.63)

It has three loop pQCD correction, which predicts[41]

SBj =

∫ 1

0

F νn
1 − F νp

1

d
x =

[
1− αs

π
− a(nf )

(
αs

π

)2

− b(nf )

(
αs

π

)3]
. (1.64)
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1.5.5 Polarized Bjorken Sum Rule

Polarised Bjorken Sum Rule(BSR)[42] relates the difference of proton and neutron

structure functions integrated over all possible values of Bjorken variable, x to the

nucleon axial charge gA as

SBSR =

∫ 1

0

dx

x
xgNS

1 (x,Q2) =
gA
6
. (1.65)

However, away from Q2 → ∞, the polarized BSR is given by a series in powers of the

strong coupling constant αs(Q
2)[43]:

SBSR(Q
2) =

∫ 1

0

dx

x
xgNS

1 (x,Q2) =
gA
6

[
1− αs

π
− 3.583(

αs

π
)2

−20.215(
αs

π
)3 + .........

]
. (1.66)

Here the BSR consists of pQCD results up to third order of αs(Q
2). BSR is associated

with the conservation of polarised isospin.

1.5.6 Gerasimov-Drell-Hearn Sum Rule

Gerasimov-Drell-Hearn Sum Rule(GDHSR)[44] is given by the first moment of the

polarized structure function gp,n1 (x,Q2 in the form

SGDHSR(Q
2) = 2

M2

Q2

∫ x0

0

dxgp,n1 (x,Q2) =

{ −1
4
µ2
p,n, Q2 → 0

2M2

Q2 Γp,n
1 , Q2 → 0

. (1.67)

at proton and neutron targets, with x0 = Q2/(2Mmπ +m2
π +Q2), µp,n the anomalous

magnetic moment of the proton or nucleon, and Γ1 the first moment of the structure

function g1 at infinite space-like momentum transfer. This sum-rule has a very strong

Q2-evolution for low values of the virtuality. In case of proton targets it changes sign

between Q2 = 0 and Q2 ≈ 1GeV 2.

In addition to these there are several important sum rules such as Burkhardt-

Cottingham sum rule[45], Efremove-Teryaev-Leader sum rule[46], Ellis-Jaffe sum rule[47],

etc., however in this thesis we have concentrated on GSR, GLSSR and BSR, which are

associated with the non-singlet structure functions FNS
2 , xF3 and gNS

1 respectively.

The determination of these sum rules are provided in chapter 7.
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1.6 Non-Perturbative QCD Effects

At low Q2, the strong coupling constant becomes large and the perturbative calcula-

tions fail. In this non-perturbative region the assumption of scattering from massless,

point-like, quarks is no longer valid. Also, the resolving power is not large enough to

probe a single quark scattering. To obtain high interaction rates, lepton DIS experi-

ments use heavy targets. Therefore, nuclear effects must be considered as well. These

non-perturbative effects are discussed in the following subsections.

1.6.1 Target Mass Correction

At low Q2 and high x, one can not neglect the effects of the target mass. The

meaning of x as the fraction of the nucleons momentum carried by the struck quark is

not suitable when Q2 ≈ M2. A “target mass” correction must be applied to account

for these effects. The target mass correction (TMC) to the structure functions have

been first determined in [48]. More recently, new derivations were performed in [49]

which lead to the following relations:

F TM
2 (x,Q2) =

x2

ξ2
F

(0)
2 (x,Q2)

k3
+

6M2
px

3

Q2k4

∫ 1

ξ

F
(0)
2 (u,Q2)

u2
du

+
12M4

px
4

Q4k5

∫ 1

ξ

du

∫ 1

u

F
(0)
2 (v,Q2)

v2
dv, (1.68)

F TM
3 (x,Q2) =

x

ξ

F
(0)
3 (x,Q2)

k2
+

2M2
px

2

Q2k3

∫ 1

ξ

F
(0)
3 (u,Q2)

u
du (1.69)

with ξ and k are defined as

k =

√
1 +

4x2M2
p

Q2
, (1.70)

and

ξ =
2x

1 + k
(1.71)

respectively.
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Figure 1.8: The contribution from target mass corrections(TMC) to FNS
2 struc-

ture function. Figure is taken from[50].

The target mass effects are large at high x and low Q2. Fig. 1.8 shows the size

of the the TMC, as obtained in Ref. [50] for FNS
2 (x,Q2) structure functions along

with QCD prediction as a function of x. As our kinematical region of consideration

is within low-x and low-Q2 region in our thesis we have neglected the effects of TMC.

1.6.2 Higher Twist

The Operator Product Expansion(OPE)[51] is a common theoretical framework in

analyses of deep inelastic scattering(DIS) in QCD. The operators can be ordered

according to their twist yielding the series in 1
Q2 for physical observable. For example,

for the structure function Fi, this reads

Fi(x,Q
2) = FLT

i (x,Q2) +
hi(x)

Q2
. (1.72)

The first term in this expansion (the leading twist, LT) dominates at sufficiently large
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Figure 1.9: Examples of higher twist QCD diagrams.

momentum transfer Q2 and invariant mass W 2 = M2 + Q2(1−x)
x

. The LT structure

functions are constructed in terms of parton distribution functions (PDFs), which

are universal for charged lepton and neutrino scattering and have clear probabilistic

interpretation. An accurate knowledge of these plays a key role in the extraction of

possible contributions of new physics at new collider energies, non-accelerator physics

(cosmic neutrinos) and, as observed more recently, in the interpretation of forthcoming

high precision experiments on neutrino oscillation.

The higher-twist terms include interactions with other quarks, as shown in Fig.

1.9. Since target mass effects also involve powers of 1
Q2 , they are referred to as “Kine-

matic higher-twist” effects. The scattering involving a conglomerate of quarks pro-

cesses are referred to as “Dynamical higher-twist”. These effects are important at low

Q2 and high x. The higher-twist contributions are calculated using phenomenologi-

cal approaches. However, our analysis uses data in the kinematic range where these

effects are negligible. Therefore, only kinematical higher-twist (not the dynamical

higher twist) effects are studied.

1.7 Nuclear Effects

Although the primary aim of the DIS experiments is to explore the structure of

nucleon, DIS data is collected usually for nuclear targets. The use of nuclei instead of

nucleon serve a dual purpose in the studies of in high-energy scattering experiments.

Firstly, nuclear DIS provides unique possibilities to study the space-time development

of strongly interacting systems and it can provide valuable insights into the origin of

nuclear force and properties of hadrons in nuclear medium. Secondly, the nuclear data

often serve as the source of information on hadrons otherwise not directly accessible

(e.g., extraction of the neutron structure function which is usually obtained from
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deuterium and proton data). Moreover, in experiments with nucleon targets the

products of the scattering processes can only be observed by a detector that is far

away from the collision point, whereas a nuclear target can serve as a detector located

at the place where the microscopic interaction takes place. Consequently, with nuclei

one can study coherence effects in QCD which are not accessible in DIS off nucleons.

When considering DIS on a nuclear target one may expect that the resulting

nuclear structure functions were very similar to those measured off a nucleon target.

This is so because the nucleons are very loosely tighted inside a nucleus, and the inter-

action between the external probe, the virtual photon, and the constituent nucleons

could be expected to be incoherent.

However, in 1982, the European Muon Collaboration(EMC)[52] reported that the

ratio

R(x,Q2) =
FA
2 (x,Q2)

FN
2 (x,Q2)

, (1.73)

where FA
2 and FN

2 are the nuclear and nucleon structure functions respectively, is in

general, different from one. The observed difference between the nuclear structure

function and that corresponding to the simple addition of its constituent nucleons is

commonly referred to as the EMC effect[53] and that was the first clear evidence for

the nuclear effect in nuclear structure functions. In fact, the EMC effect states that,

in the parton point of view, quark distributions in bound nucleon are different from

those in free nucleon.

Whether there is enhancement or suppression of the nuclear structure functions

with respect to those of the nucleon depends on the kinematical region of interest[53–

55]. The general Bjorken-x dependence of such modification is as follows(see Fig.

1.10):

1. The ratio R is smaller than unity within the region x < 0.01. This region is

known as shadowing.

2. Within 0.1 ≤ x ≤ 0.25 ∼ 0.3 the ratio R is larger than unity. This region is

called anti-shadowing.

3. Within 0.25 ∼ 0.3 ≤ x ≤ 0.8, R is smaller than unity and this region is known

as the EMC region.
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Figure 1.10: x dependence of the ratio RA
F2
(x,Q2) for a given fixed Q2.

4. x ≥ 0.8, R is greater than unity and this region is known as Fermi motion

region.

The nuclear effects are large at low and high x, but are observed to be independent

of Q2. However, there are new theoretical treatments that consider a Q2 dependent

nuclear target corrections at low x[57, 227]. Recent results from NuTeV hint that

neutrino experiments might favor smaller nuclear effects than the charged lepton

experiments[58] at high x, but this thesis does not take into account Q2 dependent

nuclear corrections. We can interpret our extracted PDFs from QCD fits as effective

nuclear PDFs, which have the nuclear effects absorbed into them. These nuclear

effects are discussed in detailed in chapter 8. ��

28


