
Chapter 2

Linear and Nonlinear QCD
Evolution Equations

2.1 Linear evolution equations

QCD induces higher order corrections to the naive parton model which eventually

lead to a breaking of scaling violations. Thus QCD enables the explicit estimation of

the dependence of the structure function on Q2, however, it does not reveal the spe-

cific value of F2 for a given Q2, but preferably portrays in what manner F2 varies with

Q2 from a given input. The Q2 dependence of the PDFs can be computed perturba-

tively as long as Q2 is adequately large so that αs continues to be small. The standard

and the basic theoretical frameworks employed to study the scale dependence of the

PDFs and eventually the DIS structure functions are the linear Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) [1-4] evolution equations. One can calculate the

PDFs for any value of Q2 making use of the DGLAP equations considering that an

initial condition for the PDFs is indeed available at a given initial scale Q2
0 and then

evolving to higher Q2. The DGLAP approach sums up higher-order αs contributions

enhanced by the logarithm of photon virtuality, i.e. αn
s ln(Q

2)n in the perturbative

expansion. Nevertheless, at small-x contributions enhanced by the logarithm of a

small momentum fraction, x, carried by gluons, turns out to be essential. Accord-

ingly a different approach is needed to explain the situation of high-energy or in other

words small-x scattering. The leading logarithm (LL) contributions of (αs ln(1/x))
n

are summed up by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation
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[5-7]. Another evolution equation to study the linear evolution of PDFs in the small-x

regime is the so called Catani-Ciafaloni-Fiorani-Marchesini (CCFM) equation [8-10].

The CCFM approach retains the components of both the DGLAP and BFKL realms

in the LL approximation. All the aforementioned evolution equations are linear in

parton density which have to be modified in a suitable way to add the higher twist

approximations at very small-x. A brief account of the linear evolution equations is

given below.

2.1.1 DGLAP equation

The evolution of the structure functions or more precisely the quark and gluon distri-

bution functions with Q2 can be described by the DGLAP evolution equations [1-4].

These equations sum all leading Feynman diagrams that give rise to the logarithmi-

cally enhanced ln(Q2) contributions to the cross section in order to neglect any kind

of higher twist corrections. The associated perturbative resummation is organized

in powers αn
s ln(Q

2)n. They are the conventional and the fundamental theoretical

frameworks for all of the phenomenological perspectives used to interpret hadron

interactions at short distances. The DGLAP equations for quark and gluon density

can be written as

∂
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where the sum runs over all flavors of quarks and anti-quarks. Here qi(x,Q
2) stands

for quark density whereas g(x,Q2) represents gluon density. Pqq, Pqg, Pgq and Pgg are

the splitting functions whose interpretations are graphically displayed in Fig.2.1. The

splitting functions are elucidated as the probability for finding a parton (quark or

gluon) of type i having momentum fraction x arising from a parton (quark or gluon)

j with larger momentum fraction y > x. They are independent of the quark flavors

and are identical for quarks and antiquarks. The leading order splitting functions

are given by [11]
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Figure 2.1: Splitting functions
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with CF = (N2
c−1)
2Nc

. The “+” distribution is defined by the property [11]∫ 1

0

dz
f(z)

(1− z)+
=

∫ 1

0

dz
f(z)− f(1)

(1− z)
, (2.3)

where (1− z)+ = 1− z for z < 1 but is infinite for z = 1. The discrepancy at z = 1

complements the radiation of soft gluons and is balanced out by the virtual gluon

loop contributions.

In perturbation theory, the splitting functions can be expressed as a power series

of αs(Q
2) [11, 12]
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with z = x
y
. These functions are at present working up to next-to-next-to-leading

order (NNLO) accuracy. The leading order (LO) expressions P (0) are the well-known

Altarelli-Parisi splitting functions [4, 11]. On the other hand, the next-to-leading

order (NLO) functions P (1) have been estimated during the time 1977-1980 [13-

16], whereas the NNLO terms P (2) are calculated in the period 2004 [17, 18]. The
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LO DGLAP evolution sums up the leading log contributions (αs ln(Q
2))n, the NLO

evolution incorporates the sum of the αs(αs ln(Q
2))n−1 terms and so on.

The derivation of the DGLAP equation is founded on the QCD collinear factor-

ization in gluon emission to legitimize the resummation of logarithms in the trans-

verse scale. In consonance with the traditional collinear factorization approach the

hadronic observables can be expressed as the convolution of the PDFs with partonic

hard-scattering coefficients. The partonic coefficients are computed with the assump-

tion that the hard scattering is originated by a parton collinear to its parent hadron.

Customarily the large logarithms are obtained from the region in phase space where

Figure 2.2: Ladder-diagram in LLQ2 application of DIS

the multiple emissions are strongly set in order in transverse momenta with succeed-

ing emissions having larger momenta, i.e. Q2 >> k2
n >> · · · >> k2

2 >> k2
1. Fig.2.2

exhibits a schematic ladder diagram of the quark and gluon emissions in LL(Q2)

application of DIS.
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The non-singlet and singlet combinations of the quark flavor group can be defined

as [11]

qNS ≡ qi − qj, (2.5)

qS ≡
∑
i

qi. (2.6)

The DGLAP equations for non-singlet and singlet quark distributions are
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2)

∂ lnQ2
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2π
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y
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2)
)
. (2.8)

As an illustration, the first term of Eq.(2.8) mathematically articulates the fact that

a quark with momentum fraction x characterized by q(x,Q2) (on the left hand side)

could have originated form a parent quark with a momentum fraction y > x depicted

by q(y,Q2) (on the right-hand side) which has radiated a gluon. The probability of

occurrence of this process is proportional to αsPqq(x/y). The second term deals with

the prospect that a quark with momentum fraction x is the consequence of qq̄ pair

creation by a parent gluon with momentum fraction y > x and the probability that

it happens is proportional to αsPqg(x/y). The integration appears because of the

consideration that the secondary quark with momentum x can come from a parent

quark with any momentum fraction y > x [11].

On the other hand, since the gluon distribution does not carry any flavor quantum

numbers, it is a flavor singlet and the DGLAP equation for gluon distribution is given

by

∂g(x,Q2)

∂ lnQ2
=

αs(Q
2)

2π

∫ 1

x

dy

y

( 2Nf∑
i=1

Pgq(x/y)qi(y,Q
2) + Pgg(x/y)g(y,Q

2)
)
. (2.9)

As soon as the x dependence of quark or gluon distributions are known at some

initial scale Q2
0 then they can be determined for any higher value of Q2 by using the

DGLAP equations. The initial distributions are at present have to be computed from

experiment presuming an input form in x which complies with the QCD sum rules.

This strategy is adopted in the global analyses of PDFs [19, 20]. As an alternative,

one may produce the parton distributions dynamically originating from an input
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distribution for the valence quarks and a valence-like input for the sea quarks and

gluons [21].

The DGLAP equations neglect higher order contributions of the form αs ln(1/x).

However, at finite order, the large logarithms in 1/x become important in the pertur-

bative expansion at small vales of x, where the evolution is dominated by the gluon

cascade and accordingly these leading ln(1/x) terms have to be resummed. For large-

Q2 this is achieved by the double leading logarithmic approximation (DLLA), which

resums the terms that include the leading ln(1/x) and the leading ln(Q2) simultane-

ously. As a result at small-x one may consider the DLLA of the DGLAP evolution to

choose the major contribution to the gluon density growth, analogous to the contribu-

tion of the (αs ln(Q
2) ln(1/x))n terms. The DLLA is valid when αs ln(1/x) ln(Q

2) ∼ 1

but αs ln(1/x) and αs ln(Q
2) individually are small. But if Q2 is not extremely large,

then as we move towards smaller values of x the DGLAP equation no longer has its

legitimacy. In that case alternative evolution equations, described below, which are

appropriate in different regions may be taken into account

2.1.2 BFKL equation

The BFKL equation [5-7] was initially suggested by Balitsky, Fadin, Kuraev, and

Lipatov to delineate the high-energy behaviour of processes involving hadrons. Re-

calling that x ∼ Q2/s, where Q2 is the hard scale of the process and s is c.m.s.

energy squared, at small-x, it is essential to sum the terms of the perturbation series

enhanced by powers of ln(1/x). This equation sums up all the leading logarithm con-

tributions of the type (αs ln(1/x))
n on the basis of gluon Reggeization. The BFKL

approach is usually associated with the evolution equation for the unintegrated gluon

distribution, f(x, kt), which depends on two independent variables, the proton mo-

mentum fraction x carried by a gluon and its transverse momentum kt. An important

characteristic of this evolution is distribution of the gluon density in ln(kt) space. The

general form of BFKL evolution equation in LO is

f(x, k2
t ) = f 0(x, k2

t ) +
3αs(k

2
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where the function f 0(x, k2
t ) is a suitably defined inhomogeneous term and k′

t
2, k2

t are

the transverse momenta squared of the gluon in the initial and final states respec-

tively. In comparison to the DGLAP equation, this is a more intricate problem on

the grounds that the BFKL equation literally involves contributions from operators

of higher twists. The BFKL equation, in its ordinary form, not only represents the

high-energy behaviour of cross-sections but also describes the amplitudes at non-zero

momentum transfer.

2.1.3 CCFM equation

The CCFM equation [8-10] is a theoretical framework proposed by Catani, Ciafaloni,

Fiorani and Marchesini (CCFM) which effectively interpolates between the the BFKL

evolution and the more familiar DGLAP evolution equations. The primary objective

of the CCFM approach is to provide accurate description of both the large-x region,

where the summation of ln(Q2) dominates, as well as the small-x region, where the

large logarithms ln(1/x) are important. It depends on the comprehensible emission

of gluons, that gives rise to an angular arrangement of the gluons along a series

of multiple emissions. Similar to the BFKL equation, the CCFM equation is also

defined in respect of a unintegrated gluon density f , which determines the possibility

of finding a gluon with longitudinal momentum fraction x and transverse momentum

kt. Nonetheless, this distribution has a further dependance on some external scale

Q. The CCFM equation is

f(x, k2
t , Q

2) = f 0(x, k2
t , Q

2)

+

∫ 1

x

dz

∫
d2q

πq2
Θ(Q− zq)∆S(Q, z, q)P̃ (z, kt, q)f(x/z, k

′
t
2
, q2). (2.11)

The inhomogeneous contribution f 0(x, k2
t , Q

2) is of non-perturbative origin and

is assumed to contribute only for k2
t < q20. The remaining terms contribute in the

region k2
t > q20. The function P̃ is the gluon-gluon splitting function

P̃ =
3αs

π

( 1

1− z
+∆R

1

z
− 2 + z(1− z)

)
, (2.12)

where the factors ∆S and ∆R are the Sudakov and Regge form factors respectively.

The multiplicative factors ∆S and ∆R counteract the singularities which are apparent

as z → 1 and z → 0 respectively. Unlike ∆S, the Regee form factor ∆R not only
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depends on the branching variables, but also on the history of the cascade. At large-x

one can get the usual DGLAP equation for gluon evolution by fixing ∆∆ = 1 and

evolving ∆S. On the other hand, at small-x keeping only the 1/z piece of Pgg and

by setting ∆S = 1 and evolving ∆∆ one can obtain the BFKL equation.

2.2 Nonlinear evolution equations

It is very fascinating to observe that the linear QCD evolution equations for parton

densities , both the DGLAP and BFKL equations, prognosticate a steep rise of quark

and gluon densities in the small-x region which is perceived in the DIS experiments at

HERA as well. This sharp growth generates cross sections which in the high-energy

limit fail to comply with the unitarity bound or in particular the Froissart bound

[22, 23] on and so it will have to eventually slow down in order to restore unitarity.

It is a known fact that the hadronic cross sections should obey the Froissart bound

which derives from the general assumptions of the analyticity and unitarity of the

scattering amplitude. Accordingly, the increasing number of gluon densities, so as to

approach small-x, demands a formulation of the QCD at high density, where unitarity

corrections are suitably taken into account.

Following DGLAP, the growing number of small-x gluons graphically conforms

to higher density of individuals in the same approved region and thus differs from

a diluted system at moderate values of x. As a result, at very small values of x

the likelihood of interaction between two gluons can no longer be overlooked and it

sooner or later engenders a situation in which individual partons inevitably overlap or

shadow each other. We recall that, at very high energies, one can get into the region of

smaller and smaller values of x and, under these situations, the gluon recombination

being more effectual balances gluons splitting at some point. As a result, the abrupt

growth of gluon distribution is eventually subdued due to the correlative interactions

between gluons. This process is normally referred to as saturation of gluon density

and it occurs when the possibility of gluon recombination, i.e. the process gg → g, is

as significant as that for a gluon to split into two gluons i.e. g → gg. In deriving the

linear DGLAP equations, the correlations among the initial gluons in the physical

process of interaction and recombination of gluons are not taken into account. It

is indispensable to point out that the linear DGLAP dynamics consider only the
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splitting processes in the partonic evolution, i.e. the processes q → qg, g → qq̄ and

g → gg. However at small-x, the modifications due to the correlations among initial

gluons to the evolutionary amplitude should be treated accordingly. The multiple

gluon interactions induce nonlinear or shadowing corrections in the linear evolution

equation and so the standard linear DGLAP evolution equation will have to be

modified in order to include the contributions of recombination mechanism in the

small-x regime.

The DGLAP evolution equations can delineate the available experimental data

in a decent manner covering a large domain of x and Q2 with appropriate parame-

terizations. But despite the remarkable achievement of the DGLAP approach, some

issues come into sight when trying to generate the best possible global fits to the

H1 data [24] concurrently in the region of large-Q2 (Q2 > 4 GeV2) as well as in the

region of small-Q2 (1.5 < Q2 < 4 GeV2) [25]. In the NLO analysis of MRST2001 [26]

an overall good fit is obtained including both the regions but resulting a negative

gluon distribution at Q0 = 1 GeV , thus creating an ambiguity in the interpretation

of the PDFs as probability or number density distributions. On the other hand, in

the CTEQ collaboration [27], where a slightly higher input scale of Q0 = 1.3 GeV

is considered, a very good compatibility with the data are observed in the large-

Q2 region whereas, the consistency with data in the small-Q2 region becomes poor.

The matter of negative gluon distributions also arises in the NLO set of CTEQ6M

when evolving backwards to 1 GeV. Nevertheless, the negative gluon distributions

are not empowered in LO. These emerging enigmas are really very appealing as they

can provide a signal of gluon recombination towards smaller values of x and Q2. In

Ref.[25] the effects of including nonlinear GLRMQ corrections to the LO DGLAP

evolution equations are studied by using the HERA data for the structure function

F2(x,Q
2) of the free proton and the PDF sets CTEQ5L and CTEQ6L as a baseline.

With the inclusion of the nonlinear corrections, the agreement with the F2(x,Q
2)

data is exhibited to be improved in the region of x ≤ 3× 10−5 and Q2 ≤ 1.5 GeV2,

but managing the good fit to the data obtained in the global analyses at large-x and

Q2. Moreover, in Ref.[28] an analysis of HERA F2(x,Q
2) data is presented adding

the effect of absorptive corrections due to parton recombination on the parton dis-

tributions. The small-x gluon distribution is found to be enhanced at small scales
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due to the absorptive effects, which may possibly avoid the need of a negative gluon

distribution at 1 GeV. The gluon recombination effects lead to the nonlinear cor-

rections to the linear DGLAP evolution equations due to multiple gluon interactions

and as a result, in the very small-x region the conventional linear evolution equations

are likely to breakdown. The nonlinear terms tame the abrupt growth of the gluon

distribution in the kinematic region where αs continues to be small but the density of

gluons becomes very high so that a perturbative treatment is possible. Accordingly,

the corrections of the higher order QCD effects, which suppress or shadow the growth

of the parton densities, turns out to be the center of rigorous studies in the last few

years.

The first perturbative QCD calculations reporting the recombination of two gluon

ladders into one were carried out by Gribov, Levin and Ryskin (GLR), and Mueller

and Qiu (MQ). They suggested that the nonlinear or shadowing corrections due to

gluon recombination could be depicted in a new evolution equation with an addi-

tional nonlinear term quadratic in the gluon density. This equation, widely known

as the GLR-MQ equation [29, 30], can be regarded as the updated version of the

usual DGLAP equations with the corrections for gluon recombination. There are

several other nonlinear evolution equations reporting the corrections of gluon re-

combination to the DGLAP and BFKL evolutions. They are the Modified-DGLAP

(MD-DGLAP) [31, 32], Balitsky-Kovchegov (BK) [33, 34], Modified-BFKL (MD-

BFKL) [35], Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK)

[36-38] equations. The BK equation is the most widely studied among these. The

nonlinear equations viz. Modified-BFKL (MD-BFKL), BK and JIMWLK are based

on BFKL evolution, whereas the MD-DGLAP equation is based on DGLAP evolu-

tion. A concise description of all the above mentioned nonlinear evolution equations

is given below.

2.2.1 GLR-MQ equation

The shadowing corrections of gluon recombination to the parton distributions were

first investigated by Gribov, Levin and Ryskin and then by Mueller and Qiu at the

twist-4 level in their pioneering papers [29, 30]. They provided the idea that the non-

linear corrections due to gluon recombination could be portrayed in a new evolution
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equation with an additional nonlinear term quadratic in gluon density. This equation,

widely known as the GLR-MQ equation, can be considered as the improved version of

the usual DGLAP equations with the corrections for gluon recombination. The pic-

torial representation of the corrections arising from gluon recombination processes is

shown in Fig.2.3. Gribov et al. first suggested qualitative modification of the DGLAP

Figure 2.3: Corrections of gluon recombination

gluon evolution equation in order to include the gluon recombination effects based

on the Abramovsky-Gribov-Kancheli (AGK) cutting rules [39]. Afterwards Mueller

and Qiu completed the equation numerically using a perturbative calculation of the

recombination probabilities in the DLLA, which is a significant achievement as it

enables the GLR-MQ equation to be applied phenomenologically. This equation was

generalized to incorporate the contributions from more higher order corrections in

the Glauber-Mueller formula [40].

The GLR-MQ equation is based on two processes in the parton cascade:

(i) The splitting of gluons generated by the QCD vertex : g→g + g;

(ii)The recombination of gluons promoted by the same vertex : g + g→g.

For splitting process 1 → 2, the probability is proportional to αsρ, whereas the prob-

ability for recombination process 2 → 1 is in proportion to αsr
2ρ2. Here, ρ=

xg(x,Q2)
πR2

is the gluon density in the transverse plane, πR2 is the target area, and R is the

correlation radius between two interacting gluons [40]. It is worthwhile to mention

that R is non-perturbative in nature and therefore all phenomena that occur at dis-

tance scales larger than R is non-perturbative [41]. Here, r is the size of the gluon

induced in the recombination process and for DIS r∼ 1
Q
. For, x ∼ 1 only the emission

of gluons is influential since ρ≪1. At x→0, on the other hand, the density of gluons
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ρ happens to be so high that the recombination of gluons should also be taken into

account. Considering a cell of volume ∆lnQ2∆ln(1/x) in the phase space, number

of gluons increases through splitting and decreases through recombination and this

picture allows one to write the modification of the gluonic density as [41, 42]

∂2xg(x,Q2)

∂ln(1/x)∂ lnQ2
=

αsNc

π
xg(x,Q2)− α2

sγ

πQ2R2
[xg(x,Q2)]2, (2.13)

which is known as the GLR-MQ equation. The factor γ is found to be γ = 81/16

for Nc = 3, as evaluated by Mueller and Qiu [30]. Here the gluon distribution

is represented by G(x,Q2) = xg(x,Q2), where g(x,Q2) is the gluon density. The

quark-gluon emission diagrams are ignored because of their negligible influence in the

gluon-dominated small-x domain. The first term in the right hand side of Eq.(2.15)

represents the usual DGLAP term in the DLLA and hence linear in gluon field. The

second term, having a negative sign controls the growth of the gluon distribution

generated by the linear term at small-x and consequently delineates shadowing cor-

rections emerging from recombination of two gluons into one. Likewise, the GLR-MQ

equation for sea quark distribution can be written as

∂xq(x,Q2)

∂ln(1/x)∂ lnQ2
=

∂G(x,Q2)

∂ lnQ2

∣∣∣
DGLAP

− 27

160

α2
s(Q

2)

R2Q2

[
G
(x
ω
,Q2

)]2
+HT, (2.14)

where HT denotes a higher-dimensional gluon distribution term suggested by Mueller

and Qiu [30].

In the linear QCD evolution of DIS structure functions like the DGLAP or BFKL

only the splitting of quarks and gluons is considered. This leads to a constant increase

of the parton densities at small-x eventually violating the unitarity bound and are

therefore expected to be tamed by the inverse recombination processes. Therefore,

in order to account for gluon recombination processes, apart from the production

diagrams, the GLR-MQ equations also include the dominant non-ladder contributions

denoted as the fan diagrams. The fan diagrams take into consideration some of the

gluon recombination processes that turn significant at small-x and therefore plays

the key role in the restoration of unitarity. These diagrams are depicted in Fig.2.4.

The gluon recombination term in the GLR-MQ equation contains a factor 1/Q2,

whose dimension is balanced by the parameter R representing the size of the region

containing the recombining gluons. The size of the nonlinear term varies as 1/R2.

The value of R depends on how the gluons are distributed within the proton or how
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Figure 2.4: Fan-diagrams contributing to the GLR-MQ equation

the gluon ladders couple to each other. The gluon ladders may emerge from different

constituents of the proton or from the same constituent. The gluons are supposed to

be distributed uniformly across the whole of the proton if the gluon ladders emerge off

distinct valence quarks. In that case R is of the order of proton radius Rh, that is to

say R ∼ 5 GeV−1 and recombination or shadowing correction is negligibly small [29].

On the other hand, if the gluon ladders couple to the same parton then it leads to a

higher gluon density in the parton’s vicinity. Such smaller regions within the proton

where the gluon density is higher than the average are known as the so-called ‘hot

spots’ [43, 44]. The hot spots could specify the fast onset of gluon-gluon interactions

in the environs of the emitting parton and so boost the recombination effect. The

value of R for such hot spot, is considered to be of the order of the transverse size of

a valence quark i.e R ∼ 2 GeV−1.

A remarkable feature of the GLR-MQ equation is that it predicts the saturation

momentum in the asymptotic region x → 0. Moreover, it predicts a critical line

separating the perturbative regime from saturation regime and it is valid only in

the vicinity of this critical line [42]. The general benchmark of this equation is that

the nonlinear corrections should be small as compared to the linear term, otherwise

further corrections must be taken into account and non-perturbative effects could be

of significance. As the GLR-MQ equation only includes the first nonlinear term, so
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this equation is not legitimate in very high density region where the contributions

from the higher order terms become crucial.

2.2.2 MD-DGLAP equation

The MD-DGLAP equation [31, 32] sums up all possible twist-4 cut diagrams in the

LL(Q2) approximation and describes the corrections of parton recombination to the

QCD evolution equation. These equations are advocated by Zhu and Ruan. This

equation is obtained by aggregating the Feynman diagrams in the framework of the

time-ordered perturbation theory (TOPT) [45] instead of the AGK cutting rule [39].

The MD-DGLAP equation for gluon distribution is [31, 32]

dxg(x,Q2)

dln(Q2)
= Pgg ⊗G(x,Q2) + Pgq ⊗ S(x,Q2)

+
α2
sk

Q2

∫ x

x/2

dx1xx1G
2(x1, Q

2)
∑
i

P gg→g
i (x1, x)

−α2
sk

Q2

∫ 1/2

x

dx1xx1G
2(x1, Q

2)
∑
i

P gg→g
i (x1, x) (2.15)

and for sea quark distribution is [31, 32]

dxq(x,Q2)

dln(Q2)
= Pqg ⊗G(x,Q2) + Pqq ⊗ S(x,Q2)

+
α2
sk

Q2

∫ x

x/2

dx1xx1G
2(x1, Q

2)
∑
i

P gg→q
i (x1, x)

−α2
sk

Q2

∫ 1/2

x

dx1xx1G
2(x1, Q

2)
∑
i

P gg→q
i (x1, x), (2.16)

where P are the evolution kernels of the linear DGLAP equation. The recombination

functions are∑
i

P gg→g
i (x1, x) =

27

64

(2x1 − x)(−136xx3
1 − 64x1x

3 + 132x2
1x

2 + 99x4
1 + 16x4)

xx5
1

,

(2.17)∑
i

P gg→q
i (x1, x) =

1

48

(2x1 − x)(36x3
1 + 49x1x

2 − 14x3 − 60x2x)

x5
1

. (2.18)

The nonlinear coefficient k depends on the definition of the double parton dis-

tribution and the geometric distributions of partons inside the target. The positive

third terms on the right-hand side of both Eq.(2.17) and Eq.(2.18) represent the

anti-shadowing effect, whereas the negative fourth term is the result of the shad-

owing correction. The concurrence of shadowing and anti-shadowing in the QCD
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evolution of the parton densities is a usual demand for the local momentum conser-

vation. The shadowing and anti-shadowing terms are defined on distinct kinematic

regions [x, 1/2] and [x/2, x] respectively. Hence, the overall recombination effects in

Eq.(2.17) are not only associated to the value of gluon density, but also depend on

the slope of the gluon distribution in the space [x/2, x]. This implies that a steeper

gluon distribution has an intense antishadowing effect as compared to a lower gluon

distribution.

2.2.3 BK equation

The BK evolution equation [33, 34] is based on the BFKL equation and was de-

rived by Balitsky and Kovchegov in the large-Nc limit, with Nc being the number

of colors. The BK equation is an upgraded form of the GLR-MQ equation and it

determines the saturation of parton densities at very small-x. This equation is writ-

ten for the scattering amplitude N . It provides an explanation of the more specific

triple-pomeron vertex [46, 47] and can be utilized for the non-forward amplitude.

The BK equation is obtained in the leading ln(1/x) approximation of perturbative

QCD, i.e. it sums all contributions of the order (αs ln(1/x))
n. The contributions of

the orders αs(αs ln(1/x))
n and αs lnQ

2(αs ln(1/x))
n are not included in this equation.

The phenomenological analysis of this equation is performed in the dipole model [48,

49] approximation, where the nonlinear terms are supposed to be formed by the

dipole splitting and the screening or shadowing effects are emerged from the double

scattering of the probe on the final states. The BK equation reads

∂N(r, Y ; b)

∂Y
=

ᾱs

2π

∫
d2r′r2

(r − r′)2r′2

×
[
2N
(
r′, Y ; b+

1

2
(r − r′)

)
−N(r, Y ; b)

−N
(
r′, Y ; b− 1

2
(r − r′)

)
N
(
r − r′, Y ; b− 1

2
r′
)]
, (2.19)

where ᾱs = (αsNc)/π, N(r, Y ; b) is the scattering amplitude of interaction for the

dipole with the size r and rapidity Y = ln(1/x), at impact parameter b. In the large

Nc limit CF = Nc/2, where Nc is the number of colors.

Eq.(2.21) is an integro-differential equation and it presents the scattering am-

plitude N(r, Y ; b) at all rapidities Y > 0 provided the initial condition at Y = 0 is

known. The physical significance of Eq.(2.21) is that the dipole of size r decays in
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two dipoles of sizes r′ and r − r′ which interact with the target. The linear part

of Eq.(2.21) is the usual LO BFKL equation [5-7], which accounts for the evolution

of the multiplicity of the color dipoles of fixed size in respect of the rapidity Y .

The nonlinear term considers a coexisting interaction of two produced dipoles with

the target and it sums the high twist contributions. An outstanding feature of the

BK equation is that its solution predicts a limiting form of the scattering amplitude

resulting in parton saturation.

2.2.4 MD-BFKL equation

The nonlinear MD-BFKL [35] equation was suggested by Zhu, Shen and Ruan to

describes the corrections of the gluon recombination to the BFKL equation, but it

differs from the BK equation. The MD-BFKL equation forecasts an intense shadow-

ing effect, which subdues the gluon density. Surprisingly, it generates the extinction

of gluons below the saturation region. This unforeseen effect of gluon extinction be-

low the saturation region is induced by an apparent chaotic solution of the equation

as suggested in [35]. The MD-BFKL is defined as

−x
∂f(x, kb0)

∂x
=

αsNc

2π2

∫
d2kbc

k2
b0

k2
bck

2
c0

2f(x, kbc)−
αsNc

2π2
f(x, kb0)

∫
d2kbc

k2
b0

k2
bck

2
c0

− 18α2
s

π2R2

N2
c

N2
c − 1

∫
d2kbc

1

k2
bc

k2
b0

k2
bck

2
c0

f 2(x, kbc)

+
9α2

s

π2R2

N2
c

N2
c − 1

f 2(x, kb0)

∫
d2kbc

1

k2
b0

k2
b0

k2
bck

2
c0

. (2.20)

The nonlinear part of the MD-BFKL equation has an infra red (IR) divergence

very much alike the BFKL kernel and as a matter of course, it requires the regu-

larization scheme alike the BFKL equation. The evolution kernels in the linear and

nonlinear parts of the MD-BFKL equation are fixed by using the same procedure

of summations of the real and virtual processes. This equation is derived on the

basis of the TOPT cutting rules just as the MD-DGLAP equation to include the

contributions from the virtual processes in the linear and nonlinear parts of the MD-

BFKL equation. The MD-BFKL and BK equations differ from each other in their

assumptions of regularization schemes. In MD-BFKL equation the singularities in

the nonlinear real part are aborted by the contributions from the complementary vir-

tual processes, whereas such singularities are assimilated into the double amplitude

NN in BK equation.
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2.2.5 JIMWLK equation

The JIMWLK evolution equation [36-38], advocated by Jalilian-Marian, Iancu, McLer-

ran, Weigert, Leonidov and Kovner, is the renormalization group equation (RGE)

for the Color Glass Condenstate and describes the small-x hadronic physics in the

regime of very high gluon density. This is a functional Fokker-Planck equation re-

garding a classical random color source, which defines the color charge density of the

partons with large-x [38]. This equation controls the evolution with rapidity of the

statistical weight function for the color glass field.

The JIMWLK equation in the compact form is [50]

∂τẐτ [U ] = −1

2
i∇a

xχ
ab
xyi∇b

yZτ [U ], (2.21)

where Ẑτ [U ] is the weight functional and it governs the correlators O[U ] of U fields

conforming to ⟨O[U ]⟩τ =
∫
D̂[U ]O[U ]Zτ [U ], with D̂[U ] being a functional Haar mea-

sure [50]. ∇a
x are functional form of the left-invariant vector fields affecting Uy in

accordance with

i∇a
xUy = Uxt

aδ(2)xy , (2.22)

where Ux are the Wilson line variables representing the kinematically enhanced de-

grees of freedom. Again

χab
xy =

αs

π2

∫
d2zKxyz[(1− Ũ †

xŨz)(1− Ũ †
z Ũx)]

ab,

and

Kxyz =
(x− z).(z − y)

(x− z)2(z − y2)
. (2.23)

The deduction of the JIMWLK equation demands an analytic estimation to all

orders in the environment of a classical gluon field for a random light cone source. The

solution of the JIMWLK equation is normally anticipated to enable the saturation

momentum to raise constantly as y → ∞. Moreover its solution is supposed to be

universal. In the restrain of weak field the JIMWLK equation scales down to the

BFKL equation, whereas in the large Nc limit, it grows to be equivalent to the BK

equation.
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2.3 Solutions of evolution equations

The QCD evolution equations are the underlying theoretical tools to compute the

quark and gluon distributions and eventually the DIS structure functions. On that

account the solutions of the evolution equations are drawing attention substantially.

The solutions of the DGLAP equation for the QCD evolution of PDFs have been dis-

cussed considerably over the past years. There exist two main classes of approaches:

those that solve the equation directly in x-space, and those that solve it for Mellin

transforms of the parton densities and subsequently invert the transforms back to

x-space. Some available programs that deal with DGLAP evolution are CANDIA

[51] based on the logarithmic expansions in x-space, QCD PEGASUS [52], which is

based on the use of Mellin moments, HOPPET [53] and QCDNUM [54]. HOPPET

is a Fortran package for carrying out QCD DGLAP evolution and other common

manipulations of PDFs. The Fortran package QCD PEGASUS provides fast, flexi-

ble and accurate solutions of the evolution equations for unpolarized and polarized

parton distributions of hadrons in perturbative QCD. Similarly QCDNUM is a For-

tran program that numerically evolves parton densities or fragmentation functions

up to NNLO in perturbative QCD. Most of the methods used for the solution of

DGLAP equation are numerical. Laguerre polynomials [55, 56], Brute-Force method

[57], Matrix method [58], Mellin transformation [59, 60] etc. are different methods

used to solve DGLAP evolution equations. The shortcomings common to all are the

computer time required and decreasing accuracy for x → 0. More precise approach

to the solution of the DGLAP evolution equations is the matrix approach, but it is

also a numerical solution. A numerical solution does not provide the full control on

the employed phenomenological parameters, and the transparency and simplicity of

physical interpretation are lost if one relies only on the numerical solutions.

As an alternative to the numerical solution, one can study the behavior of quarks

and gluons via analytic solutions of the evolution equations. Even though exact

analytic solutions of the DGLAP equations cannot be obtained in the whole range of

x andQ2, such solutions are possible under definite conditions and are fairly successful

as far as the HERA small-x data are concerned. In recent years, such a scheme in

the analytic study of the DGLAP equations has been reported with considerable

phenomenological success [61-67]. The Taylor series expansion method, the method
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of characteristic and the Regge theory methods are some of the very simple and frugal

analytical methods that have been utilized widely to obtain the solutions of DGLAP

equations. Part I of this thesis also reports the analytical solutions of the DGLAP

equations for DIS structure functions upto NNLO with significant phenomenological

triumph.

In contrast to the DGLAP equation, it is very difficult to the solve the BFKL

and CCFM equations. Although the solution of the LO BFKL evolution is known,

but regardless of a number of attempts, it seems that an exact analytical solution

of the NLO BFKL equation, or a general all-order BFKL equation in QCD is still

unavailable. Nevertheless, in a conformal field theory without the running of the

coupling, i.e. in the N = 4 super Yang-Mills theory, the form of the solution of the

BFKL equation to all-order has been identified [68, 69]. The numerical solution of

CCFM equation can be obtained by monte-carlo approach CASCADE to study the

small-x regime. Although in the single loop approximation the CCFM equatiion can

be solved analytically [70], but due the non Sudakov form-factor the solution beyond

the single-loop approximation is less apparent.

The solutions of the nonlinear evolution equations, on the other hand, are par-

ticularly important for understanding the nonlinear effects of gluon-gluon interaction

due to the high gluon density at small-x. The solution of nonlinear evolution equa-

tions also provide the determination of the saturation momentum, which incorporates

physics in addition to that of the linear evolution equations commonly used to fit the

DIS data. It is very difficult to solve the nonlinear equations analytically, unlike the

linear DGLAP equations. However the studies on the solutions and viable general-

izations of the GLR-MQ type equations in different approaches have been revealed

in the last few years [25, 28, 29, 71-80]. In Refs. [29, 71-74] the solutions of GLR-MQ

type nonlinear equations are reported in semi classical approach using characteris-

tics method which leads to existence of a critical line separating the perturbative

regime from the nonperturbative one. Here it is shown that all characteristics in the

region of small-x cannot cross this line but can approach it. Again a new equation

is proposed in Ref.[75] which generalizes the GLR equation and allows to probing

into smaller distance in the dense parton system considering the shadowing effects

more exclusively by including multigluon correlations. The general solution to the
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new equation is obtained in in an eikonal approach and fixed αs. A new approach for

searching a solution of the nonlinear GLR-MQ evolution equation in the nonpertur-

bative part of the small-x region is discussed in Ref [76]. Here it is justified that the

suggested solution satisfies all physics restrictions and there is only one solution that

complements the perturbative DGLAP evolution. A color dipole approach to the

solution to the nonlinear GLR-MQ like equation for high parton density is suggested

in the full kinematic region including x → 0 in Ref.[77]. The solution replicates the

saturation of the gluon density. However due to moderate dependence on the impact

parameter, the saturation gives rises to the dipole-target total cross section propor-

tional to ln(1/x) in the region of very small-x. A numerical analysis of the GLR-MQ

equation is presented in Ref. [78] where the signatures of gluon recombination are

discussed. They also provide a simple and qualitative idea to explore the H1 [79] ex-

perimental data for evidence of gluon recombination. Similarly, a numerical solution

of GLR-MQ equation is suggested in Ref.[25], where the effects of the first nonlin-

ear corrections to the DGLAP evolution equations are studied by using the recent

HERA data for the structure function F2(x,Q
2). It is argued in this paper that the

nonlinear corrections become important at x ≤ 10−3 and Q2 ≤ 10 GeV2, but become

negligible at large-x and large-Q2. In Ref.[28] The effect of absorptive corrections

due to parton recombination on the parton distributions of the proton is discussed at

small-x in a more precise version of the GLRMQ equations using a truncated version

of the MRST2001 NLO analysis [26]. Moreover the approximate analytical solutions

of the nonlinear GLR-MQ evolution equation have also been reported in recent years

[80, 81]. In part II of this thesis we present a semi-analytical approach to solve the

GLR-MQ equation in the vicinity of saturation and make a deliberate attempt to

explore the effect of nonlinear or shadowing corrections in the kinematic region of

small-x and moderate Q2.

Unlike GLR-MQ the other nonlinear equations are comparatively complicated to

solve. The numerical solutions to BK or JIMWLK nonlinear equations in the presence

of the impact parameter is very challenging. The JIMWLK equation is difficult to

solve, even numerically as it consist of an infinite hierarchy of coupled evolution

equations. The BK hierarchy is a special case of the JIMWLK equation where

the primary projectile is set and captured by a quark-antiquark pair. For practical
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calculations one may use the average field approximation and thereby diminish a

full infinite hierarchy to a single closed equation. Even if the full analytical solution

of the BK equation is not known, a number of its general properties, such as the

existence and shape of limiting solutions, have been determined in both analytical

[82-84] and numerical [85-89] approaches in recent years. On the other hand, in

Ref.[90] numerical solutions to the MD-DGLAP equation are reported in the small-x

region using a with GRV like input distributions. Here the the small-x behavior

parton distributions in the nucleus and free proton are predicted numerically and it

is seen that gluon recombination at the twist-4 level suppresses the rapid increase of

parton densities towards small-x. It is further claimed that saturation and partial

saturation occur sooner than the saturation scale Q2
s is reached.
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