
Chapter 3

NNLO Analysis of Singlet and
Non-singlet Structure Functions in
the DGLAP Approach

3.1 Introduction

Structure functions in lepton-nucleon DIS are the entrenched observables exploring

QCD. They are defined as convolution of the universal parton momentum distribu-

tions and coefficient functions, which contain information about the boson-parton

interaction. Therefore the structure functions provide exclusive information about

the deep structure of hadrons and most importantly, they form the backbone of

our knowledge of the parton densities, which are indispensable for analyses of hard

scattering processes. Thus the measurements of the structure functions allow pertur-

bative QCD to be precisely tested. The standard and the basic tool for theoretical

investigation of DIS structure functions are the DGLAP evolution equations [1-4].

Therefore the solutions of DGLAP evolution equations give quark and gluon distri-

bution functions which ultimately produce proton, neutron and deuteron structure

functions.

The solutions of the unpolarized DGLAP equation for the QCD evolution of

structure functions have been discussed considerably over the past years. The stan-

dard and the most extensively used procedure of studying the hadron structure func-

tions is via the numerical solution of these equations [5-10], with excellent agreement

with the DIS data over a wide kinematic region in x and Q2. However, apart from the
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numerical solution, there is the alternative approach of studying analytically these

equations at small-x. Although exact analytic solutions of the DGLAP equations

cannot be obtained in the entire range of x and Q2, such solutions are possible under

certain conditions [11, 12] and many approximated analytical solutions of DGLAP

evolution equations suitable at small-x, have been reported in recent years [13-22]

with considerable phenomenological success.

The singlet and non-singlet structure functions in DIS i.e. the flavor indepen-

dent and flavor dependent contributions to the structure functions play the key role

for accurate determination of the quark and gluon densities and therefore they can

be considered as the basis for the analysis of other structure functions. In this

chapter, by using a Taylor series expansion valid at small-x, we first transform the

DGLAP equation, which is an integro-differential equation, into a partial differential

equation in the two variables (x,Q2) and the resulting equation is then solved at

LO, NLO and NNLO respectively by the Lagrange’s auxiliary method. Inclusion of

the NNLO contributions considerably reduces the theoretical uncertainty of deter-

minations of the quark and gluon densities from DIS structure functions. Here, we

investigate the impact of the NNLO contributions on the evolution of the singlet and

non-singlet structure function respectively considering the corresponding DGLAP

evolution equations. The singlet distribution is comparatively complicated to com-

pute as it is coupled to the the gluon densities. We also calculate the Q2-evolution

of deuteron and proton structure functions upto NNLO from the solutions of singlet

and non-singlet structure functions. Moreover the x-evolution of deuteron structure

function is calculated upto NNLO. We compare our predictions with NMC [23], E665

[24], and H1 [25] experimental data as well as with the NNPDF [26] parametrization

based on the NMC and BCDMS data.

3.2 Formalism

3.2.1 General framework

The singlet and non-singlet quark density of a hadron is given by [27]

qS(x,Q
2) =

Nf∑
i=1

[qi(x,Q
2) + qi(x,Q

2)], (3.1)
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qNS(x,Q
2) =

Nf∑
i=1

[qi(x,Q
2)− qi(x,Q

2)], (3.2)

where qi(x,Q
2) and qi(x,Q

2) represent the number distribution of quarks and anti-

quarks, respectively, in the fractional hadron momentum x. The corresponding gluon

distribution is denoted by g(x,Q2). The subscript i indicates the flavour of the quarks

or anti-quarks and Nf is the number of effectively massless flavours.

The DGLAP evolution equation in the singlet sector in the standard form is

given by [28]

∂

∂ lnQ2

(
qS
g

)
=

(
Pqq Pqg

Pgq Pgg

)
⊗
(

qS
g

)
, (3.3)

where Pqq, Pqg, Pgq, Pgg are splitting functions. The singlet structure function in-

volves the quark-quark splitting function Pqq and gluon-quark splitting function Pqg,

whereas non-singlet structure function involves only the quark-quark splitting func-

tion Pqq. The quark-quark splitting function Pqq can be expressed as a power series

of αs(Q
2) [10]

Pqq(x,Q
2) =

αs(Q
2)

2π
P (0)
qq (x) +

(αs(Q
2)

2π

)2
P (1)
qq (x) +

(αs(Q
2)

2π

)3
P (2)
qq (x)

+OP (3)
qq (x), (3.4)

where P
(0)
qq (x), P

(1)
qq (x) and P

(2)
qq (x) are LO, NLO and NNLO quark-quark splitting

functions respectively. Other splitting functions can be expressed in a similar way.

The symbol ⊗ stands for the standard Mellin Convolution in the momentum variable

defined as

a(x)⊗ b(x) ≡
∫ 1

x

dω

ω
a(ω)b

(x
ω

)
. (3.5)

Thus, using Eq. (3.5), Eq. (3.3) can be written as

∂

∂ lnQ2

(
qS(x,Q

2)
g(x,Q2)

)
=

∫ 1

x

dω

ω

(
Pqq(ω) Pqg(ω)
Pgq(ω) Pgg(ω)

)(
qS(x/ω,Q

2)
g(x/ω,Q2),

)
(3.6)

which implies

∂qS(x,Q
2)

∂ lnQ2
=

∫ 1

x

dω

ω

(
Pqq(ω)qS(x/ω,Q

2) + Pqg(ω)g(x/ω,Q
2)
)
, (3.7)

∂g(x,Q2)

∂ lnQ2
=

∫ 1

x

dω

ω

(
Pgq(ω)qS(x/ω,Q

2) + Pgg(ω)g(x/ω,Q
2)
)
. (3.8)
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On the other hand, the DGLAP evolution equation in the non-singlet sector in

the standard form is given by [29]

∂qNS(x,Q
2)

∂ lnQ2
= PNS(x,Q

2)⊗ qNS(x,Q
2), (3.9)

where PNS(x,Q
2) is the non-singlet kernel known perturbatively up to the first few

orders in αs(Q
2) [30]. Using equation (3.5), equations (3.9) can be expressed as

∂qNS(x,Q
2)

∂ lnQ2
=

∫ 1

x

dω

ω
PNS(ω)qNS(x/ω,Q

2). (3.10)

The quark-quark splitting function Pqq in equation (3.6) can be expressed as

Pqq = PNS + Nf (P
S
qq + P S

qq) = PNS + PPS. P S
qq and P S

qq are the flavor-independent

contributions to the quark-quark and quark-antiquark splitting functions respectively.

The non-singlet contribution PNS dominates Pqq at large-x whereas at very small-

x the pure singlet term PPS dominates over PNS [31]. The quark-gluon (Pqg) and

gluon-quark (Pgq) entries in equation (3.6) are given by Pqg = NfPqig and Pgq = Pgqi ,

where Pqig and Pgqi are the flavor-independent splitting functions.

The running coupling constant αS(Q
2) has the form [14, 32]

αs(Q
2)

2π
=

2

β0ln(Q2/Λ2)
, (3.11)

αs(Q
2)

2π
=

2

β0ln(Q2/Λ2)

[
1− β1

β2
0

ln
(
ln(Q2/Λ2)

)
ln(Q2/Λ2)

]
, (3.12)

αs(Q
2)

2π
=

2

β0ln(Q2/Λ2)

[
1− β1

β2
0

ln
(
ln(Q2/Λ2)

)
ln(Q2/Λ2)

+
1

β3
0 ln(Q

2/Λ2)

×
{β2

1

β0

(ln2
(
ln(Q2/Λ2)

)
− ln

(
ln(Q2/Λ2)

)
− 1) + β2

}]
(3.13)

at LO, NLO and NNLO respectively. Here

β0 =
11

3
Nc −

4

3
Tf = 11− 2

3
Nf ,

β1 =
34

3
N2

c − 10

3
NcNf − 2CFNf = 102− 38

3
Nf ,

β2 =
2857

54
N3

c + 2C2
FTf −

205

9
CFNcTf −

1415

27
N2

c Tf +
44

9
CFT

2
f +

158

27
NcT

2
f

=
2857

2
− 6673

18
Nf +

325

54
N2

f

are the one-loop, two-loop and three-loop corrections to the QCD β-function and Nf

being the number of quark flavours. Here we use Nf = 4, Nc = 3. The Casimir

operators of the color SU(3) are defined as CF =
N2

c − 1

2Nc

=
4

3
and Tf =

1

2
Nf .
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3.2.2 LO analysis of singlet and non-singlet structure func-
tions

Substituting the explicit form of the LO splitting functions [4, 11] in Eqs. (3.7) and

(3.10) and simplifying, the DGLAP evolution equations for singlet and non-singlet

structure functions at LO can be written as

∂F S
2 (x, t)

∂t
=

αS(t)

2π

[2
3
{3 + 4 ln(1− x)}F S

2 (x, t) + IS1 (x, t)
]
, (3.14)

∂FNS
2 (x, t)

∂t
=

αS(t)

2π

[2
3
{3 + 4 ln(1− x)}FNS

2 (x, t) + INS
1 (x, t)

]
, (3.15)

where F S
2 (x, t) =

∑Nf

i=1 e
2
ix[qi + qi], and FNS

2 (x, t) =
∑Nf

i=1 e
2
ix[qi − qi]]. The integral

functions are given by

IS1 (x, t) =
4

3

∫ 1

x

dω

1− ω

[
(1 + ω2)F S

2

(x
ω
, t
)
− 2F S

2 (x, t)
]

+Nf

∫ 1

x

{ω2 + (1− ω)2}G
(x
ω
, t
)
dω, (3.16)

INS
1 (x, t) =

4

3

∫ 1

x

dω

1− ω

[
(1 + ω2)FNS

2

(x
ω
, t
)
− 2FNS

2 (x, t)
]
. (3.17)

Here we use a more convenient variable t defined by t = ln
(Q2

Λ2

)
with Λ being the

QCD cut off parameter, the scale at which partons turn themselves into hadrons.

To simplify and reduce the integro-differential equation to a partial differential

equation we introduce a variable u = 1−ω so that the argument x/ω can be expressed

as

x

ω
=

x

1− u
= x+

xu

1− u
. (3.18)

Since x < ω < 1, so we have 0 < u < 1 − x. This implies that the above series is

convergent for |u| < 1. Now using Eq. (3.18), we can expand F S
2 (x/ω, t) by Taylor

expansion series as

F S
2

(x
ω
, t
)

= F S
2

(
x+

xu

1− u
, t
)

= F S
2 (x, t) +

( xu

1− u

)∂F S
2 (x, t)

∂x
+

1

2

( xu

1− u

)2∂2F S
2 (x, t)

∂2x
+ · · · .

(3.19)

As x is small in our region of discussion, the terms containing x2 and higher powers

of x can be neglected and therefore Eq. (3.19) takes the form

F S
2

(x
ω
, t
)
= F S

2 (x, t) +
xu

1− u

∂F S
2 (x, t)

∂x
. (3.20)
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Similarly,

G
(x
ω
, t
)
= G(x, t) +

xu

1− u

∂G(x, t)

∂x
, (3.21)

FNS
2

(x
ω
, t
)
= FNS

2 (x, t) +
xu

1− u

∂FNS
2 (x, t)

∂x
. (3.22)

Putting Eqs. (3.20) and (3.21) in Eq. (3.16) and carrying out the integrations

in u we get from Eq. (3.14)

∂F S
2 (x, t)

∂t
=

αS(t)

2π

[
A1(x)F

S
2 (x, t) + A2(x)

∂F S
2 (x, t)

∂x
+ A3(x)G(x, t)

+ A4(x)
∂G(x, t)

∂x

]
, (3.23)

where Ai(x) (i=1,2,3,4) are functions of x (see Appendix A). Eq.(3.23) is a first order

partial differential equation for the singlet structure function F S
2 (x, t) with respect to

the variables x and t. Beyond its traditional use in t or Q2-evolution (t = ln(Q2/Λ2)),

it also provides x-evolution at small-x. There are various methods for solving the

partial differential equations in two variables. We here adopt the Lagrange’s auxiliary

method as mentioned in the introduction.

The Q2-evolution of the proton structure function F2(x,Q
2) is related to the

gluon parton densities in the proton G(x,Q2) and to the strong interaction cou-

pling constant αS. The gluon parton densities cannot be measured directly through

experiments. It is, therefore, important to measure the G(x,Q2) indirectly using

F2(x,Q
2). Hence the direct relations between F2(x,Q

2) and the G(x,Q2) are ex-

tremely important because using those relations the experimental values of G(x,Q2)

can be extracted using the data on F2(x,Q
2). Therefore, in the analytical solutions

of DGLAP evolution equations for singlet structure functions or gluon parton den-

sities, a relation between singlet structure function and gluon parton densities has

to be assumed. The commonly used relation is G(x, t) = K(x)F S
2 (x, t) [15, 16, 19],

where K(x) is a parameter to be determined from phenomenological analysis. We

can consider this form as the evolution equations of gluon parton densities and singlet

structure functions are in the same forms of derivative with respect to t. Moreover

the input singlet and gluon parameterizations, taken from global analysis of PDFs,

in particular from the MSTW08 parton set, to incorporate different high precision

data, are also functions of x at fixed Q2 [33]. So the relation between singlet structure

function and gluon parton densities will come out in terms of x at fixed-Q2. However,
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the actual functional form of K(x) can be determined by simultaneous solutions of

coupled equations of singlet structure functions and gluon parton densities. Further

discussions on K(x) are presented in Appendix G.

Hence Eq.(3.23) takes the form

−t
∂F S

2 (x, t)

∂t
+ LS

1 (x)
∂F S

2 (x, t)

∂x
+MS

1 (x)F
S
2 (x, t) = 0, (3.24)

where

LS
1 (x) = Af

[
A2(x) +K(x)A4(x)

]
, (3.25)

MS
1 (x) = Af

[
A1(x) +K(x)A3(x) +

∂K(x)

∂x
A4(x)

]
, (3.26)

with Af=
2
β0
. Now the general solution of the Eq.(3.24) is

F (U, V ) = 0, (3.27)

where F (U, V ) is an arbitrary function of U and V . Here, U(x, t, F S
2 ) = k1 and

V (x, t, F S
2 ) = k2 are two independent solutions of the Lagrange’s equation

∂x

LS
1 (x)

=
∂t

−t
=

∂F S
2 (x, t)

−MS
1 (x)F

S
2 (x, t)

. (3.28)

Then by solving Eq. (3.28) we obtain

U(x, t, F S
2 ) = t · exp

[ ∫ 1

LS
1 (x)

dx
]
, (3.29)

V (x, t, F S
2 ) = F S

2 (x, t) · exp
[ ∫ MS

1 (x)

LS
1 (x)

dx
]
. (3.30)

Thus we see that it has no unique solution. In this approach we attempt to

extract a particular solution that obeys some physical constraints on the structure

function. The simplest possibility to get a solution is that a linear combination of U

and V should obey the Eq. (3.27) so that

α · U + β · V = 0, (3.31)

where α and β are arbitrary constants to be determined from the boundary conditions

on F S
2 . Putting the values of U and V from Eq.(3.29) and Eq.(3.30) in this equation

we get

αt · exp
[ ∫ 1

LS
1 (x)

dx
]
+ βF S

2 (x, t) · exp
[ ∫ MS

1 (x)

LS
1 (x)

dx
]
= 0, (3.32)
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which implies

F S
2 (x, t) = −γt · exp

[ ∫ ( 1

LS
1 (x)

− MS
1 (x)

LS
1 (x)

)
dx
]
, (3.33)

where γ = α
β
is a constant. Now at t = t0, where t0 = ln

(Q2
0

Λ2

)
for any lower value

Q2 = Q2
0, we define

F S
2 (x, t0) = −γt0 · exp

[ ∫ ( 1

LS
1 (x)

− MS
1 (x)

LS
1 (x)

)
dx
]
. (3.34)

Then Eqs. (3.33) and (3.34) lead us to

F S
2 (x, t) = F S

2 (x, t0)
( t

t0

)
. (3.35)

This gives the t-evolution for singlet structure function at LO at small-x. Again

defining at a higher value of x = x0,

F S
2 (x0, t) = −γt · exp

[ ∫ ( 1

LS
1 (x)

− MS
1 (x)

LS
1 (x)

)
dx
]
x=x0

, (3.36)

we obtain

F S
2 (x, t) = F S

2 (x0, t) · exp
[ ∫ x

x0

( 1

LS
1 (x)

− MS
1 (x)

LS
1 (x)

)
dx
]
. (3.37)

This gives the x-evolutions of singlet structure functions at LO.

Now substituting the approximated form of Taylor expansion of non-singlet struc-

ture function from Eq.(3.22) in Eq.(3.17) and performing u-integrations we obtain

from Eq.(3.15)

∂FNS
2 (x, t)

∂t
=

αS(t)

2π

[
A1(x)F

NS
2 (x, t) + A2(x)

∂FNS
2 (x, t)

∂x

]
, (3.38)

which we can rewrite as

−t
∂FNS

2 (x, t)

∂t
+ LNS

1 (x)
∂FNS

2 (x, t)

∂x
+MNS

1 (x)FNS
2 (x, t) = 0. (3.39)

Here

LNS
1 (x) = AfA2(x), (3.40)

MNS
1 (x) = AfA1(x). (3.41)

Proceeding in the same way as the singlet case we solve Eq. (3.39) for non-singlet

structure function and obtain

FNS
2 (x, t) = FNS

2 (x, t0)
( t

t0

)
(3.42)
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and

FNS
2 (x, t) = FNS

2 (x0, t) · exp
[ ∫ x

x0

( 1

LNS
1 (x)

− MNS
1 (x)

LNS
1 (x)

)
dx
]
, (3.43)

which give the t and x-evolutions of non-singlet structure functions respectively at

LO respectively.

For phenomenological analysis, we compare our results with various experimental

structure functions. The deuteron structure function measured in DIS can be written

in terms of the singlet structure function respectively as [11]

F d
2 (x, t) =

5

9
F S
2 (x, t). (3.44)

Again the proton structure function measured in DIS can be expressed in terms of

the singlet and non-singlet structure function as [11]

F p
2 (x, t) =

5

18
F S
2 (x, t) +

3

18
FNS
2 (x, t). (3.45)

Substituting Eqs. (3.35) and (3.37) in Eq. (3.44), the t and x-evolutions of deuteron

structure function at LO can be obtained as

F d
2 (x, t) = F d

2 (x, t0)
( t

t0

)
(3.46)

and

F d
2 (x, t) = F d

2 (x0, t) · exp
[ ∫ x

x0

( 1

LS
1 (x)

− MS
1 (x)

LS
1 (x)

)
dx
]
. (3.47)

Here the input functions are F d
2 (x, t0) =

5
9
F S
2 (x, t0) and F d

2 (x0, t) =
5
9
F S
2 (x0, t).

On the other hand, substituting Eqs. (3.35) and (3.42) in Eq. (3.45), we get the

t-evolutions of proton structure function at LO

F p
2 (x, t) = F p

2 (x, t0)
( t

t0

)
, (3.48)

with the input function is F p
2 (x, t0) =

5
18
F S
2 (x, t0)+

3
18
FNS
2 (x, t0). It is to be noted that

the determination of x-evolution of proton structure function like that of deuteron

structure function is not suitable by the method adopted here. The reason is that in

order to calculate the x-evolution of proton structure function, we have to put Eqs.

(3.37) and (3.43) in Eq. (3.45). But the functions inside the integral sign of Eqs.

(3.37) and (3.43) are different and so the the input functions F S
2 (x0, t) and FNS

2 (x0, t)

have to be separated from the data points to extract the x-evolution of the proton

function, which may contain large errors.
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3.2.3 NLO analysis of singlet and non-singlet structure func-
tions

Considering the splitting functions at NLO [12, 34, 35], the DGLAP equations for

singlet and non-singlet structure functions at NLO in standard form can be written

as

∂F S
2 (x, t)

∂t
=

αS(t)

2π

[2
3
{3 + 4 ln(1− x)}F S

2 (x, t) + IS1 (x, t)
]

+
(αS(t)

2π

)2
IS2 (x, t), (3.49)

∂FNS
2 (x, t)

∂t
=

αS(t)

2π

[2
3
{3 + 4 ln(1− x)}FNS

2 (x, t) + INS
1 (x, t)

]
+
(αS(t)

2π

)2
INS
2 (x, t). (3.50)

The integral functions IS1 (x, t) and INS
1 (x, t) are defined in Eqs. (3.16) and (3.17),

whereas

IS2 (x, t) = (x− 1)F S
2 (x, t)

∫ 1

0

f(ω)dω +

∫ 1

x

f(ω)F S
2

(x
ω
, t
)
dω

+

∫ 1

x

F S
qq(ω)F

S
2

(x
ω
, t
)
dω +

∫ 1

x

F S
qg(ω)G

(x
ω
, t
)
dω, (3.51)

INS
2 (x, t) = (x− 1)FNS

2 (x, t)

∫ 1

0

f(ω)dω +

∫ 1

x

f(ω)FNS
2

(x
ω
, t
)
dω. (3.52)

The explicit forms of the functions f(ω), F S
qq(ω) and F S

qg(ω) are given in Appendix

B.

Following the same procedure as in LO, the Eqs. (3.49) and (3.50) can be

simplified as

−t
∂F S

2 (x, t)

∂t
+ LS

2 (x)
∂F S

2 (x, t)

∂x
+MS

2 (x)F
S
2 (x, t) = 0, (3.53)

−t
∂FNS

2 (x, t)

∂t
+ LNS

2 (x)
∂FNS

2 (x, t)

∂x
+MNS

2 (x)FNS
2 (x, t) = 0. (3.54)

Here

LS
2 (x) = Af

[(
A2(x) +K(x)A4(x)

)
+ T0

(
B2(x) +K(x)B4(x)

)]
, (3.55)

MS
2 (x) = Af

[(
A1(x) +K(x)A3(x) +

∂K(x)

∂x
A4(x)

)
+ T0

(
B1(x) +K(x)B3(x) +

∂K(x)

∂x
B4(x)

)]
, (3.56)
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LNS
2 (x) = Af

[
A2(x) + T0B2(x)

]
, (3.57)

MNS
2 (x) = Af

[
A1(x) + T0B1(x)

]
, (3.58)

with Bi(x) (i=1,2,3,4) being the functions of x (see Appendix A). Here we consider

the numerical parameter T0 such that T 2(t) = T0T (t) where T (t)=
αS(t)
2π and the

value of T0 is determined by phenomenological analysis. This numerical parameter

is obtained from a particular range of Q2 under study and by a suitable choice of

T0 we can reduce the difference between T 2(t) and T0T (t) to a minimum. Thus the

consideration of the parameter T0 does not give any abrupt change in our result.

Solving Eq. (3.53) we obtain the t and x-evolutions of singlet structure function

at NLO as

F S
2 (x, t) = F S

2 (x, t0)
( t1+b/t

t
1+b/t0
0

)
· exp

(b
t
− b

t0

)
(3.59)

and

F S
2 (x, t) = F S

2 (x0, t) · exp
[ ∫ x

x0

( 1

LS
2 (x)

− MS
2 (x)

LS
2 (x)

)
dx
]
, (3.60)

where b = β1

β2
0
. The input functions are defined as

F S
2 (x, t0) = −γt

(1+b/t0)
0 · exp

( b

t0

)
· exp

[ ∫ ( 1

LS
2 (x)

− MS
2 (x)

LS
2 (x)

)
dx
]
, (3.61)

F S
2 (x0, t) = −γt(1+b/t) · exp

(b
t

)
· exp

[ ∫ ( 1

LS
2 (x)

− MS
2 (x)

LS
2 (x)

)
dx
]
x=x0

. (3.62)

Now substituting Eqs. (3.59) and (3.60) in Eq. (3.44) we get

F d
2 (x, t) = F d

2 (x, t0)
( t1+b/t

t
1+b/t0
0

)
· exp

(b
t
− b

t0

)
(3.63)

and

F d
2 (x, t) = F d

2 (x0, t) · exp
[ ∫ x

x0

( 1

LS
2 (x)

− MS
2 (x)

LS
2 (x)

)
dx
]
, (3.64)

which lead us to the t and x-evolutions of deuteron structure function at NLO.

Similarly the t and x-evolutions of the non-singlet structure function at NLO are

calculated from Eq. (3.54) and given by

FNS
2 (x, t) = FNS

2 (x, t0)
( t1+b/t

t
1+b/t0
0

)
· exp

(b
t
− b

t0

)
(3.65)
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and

FNS
2 (x, t) = FNS

2 (x0, t) · exp
[ ∫ x

x0

( 1

LNS
2 (x)

− MNS
2 (x)

LNS
2 (x)

)
dx
]
. (3.66)

Thus putting Eqs. (3.59) and (3.65) in Eq. (3.45) we get

F p
2 (x, t) = F p

2 (x, t0)
( t1+b/t

t
1+b/t0
0

)
· exp

(b
t
− b

t0

)
, (3.67)

which lead us to the t-evolution of proton structure function at NLO. It is not possible

to evaluate the x-evolution of proton structure function with the present method for

the same reason mentioned earlier.

3.2.4 NNLO analysis of singlet and non-singlet structure
functions

Using the splitting functions upto NNLO and simplifying [28-31], we get the DGLAP

equations for singlet and non-singlet structure functions at NNLO as

∂F S
2 (x, t)

∂t
=

αS(t)

2π

[2
3
{3 + 4 ln(1− x)}F S

2 (x, t) + IS1 (x, t)
]

+
(αS(t)

2π

)2
IS2 (x, t) +

(αS(t)

2π

)3
IS3 (x, t), (3.68)

∂FNS
2 (x, t)

∂t
=

αS(t)

2π

[2
3
{3 + 4 ln(1− x)}FNS

2 (x, t) + INS
1 (x, t)

]
+
(αS(t)

2π

)2
INS
2 (x, t) +

(αS(t)

2π

)3
INS
3 (x, t). (3.69)

The integral functions IS3 and INS
3 are given by

IS3 (x, t) =

∫ 1

x

dω

ω

[
Pqq(x)F

S
2

(x
ω
, t
)
+ Pqg(x)G

(x
ω
, t
)]

, (3.70)

INS
3 (x, t) =

∫ 1

x

dω

ω
P 2
NS(x)F

NS
2

(x
ω
, t
)
. (3.71)

The explicit forms of the functions Pqq(x), Pqg(x) and P 2
NS(x) are given in Appendix

C.

Here we consider the numerical parameter T1 such that T 3(t) = T1T (t) where

T (t)=
αS(t)
2π . The value of T1 is determined by phenomenological analysis, like T0,

from a particular range of Q2 under study and by an appropriate choice of T1 we can

reduce the error to a minimum. Thus Eqs. (3.68) and (3.69) can be simplified as

−t
∂F S

2 (x, t)

∂t
+ LS

3 (x)
∂F S

2 (x, t)

∂x
+MS

3 (x)F
S
2 (x, t) = 0, (3.72)
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−t
∂FNS

2 (x, t)

∂t
+ LNS

3 (x)
∂FNS

2 (x, t)

∂x
+MNS

3 (x)FNS
2 (x, t) = 0. (3.73)

Here

LS
3 (x) = Af

[(
A2(x) +K(x)A4(x)

)
+ T0

(
B2(x) +K(x)B4(x)

)
+ T1

(
C2(x) +K(x)C4(x)

)]
, (3.74)

MS
3 (x) = Af

[(
A1(x) +K(x)A3(x) +

∂K(x)

∂x
A4(x)

)
+ T0

(
B1(x)

+K(x)B3(x) +
∂K(x)

∂x
B4(x)

)
+ T1

(
C1(x) +K(x)C3(x)

+
∂K(x)

∂x
C4(x)

)]
, (3.75)

LNS
3 (x) = Af

[
A2(x) + T0B2(x) + T1C2(x)

]
, (3.76)

MNS
2 (x) = Af

[
A1(x) + T0B1(x) + T1C1(x)

]
(3.77)

with Ci(x) (i=1,2,3,4) being the functions of x (see Appendix A).

We solve Eq. (3.72) following the same procedure as earlier and obtain the t and

x-evolutions of singlet structure function at NNLO given by

F S
2 (x, t) = F S

2 (x, t0)
( t1+(b−b2)/t

t
1+(b−b2)/t0
0

)
· exp

(b− c− b2 ln2 t

t
− b− c− b2 ln2 t0

t0

)
(3.78)

and

F S
2 (x, t) = F S

2 (x0, t) · exp
[ ∫ x

x0

( 1

LS
3 (x)

− MS
3 (x)

LS
3 (x)

)
dx
]

(3.79)

respectively. The input functions are defined as

F S
2 (x, t0) = −γt

(1+(b−b2)/t0)
0 · exp

(b− c− b2 ln2 t0
t0

)
· exp

[ ∫ ( 1

LS
3 (x)

− MS
3 (x)

LS
3 (x)

)
dx
]
, (3.80)

F S
2 (x0, t) = −γt(1+(b−b2)/t) · exp

(b− c− b2 ln2 t

t

)
· exp

[ ∫ ( 1

LS
3 (x)

− MS
3 (x)

LS
3 (x)

)
dx
]
x=x0

(3.81)
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with b = β1

β2
0
, c = β2

β3
0
. Accordingly substituting Eqs. (3.78) and (3.79) in Eq. (3.44)

we get

F d
2 (x, t) = F d

2 (x, t0)
( t1+(b−b2)/t

t
1+(b−b2)/t0
0

)
· exp

(b− c− b2 ln2 t

t
− b− c− b2 ln2 t0

t0

)
(3.82)

and

F d
2 (x, t) = F d

2 (x0, t) · exp
[ ∫ x

x0

( 1

LS
3 (x)

− MS
3 (x)

LS
3 (x)

)
dx
]
, (3.83)

which provide us the t and x-evolutions of deuteron structure functions at NNLO.

Thus using Eq.(3.82) we can calculate the evolution of deuteron structure function

with t or Q2 at fixed x at NNLO by choosing an appropriate input distribution

F d
2 (x, t0) at Q2 = Q2

0. Similarly Eq.(3.83) helps us to estimate the x-evolution

of deuteron structure function at fixed t or Q2 with a suitable input distribution

F d
2 (x0, t) at a given value x = x0.

Similarly, the solution of (3.73) provide us the t and x-evolutions of the non-

singlet structure function given by

FNS
2 (x, t) = FNS

2 (x, t0)
( t1+(b−b2)/t

t
1+(b−b2)/t0
0

)
· exp

(b− c− b2 ln2 t

t
− b− c− b2 ln2 t0

t0

)
(3.84)

and

FNS
2 (x, t) = FNS

2 (x0, t) · exp
[ ∫ x

x0

( 1

LNS
3 (x)

− MNS
3 (x)

LNS
3 (x)

)
dx
]

(3.85)

respectively. The input functions are defined as

FNS
2 (x, t0) = −γt

(1+(b−b2)/t0)
0 · exp

(b− c− b2 ln2 t0
t0

)
· exp

[ ∫ ( 1

LNS
3 (x)

− MNS
3 (x)

LNS
3 (x)

)
dx
]
, (3.86)

FNS
2 (x0, t) = −γt(1+(b−b2)/t) · exp

(b− c− b2 ln2 t

t

)
· exp

[ ∫ ( 1

LNS
3 (x)

− MNS
3 (x)

LNS
3 (x)

)
dx
]
x=x0

. (3.87)

Thus putting Eq.(3.78) and Eq. (3.84) in Eq.(3.45) we obtain

F p
2 (x, t) = F p

2 (x, t0)
( t1+(b−b2)/t

t
1+(b−b2)/t0
0

)
· exp

(b− c− b2 ln2 t

t
− b− c− b2 ln2 t0

t0

)
,

(3.88)
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which gives the t-evolution of proton structure function. By considering a suitable

input distribution F p
2 (x, t0) at a given value Q2 = Q2

0, we can determine the evolution

of proton structure function with t or Q2 at some fixed x from Eq.(3.88). The x

evolution of proton structure function is not possible at NNLO for the same reason

discussed earlier.

For phenomenological analysis of t-evolution, we take the input distributions

F d
2 (x, t0) and F p

2 (x, t0) from experimental data corresponding to the lowest value

of the Q2 range considered in our study. Similarly the input functions F d
2 (x0, t)

for phenomenological analysis of x-evolution are taken from the experimental data

corresponding to the highest value of the x range under consideration.

3.3 Result and discussion

In this chapter, we calculate the Q2 or t (t = ln(Q2/Λ2)) and x-evolutions of singlet

and non-singlet structure functions. The deuteron and proton structure functions

are related to the singlet and non-singlet structure functions as given by the Eqs.

(3.48) and (3.49). We calculate the t and x-evolutions of deuteron stucture function

at LO, NLO and NNLO respectively. The t-evolution of proton structure function is

also obtained up to NNLO. We test the validity of the solutions, by comparing them

directly with the available data on deuteron and proton structure function. For our

analysis we use the data from the fixed target experiments viz. the NMC [23] in

muon-deuteron DIS from the merged data sets at incident momenta 90, 120, 200 and

280 GeV2, the Fermilab E665 [24] collaboration in muon-deuteron DIS at an average

beam energy of 470 GeV2 and the H1 collaboration of HERA experiment data [25]

taken with a 26.7 GeV electron beam in collision with a 820 GeV proton beam. We

consider the H1 1995 data because these data sets are available in the range of our

consideration. Moreover, we compare our results with those obtained by the fit to

F d
2 produced by the NNPDF parametrization [26]. The NNPDF parametrization

presents a determination of the probability density in the space of F2 structure func-

tions for the proton, deuteron and non-singlet structure function, as determined from

experimental data of NMC [23], E665 [24], BCDMS [36] and H1 [37] collaborations.

Their results take the form of a set of 1000 neural nets, for each of the three structure

functions, which give a determination of F2 for given x and Q2. The central value and
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the errors of the structure functions determined in the NNPDF fit can be computed

out of the ensemble of 1000 nets according to standard Monte Carlo techniques.

We consider the range 0.0045 ≤ x ≤ 0.19 and 0.75 ≤ Q2 ≤ 27 GeV2 for NMC data,

0.0052 ≤ x ≤ 0.18 and 1.094 ≤ Q2 ≤ 26 GeV2 for E665 data and 0.004 ≤ x ≤ 0.03

and 5.5 ≤ Q2 ≤ 38 GeV2 for H1 data for our phenomenological analysis. Similarly

we use the range 0.0045 ≤ x ≤ 0.095 and 1.25 ≤ Q2 ≤ 26 GeV2 to compare our

results with the NNPDF parametrization. For the fit we consider ΛMS = 323 MeV

for αs(M
2
z ) = 0.119±0.002. The vertical error bars represent the total combined

statistical and systematic uncertainties of the experimental data. To compute the

dependence of structure functions on Q2 or in other words for t-evolution, we take

the input distributions from the data point corresponding to the lowest value of Q2

for a particular range of Q2 under study. Similarly the data point corresponding to

the highest value of x of a particular range of x under consideration are taken as

input distribution to determine the x dependence of the structure functions.
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Figure 3.1: Comparison of T 2 and T0.T (t) as well as T
3 and T1.T (t) versus Q

2.

As mentioned earlier for the analytical solution of DGLAP evolution equation for

singlet structure function we consider a function K(x) which relates the singlet struc-

ture function and gluon densities. For simplicity we consider the function K(x) = K,

where K is an arbitrary constant parameter. We examine the dependence of our pre-

dictions on the values of the arbitrary constant K and find that the best fit results
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are obtained in the range 0.45 < K < 1.6 for our entire region of discussion.

As discussed in section 3.2 the numerical parameters T0 and T1, considered for

the solutions of the DGLAP equations at NLO and NNLO respectively, are obtained

for a particular domain of Q2 under study. To this end in Figure 3.1 we plot T 2(t) and

T0T (t) as well as T
3(t) and T1T (t) as a function of Q2. We find that for T0 = 0.048 the

difference between T 2(t) and T0T (t) is reduced to a minimum and for T1 = 0.008 the

difference between T 3(t) and T1T (t) becomes negligible in the range 0.75 < Q2 < 50

GeV2. Therefore the consideration of the parameters T0 and T1 does not induce any

unexpected change in our results.

In Figure 3.2 we plot the predictions of the deuteron structure function ob-

tained from Eqs.(3.46), (3.63) and (3.82) for LO, NLO and NNLO respectively as

functions of Q2 at four representative values x = 0.0045, 0.0125, 0.0175 and 0.025

respectively. Here we compare our results with the NMC experimental data in the

range 0.75 ≤ Q2 ≤ 27 GeV2.

In Figure 3.3 we plot our our set of solutions Eqs. (3.47), (3.64) and (3.83) for

deuteron structure function at LO, NLO and NNLO respectively as functions of x for

four fixed Q2 = 7, 11.5, 20 and 27 GeV2 respectively. Our predictions are compared

with the NMC experimental data in the range 0.0045 ≤ x ≤ 0.19.

Figure 3.4 represent the comparison of our results of t or Q2 evolution of deuteron

structure function calculated from Eqs.(3.46), (3.63) and (3.82) for LO, NLO and

NNLO respectively with the E665 experimental data. Here we plot our predictions of

deuteron structure function as functions of Q2 considering the range 1.094 ≤ Q2 ≤ 26

GeV2 at fixed values of x, viz. x = 0.0052, 0.00893, 0.0125 and 0.0173 respectively.

In Figure 3.5 we plot our computed results of deuteron structure function ob-

tained from Eqs.(3.47), (3.64) and (3.83) for LO, NLO and NNLO respectively as

functions of x and compare with the E665 experimental data considering the range

0.0052 ≤ x ≤ 0.18. The comparison is shown for four fixed Q2 = 5.236, 9.795, 18.323

and 25.061 GeV2 respectively.

Figure 3.6 shows the Q2 evolution of deuteron structure function obtained from

Eqs.(3.46), (3.63) and (3.82) at LO, NLO and NNLO respectively compared with

the NNPDF parametrization in the range 1.25 ≤ Q2 ≤ 26 GeV2. We perform

the comparison for four different values of x, x=0.0045, 0.008, 0.0125 and 0.0175
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Figure 3.2: Comparison of Q2 evolution of deuteron structure functions at LO, NLO and NNLO
with the NMC data for four fixed values x. The dot lines represent the LO results (Eq.3.46), dash-
dot lines represent the NLO results (Eq.3.63) and solid lines represent the NNLO results Eq.(3.82).

respectively.

In Figure 3.7 show the comparison of our results of x-evolutions of deuteron

structure function obtained from Eqs.(3.47), (3.64) and (3.83) at LO, NLO and NNLO

with those obtained by the NNPDF parametrization in the range 0.0045 ≤ x ≤ 0.095.

The comparison is done for four fixed values of Q2 viz. Q2 = 5, 9, 15 and 25 GeV2
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Figure 3.3: Plots of x evolution of deuteron structure function at LO, NLO and NNLO compared
with the NMC data for four fixed Q2. The dot lines represent the LO results (Eq.3.47), dash-dot
lines represent the NLO results (Eq.3.64) and solid lines represent the NNLO results Eq.(3.83).

respectively.

We also calculate the t or Q2-evolution of proton structure function at LO, NLO

and NNLO from Eq. (3.48), (3.67) and (3.88). Figure 3.8 show the comparison of

our results of proton structure function with those measured at NMC as functions

of Q2 in the range 0.75 ≤ Q2 ≤ 27 GeV2. We show the comparison for four fixed

x = 0.008, 0.0125, 0.025 and 0.035 respectively.
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Figure 3.4: Plots ofQ2 evolution of deuteron structure functions at LO, NLO and NNLO compared
with the E665 data for four representative x. The dot lines are the LO results (Eq.3.46), dash-dot
lines are the NLO results (Eq.3.63) and solid lines are the NNLO results (Eq.3.82).

Figure 3.9 show the comparison of our solution of proton structure function given

by Eqs.(3.48), (3.67) and (3.88) for LO, NLO and NNLO respectively with the E665

experimental data in the range 1.094 ≤ Q2 ≤ 26 GeV2. Here we plot the computed

values of proton structure function as functions of Q2 at four representative values

of x, namely x = 0.00693, 0.01225, 0.0173 and 0.02449 respectively.

In Figure 3.10 we plot our computed results of proton structure function ob-
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Figure 3.5: Comparison of x evolution of deuteron structure function at LO, NLO and NNLO

with the E665 data for four representative values of Q2 . The dot lines represent the LO results

(Eq.3.47), dash-dot lines represent the NLO results (Eq.3.64) and solid lines represent the NNLO

results Eq.(3.83).

tained from Eqs.(3.48), (3.67) and (3.88) for LO, NLO and NNLO respectively as

functions of Q2 and compare with the H1 1995 data in the range 5.5 ≤ Q2 ≤ 38

GeV2. The comparison is done for for four fixed x = 0.00421, 0.0075, 0.0133 and

0.0237 respectively.

From the figures we observe that our results of Q2 and x-evolutions of deuteron
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Figure 3.6: Comparison of Q2 evolution of deuteron structure functions at LO, NLO and NNLO
with the NNPDF data for four fixed values x. The dot lines represent the LO results (Eq.3.46),
dash-dot lines represent the NLO results (Eq.3.63) and solid lines represent the NNLO results
Eq.(3.82).

and proton structure functions are in good consistency with the experimental data

and parametrizations. Our predictions at NNLO provide better agreement than LO

and NLO results, nevertheless, the difference between the LO, NLO and NNLO re-

sults is small. From our analysis in can be anticipated that the region of validity

of our method is approximately in the range 10−3 ≤ x ≤ 10−1 and 0.5 ≤ Q2 ≤ 40
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Figure 3.7: Plots showing the comparison of x evolution of deuteron structure function at LO,
NLO and NNLO with the NNPDF data for four fixed values of Q2. The dot lines represent the LO
results (Eq.3.47), dash-dot lines represent the NLO results (Eq.3.64) and solid lines represent the
NNLO results Eq.(3.83).

GeV2. But this method may also applicable for other ranges of x and Q2. Though

various methods like Laguerre polynomials [38, 39], Brute-Force method [40], Matrix

method [41], Mellin transformation [42, 43] etc. are available in order to obtain a

numerical solution of DGLAP evolution equations, our method to solve these equa-

tions analytically is also a workable alternative. Here we consider a parameter K(x)
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Figure 3.8: Plots of proton structure function at LO, NLO and NNLO vs. Q2 compared with the
NMC data for four particular values of x. The dot lines represent the LO results (Eq.3.48), dash-dot
lines represent the NLO results (Eq.3.67) and solid lines represent the NNLO results Eq.(3.88).

in assuming a relation between singlet structure function and gluon parton densities.

We have also used two other parameters like T0 and T1. However the number of

parameters used here are less in comparison to the numerical methods where several

parameters have been used mainly in input functions [55, 56]. Moreover, with this

method we can calculate the x-evolutions of deuteron structure function in addition
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Figure 3.9: Plots showing the comparison of Q2 evolution of proton structure function at LO,
NLO and NNLO with the E665 data for four fixed x. The dot lines represent the LO results
(Eq.3.48), dash-dot lines represent the NLO results (Eq.3.67) and solid lines represent the NNLO
results Eq.(3.88).

to the t-evolutions.

For a quantitative estimate of the goodness of fit of our results with the experi-

mental data and parametrizations, we perform a χ2 test. In table 1 we present the χ2

values for the solutions of deuteron structure function at LO, NLO and NNLO respec-

tively. We observe that our analtical solutions of the deuteron structure function at
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Figure 3.10: Comparison of Q2 evolution of proton structure function at LO, NLO and NNLO
with the H1 1995 data for four fixed x. The dot lines represent the LO results (Eq.3.48), dash-dot
lines represent the NLO results (Eq.3.67) and solid lines represent the NNLO results Eq.(3.88).

Table 3.1: χ2 values for F d
2 (x,Q

2)

Order NMC E665 NNPDF

LO 3.943 2.215 1.396

NLO 1.733 1.873 0.783

NNLO 1.142 2.07 0.656
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LO, NLO and NNLO respectively are in good agreement with the experimental data

and parametrizations. However the NNLO results are found to be more compatible.

Table 3.2: χ2 values for F p
2 (x,Q

2)

Order NMC E665 H1

LO 2.235 2.477 0.226

NLO 1.097 2.62 0.141

NNLO 0.824 1.92 0.361

Similarly table 2 shows the χ2 values for the solutions of the proton structure

function at LO, NLO and NNLO. Here also we find that our results of proton structure

function at LO, NLO and NNLO are almost comparable with the experimental data

and parametrizations, nevertheless the NNLO results are more consistent.

3.4 Summary

The Taylor approximated DGLAP equations for the singlet and non-singlet struc-

ture functions are solved analytically at LO, NLO and NNLO by the Lagrange’s

auxilliary method. We also calculate the Q2 and x-evolutions of deuteron structure

function as well as the Q2-evolution of proton structure function from the solutions

of singlet and non-singlet structure functions. The Taylor series expansion changes

the integro-differential DGLAP equations into first order partial differential equa-

tions which are much easier to solve. This method is comparatively simple and less

time consuming for the numerical calculations. We adopt two numerical parameters

T0 and T1 to evaluate the Q2 and x-evolutions of singlet and non-singlet structure

functions. We also consider the function K(x) = K, where K is a constant parame-

ter to relate the singlet and gluon distribution functions and find that K lies in the

range 0.45 < K < 1.6, for our results to be comparable with experimental data and

parametrizations. Nevertheless the number of parameters are very few compared to

the numerical methods where several parameters are included mainly in the input

function. Moreover, with this approch we can calculate the x-evolution of deuteron

structure function in addition to the t-evolution. Thus, although various numerical

methods are available in order to obtain a numerical solution of DGLAP evolution

equations, our approach to solve these equations analytically is also a viable alterna-
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tive.

We compare our predictions with the NMC data, E665 data, H1 data as well

as with the results of NNPDF parametrization. From our phenomenological analysis

we observe that our predicted solutions can explain the general trend of data in a

decent manner. Moreover, the inclusion of NNLO contributions provides excellent

consistency with the experimental data and parametrizations. Our results show

that at fixed x the structure functions increase with increasing Q2, whereas at fixed

Q2 the structure functions increase with decreasing x which is in agreement with

perturbative QCD fits at small-x. By analysing our results we can anticipate that

our solutions are valid vis-a-vis the data and parametrizations in the small-x region,

roughly in the region 10−3 < x < 10−1. However, our method may loose its validity

at very small-x where recombination of gluons have to be taken into account, since

these higher order corrections are not included in the derivation of linear DGLAP

equations.
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