Chapter 3

NNLO Analysis of Singlet and
Non-singlet Structure Functions in
the DGLAP Approach

3.1 Introduction

Structure functions in lepton-nucleon DIS are the entrenched observables exploring
QCD. They are defined as convolution of the universal parton momentum distribu-
tions and coefficient functions, which contain information about the boson-parton
interaction. Therefore the structure functions provide exclusive information about
the deep structure of hadrons and most importantly, they form the backbone of
our knowledge of the parton densities, which are indispensable for analyses of hard
scattering processes. Thus the measurements of the structure functions allow pertur-
bative QCD to be precisely tested. The standard and the basic tool for theoretical
investigation of DIS structure functions are the DGLAP evolution equations [1-4].
Therefore the solutions of DGLAP evolution equations give quark and gluon distri-
bution functions which ultimately produce proton, neutron and deuteron structure
functions.

The solutions of the unpolarized DGLAP equation for the QCD evolution of
structure functions have been discussed considerably over the past years. The stan-
dard and the most extensively used procedure of studying the hadron structure func-
tions is via the numerical solution of these equations [5-10], with excellent agreement

with the DIS data over a wide kinematic region in x and Q?. However, apart from the
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numerical solution, there is the alternative approach of studying analytically these
equations at small-x. Although exact analytic solutions of the DGLAP equations
cannot be obtained in the entire range of 2 and (2, such solutions are possible under
certain conditions [11, 12] and many approximated analytical solutions of DGLAP
evolution equations suitable at small-z, have been reported in recent years [13-22]
with considerable phenomenological success.

The singlet and non-singlet structure functions in DIS i.e. the flavor indepen-
dent and flavor dependent contributions to the structure functions play the key role
for accurate determination of the quark and gluon densities and therefore they can
be considered as the basis for the analysis of other structure functions. In this
chapter, by using a Taylor series expansion valid at small-x, we first transform the
DGLAP equation, which is an integro-differential equation, into a partial differential
equation in the two variables (z,Q?) and the resulting equation is then solved at
LO, NLO and NNLO respectively by the Lagrange’s auxiliary method. Inclusion of
the NNLO contributions considerably reduces the theoretical uncertainty of deter-
minations of the quark and gluon densities from DIS structure functions. Here, we
investigate the impact of the NNLO contributions on the evolution of the singlet and
non-singlet structure function respectively considering the corresponding DGLAP
evolution equations. The singlet distribution is comparatively complicated to com-
pute as it is coupled to the the gluon densities. We also calculate the Q% evolution
of deuteron and proton structure functions upto NNLO from the solutions of singlet
and non-singlet structure functions. Moreover the z-evolution of deuteron structure
function is calculated upto NNLO. We compare our predictions with NMC [23], E665
[24], and H1 [25] experimental data as well as with the NNPDF [26] parametrization
based on the NMC and BCDMS data.

3.2 Formalism
3.2.1 General framework

The singlet and non-singlet quark density of a hadron is given by [27]

Ny

gs(7, Q%) = _[ai(z, Q%) + Tilz, @), (3.1)

=1
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Ny

ans(2,Q%) =) _lai(e, Q%) — Gilz, Q*)], (3.2)

i=1
where ¢;(z, Q%) and g;(z, Q?) represent the number distribution of quarks and anti-
quarks, respectively, in the fractional hadron momentum z. The corresponding gluon
distribution is denoted by g(z, @?). The subscript 7 indicates the flavour of the quarks
or anti-quarks and Ny is the number of effectively massless flavours.

The DGLAP evolution equation in the singlet sector in the standard form is

given by [28§]

3 qs) (qu qu) (qs)
_ , 3.3
alncg?( g P, B, ) C\ g (3.3)

where Py, Py, Pyq, Pye are splitting functions. The singlet structure function in-
volves the quark-quark splitting function F,, and gluon-quark splitting function P,
whereas non-singlet structure function involves only the quark-quark splitting func-

tion P,,. The quark-quark splitting function P,, can be expressed as a power series

of a,(Q?) [10]

Pu(r.@) = 1) p0e) 4 (P9DY P 4 (DY p )
+ OPY (), (3.4)

where Pq(g) (x), Pq%)(x) and Pq(g)(m) are LO, NLO and NNLO quark-quark splitting
functions respectively. Other splitting functions can be expressed in a similar way.
The symbol ® stands for the standard Mellin Convolution in the momentum variable

defined as

a(z) ® b(x) = / 1 d—“’a(w)b(f). (3.5)

e W w

Thus, using Eq. (3.5), Eq. (3.3) can be written as

e (e ) =[5 (G 70 (edhl) e

which implies

aq;l(jgg ) :/x %(qu(w>93(x/w,Q2) + qu(w)g(x/w,Q2)), (3.7)
0g(z,Q%) _ /1 dw

Lt = | Z(Pulstaf, @) + Prlwlglafe, ). 39
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On the other hand, the DGLAP evolution equation in the non-singlet sector in
the standard form is given by [29]

ans(fL', QQ) _
olnQ?

where Pyg(r,Q?) is the non-singlet kernel known perturbatively up to the first few

Prs(z,Q%) ® qns(z, Q?), (3.9)

orders in a,(Q?) [30]. Using equation (3.5), equations (3.9) can be expressed as

2)
aqgﬁﬂ%? / ® Pys(w)as(@/w, Q%) (3.10)

The quark-quark splitting function P, in equation (3.6) can be expressed as
Py = Pys + Ny(Pj, + P.) = Pys + Ppg. Py, and P; are the flavor-independent
contributions to the quark-quark and quark-antiquark splitting functions respectively.
The non-singlet contribution Pyg dominates FP,, at large-z whereas at very small-
x the pure singlet term Ppg dominates over Pyg [31]. The quark-gluon (P,,) and
gluon-quark (P,,) entries in equation (3.6) are given by P,, = NyF,., and Py, = P,
where P, and P, are the flavor-independent splitting functions.

The running coupling constant ag(Q?) has the form [14, 32]

as(Q*) 2

o [oln(Q2/A2)’ (3.11)
a,(Q?*) 2 1l (In(Q/A?))

o BOIH(QQ/A2) |:1 ﬁo ID(QQ/AQ) i|; (312)
o(@%) S PR o (n(Q*/A%) 1

2 Boln(Q?/A?) B2 In(Q?/A2) 3 n(Q2/A2)

{gl (1n* (1n(Q/A%)) — In (n(Q*/A%) — 1) + 5 }] (3.13)

at LO, NLO and NNLO respectively. Here

11 4 2
= —N,— Ty =11— =Ny,
fo=3 3 37/
34 10 38
B = ?]\ﬂ — 5 NeNy = 2CpNy =102 — =Ny,
2857 205 1415 44 158
= T N}420%Ty — ——CpN/; — ——N>T; + —CpT? + —NT?
& sy Ve + 205 Ty = == CrNeTy = =2 1+ g Crly + 5o NIy
2857 6673 325
D) 18 I T gt

are the one-loop, two-loop and three-loop corrections to the QCD S-function and Ny

being the number of quark flavours. Here we use Ny = 4, N, = 3. The Casimir
NP1 4 ]

= — an = —Ny.
9N, 3 T

operators of the color SU(3) are defined as Cr =
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3.2.2 LO analysis of singlet and non-singlet structure func-
tions

Substituting the explicit form of the LO splitting functions [4, 11] in Eqgs. (3.7) and
(3.10) and simplifying, the DGLAP evolution equations for singlet and non-singlet

structure functions at LO can be written as

OFy (z,t)  as(t) 2 5 ;

ot or [5{3 +4ln(l = 2)}FF (o, t) + I (1)), (3.14)
OFNS(z,t)  as(t) 2 Ve s

ot on [§{S+4ln<1 — o)} () + 1 (:c,t)}, (3.15)

whete F (z,1) = 0% efalas + @, and F'¥(z,1) = 52 efalg: — 7. The integral

functions are given by

I’(z,t) = é/; d—w[(l —|—w2)F2S(g,t> — 2F2S(:c,t)]

3 1—w
+ fo{w? r(1- w)Q}G<§,t>dw, (3.16)
INS(z ) = g/l 1d_—°"w [+ EYS (2 0) = 2R (1)) (3.17)

2
Here we use a more convenient variable ¢ defined by ¢ = In <—) with A being the

A2

QCD cut off parameter, the scale at which partons turn themselves into hadrons.
To simplify and reduce the integro-differential equation to a partial differential

equation we introduce a variable u = 1—w so that the argument x /w can be expressed

as

T T n TU
— = =z .
w 1—u 1—u

(3.18)

Since r < w < 1, so we have 0 < u < 1 — x. This implies that the above series is
convergent for |u| < 1. Now using Eq. (3.18), we can expand Fy (z/w,t) by Taylor
expansion series as
x Tu
() = (e
2 wv 2\ T + 1 — U’
U )0F25(1',t) N 1< Tu )282F23(x,t)

ox 2 0%z

= FQS(x,t)—i-(

1—u 1—u

(3.19)
As x is small in our region of discussion, the terms containing x? and higher powers

of z can be neglected and therefore Eq. (3.19) takes the form

zu OFY(z,t)
l—u Ox

Ff(gt) = FS(z,t) + . (3.20)
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Similarly,

x ru OG(x,t
G(;,t) = o)+ 7= u%, (3.21)
NS
FNS (g t> = FNS(2,t) + ﬂ“bu or, a;x’t). (3.22)

Putting Eqgs. (3.20) and (3.21) in Eq. (3.16) and carrying out the integrations

in u we get from Eq. (3.14)

Wza_(:,t) - O‘g—s) [Al(:c)FQS(x,t) + Az(x)w%—(;’ﬂ + As(x)G(x, 1)
+A4(w)%], (3.23)

where A;(z) (i=1,2,3,4) are functions of = (see Appendix A). Eq.(3.23) is a first order
partial differential equation for the singlet structure function Fy(z,t) with respect to
the variables x and t. Beyond its traditional use in ¢ or Q?-evolution (¢ = In(Q?/A?)),
it also provides x-evolution at small-x. There are various methods for solving the
partial differential equations in two variables. We here adopt the Lagrange’s auxiliary
method as mentioned in the introduction.

The @Q?-evolution of the proton structure function Fy(x, Q?) is related to the
gluon parton densities in the proton G(z,@?) and to the strong interaction cou-
pling constant ag. The gluon parton densities cannot be measured directly through
experiments. It is, therefore, important to measure the G(z,@?) indirectly using
Fy(z,Q?). Hence the direct relations between Fy(z,Q?) and the G(z,Q?) are ex-
tremely important because using those relations the experimental values of G(z, Q?)
can be extracted using the data on Fy(x,Q?). Therefore, in the analytical solutions
of DGLAP evolution equations for singlet structure functions or gluon parton den-
sities, a relation between singlet structure function and gluon parton densities has
to be assumed. The commonly used relation is G(z,t) = K (z)Fs (x,t) [15, 16, 19],
where K () is a parameter to be determined from phenomenological analysis. We
can consider this form as the evolution equations of gluon parton densities and singlet
structure functions are in the same forms of derivative with respect to t. Moreover
the input singlet and gluon parameterizations, taken from global analysis of PDFs,
in particular from the MSTWOS8 parton set, to incorporate different high precision
data, are also functions of z at fixed Q? [33]. So the relation between singlet structure

function and gluon parton densities will come out in terms of x at fixed-Q?. However,
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the actual functional form of K (x) can be determined by simultaneous solutions of
coupled equations of singlet structure functions and gluon parton densities. Further
discussions on K (z) are presented in Appendix G.

Hence Eq.(3.23) takes the form

_tans(x, t) OFY (z,1)

T L3 (x) s M2 (x)Fy (z,t) = 0, (3.24)

where
L5 (@) = As | Ax() + K (@) Au(a)] (3.25)
M?(z) = Ay [Al(x) + K(z)As(x) + 3}555)144(@ : (3.26)

with Af:%. Now the general solution of the Eq.(3.24) is
F(U,V)=0, (3.27)

where F(U,V) is an arbitrary function of U and V. Here, U(z,t, Fy) =k, and

V(z,t,Fy) = ko are two independent solutions of the Lagrange’s equation

or Ot OFy (x,t)

U 2 . 2
L) 1 M@ E ) 22
Then by solving Eq. (3.28) we obtain
1

Sy — . PR

Uz, t, Fy) =t exp[/ Lf(m)dx]’ (3.29)
M7 ()

Sy _ S ) 1

Vix,t, Fy) = Fy (z,t) exp[ Lo (o) dx]. (3.30)

Thus we see that it has no unique solution. In this approach we attempt to
extract a particular solution that obeys some physical constraints on the structure
function. The simplest possibility to get a solution is that a linear combination of U

and V should obey the Eq. (3.27) so that
a-U+B-V=0, (3.31)

where a and 3 are arbitrary constants to be determined from the boundary conditions
on Fy. Putting the values of U and V from Eq.(3.29) and Eq.(3.30) in this equation

we get

at - exp[/ %dm} + BES () - exp[/ j\[/:[?(f)) d:z:] =0, (3.32)
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which implies

1 MP(z)
Fy(x,t) = —7t - — —12)d :
2
where v = % is a constant. Now at ¢ = ty, where {; = In (A—g> for any lower value
Q? = Q?, we define
1 M7 (z)
Fy(z,t0) = —7to - — " 2)dx|. 3.34
2 (%:%0) = = eXp[b/a(Lf<x> L(o)) d .
Then Egs. (3.33) and (3.34) lead us to
t
FS(2,t) = FS(x.,to) (t—) (3.35)
0

This gives the t-evolution for singlet structure function at LO at small-z. Again

defining at a higher value of x = =z,

S X
FS(zg,t) = —t - exp[ / ( L;(x) - ]\L{; <(x)))dx] - (3.36)
we obtain
T S T
FS(x,t) = F (w0, 1) - exp[/ (L;(x) - ]\g%((x)))dx] (3.37)

This gives the xz-evolutions of singlet structure functions at LO.

Now substituting the approximated form of Taylor expansion of non-singlet struc-
ture function from Eq.(3.22) in Eq.(3.17) and performing u-integrations we obtain
from Eq.(3.15)

OFNS(x,t)  ag(t) OFNS (1)

_ NS
5 = o @ (@t) + Ax(e)— : (3.38)
which we can rewrite as
NS NS
O ) sy OF ) sy NS () = 0 (3.39)
ot ox
Here
LS (2) = Ay Ay(), (3.40)
MNS(z) = A Ay (z). (3.41)

Proceeding in the same way as the singlet case we solve Eq. (3.39) for non-singlet

structure function and obtain

F (1) = F3" (2, 1) (%) (3.42)
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and

T NS T
FNS(2,1) = FVS (20, 1) - exp[ / ( L{V; ch ]‘élvs ((x)))dz}, (3.43)

which give the ¢ and z-evolutions of non-singlet structure functions respectively at

LO respectively.
For phenomenological analysis, we compare our results with various experimental
structure functions. The deuteron structure function measured in DIS can be written

in terms of the singlet structure function respectively as [11]

Fi(a ) — gFQS(x, ). (3.44)

Again the proton structure function measured in DIS can be expressed in terms of

the singlet and non-singlet structure function as [11]

) 3
FP(x,t) = 1—8F25(a:,t) + 1—8F2NS(37, t). (3.45)

Substituting Eqs. (3.35) and (3.37) in Eq. (3.44), the t and z-evolutions of deuteron

structure function at LO can be obtained as

Fi(a, 6) = F(, to) (%) (3.46)
and
Fi(x,t) = F(xy, 1) -exp[ / (%@ — ]\é((x)))dx]. (3.47)

Here the input functions are F'(x,to) = 2F5 (2, to) and Fy(wo,t) = 3F5 (w0, 1).
On the other hand, substituting Eqs. (3.35) and (3.42) in Eq. (3.45), we get the
t-evolutions of proton structure function at LO

Fy(z,t) = Fé’(w,to)(%>, (3.48)

with the input function is F} (z,t0) = % F5 (2, t0)+ 5 F5 ° (2, to). It is to be noted that
the determination of z-evolution of proton structure function like that of deuteron
structure function is not suitable by the method adopted here. The reason is that in
order to calculate the x-evolution of proton structure function, we have to put Egs.
(3.37) and (3.43) in Eq. (3.45). But the functions inside the integral sign of Egs.
(3.37) and (3.43) are different and so the the input functions Fy (x,t) and F'¥(zg,t)
have to be separated from the data points to extract the z-evolution of the proton

function, which may contain large errors.
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3.2.3 NLO analysis of singlet and non-singlet structure func-
tions

Considering the splitting functions at NLO [12, 34, 35], the DGLAP equations for

singlet and non-singlet structure functions at NLO in standard form can be written

S(y N
8F28(t S ;7(:) E{g Al — o)} FS (2, 6) + I5(x, t)]
N (a;f:)>215(x,t), (3.49)
NS T o
8F2a—t(’t) _ ;(Tf) [g{g +41In(1 — g;)}FQNS(x’t) 4 [{Vs(x’t)}
+ (Qg—?)zgs(“"t)' (3.50)

The integral functions I7 (x,t) and IV5(x,t) are defined in Egs. (3.16) and (3.17),

whereas
5(z,t) = (x—1)F25(x,t)/01f(w)dw+[E1f(w)F§<§,t)dw
+ /1 Fqsq(w)Ff(g,t)dw+/l Fq@(w)a(g,t)dw, (3.51)

1 1
I¥S(,t) = (z — 1)F2Ns(x,t)/ f(w)dw+/ f(w)szVS(f,t)dw. (3.52)
0 T w
The explicit forms of the functions f(w), F;(w) and F; (w) are given in Appendix
B.
Following the same procedure as in LO, the Egs. (3.49) and (3.50) can be

simplified as

—t% + Lg(x)% + M3 (z)Fy (x,t) = 0, (3.53)
—t% + LQVS(:U)% + MY (2)FNS(x,t) = 0. (3.54)
Here
L5(z) = A; [(Ag(x) + K(ac)A4(x)> T (Bg(yc) + K(a:)B4(x)>] , (3.55)
MS(z) = A [(Al(x) + K (2)As(z) + 8};;‘”) A4(x)>
+ Ty <31 () + K (2)Bs(z) + af;:(f) B4(:U))] , (3.56)
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LYS(z) = A; [Ag(x) + TOBQ(:I;)], (3.57)

with B;(z) (i=1,2,3,4) being the functions of = (see Appendix A). Here we consider
the numerical parameter Ty such that T2(t) = ToT(t) where T(t):ag—frt) and the

value of Tj is determined by phenomenological analysis. This numerical parameter
is obtained from a particular range of @2 under study and by a suitable choice of
Ty we can reduce the difference between T?(t) and TyT(t) to a minimum. Thus the
consideration of the parameter 7, does not give any abrupt change in our result.
Solving Eq. (3.53) we obtain the ¢ and z-evolutions of singlet structure function

at NLO as

1+b/t b b
S _ S
Fy(z,t) = Fy (%to)(W) 'eXP(z - %> (3.59)
and
SR | M3 (z)
Fy(z,t) = Fy (20,t) - / ——22d 3.60
2 (ZL‘, ) 2 (x()» ) exp[ - (Lg(x) Lg(x) ) $:|’ ( )
where b = % The input functions are defined as
0
b 1 M3 (z)
FS (. ty) = —t0H/0) g (2 / R ACY 3.61
Pasto) = ™ exp () o] [ (g5 — Tagy) ) (3.61)
b 1 M3 (z)
FS(20.1) = — 1t e (P - / e G N X
> (T0,1) = =7 eXp(t) eXp[ (Lg(l’) Lf(az)) x:|90=900 (362)
Now substituting Egs. (3.59) and (3.60) in Eq. (3.44) we get
t1+b/t b b
d _ d
Fi(x,t) = Fi(x, o) <t(1)+b ) e (5 - %> (3.63)
and
T o1 M3 (z)
F(z,t) = Fy(xo,t) - / ——22)d 3.64
2(x7 ) Q(x()? ) exp[ - (Lg(a:) Lg(x)) $]7 ( )

which lead us to the ¢ and x-evolutions of deuteron structure function at NLO.
Similarly the ¢ and z-evolutions of the non-singlet structure function at NLO are

calculated from Eq. (3.54) and given by

NS NS t1+b/t b b
F2 (ZL’, t) = F2 (ZE, to)(té_i_m) . eXp(Z — %> (365)
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and

x NS T
FNS(x,t) = ENS(z,1) - exp[/ (Lgi(x) — ]\gz\,s((x)))dx} (3.66)

Thus putting Egs. (3.59) and (3.65) in Eq. (3.45) we get

t1+b/t b b

FY(x,t) = F¥(x,to) (—tler/to) : exp(; — t_>’ (3.67)
0 0

which lead us to the t-evolution of proton structure function at NLO. It is not possible

to evaluate the z-evolution of proton structure function with the present method for

the same reason mentioned earlier.

3.2.4 NNLO analysis of singlet and non-singlet structure
functions

Using the splitting functions upto NNLO and simplifying [28-31], we get the DGLAP

equations for singlet and non-singlet structure functions at NNLO as

OF(x.t) _ SO 54 a1~ )} F 1) + 1)

ot 2m
+ (O‘;(T)) I5(x,t) + (O‘;(T)) 15(x, 1), (3.68)
OF”@1) ;t(“"’t) - O‘;(f) [ {3+ 4In(1 = )} Sz, 8) + 15z, 1)
+ (O‘;(f)) Y52, ) + (04;(;5)) I¥S(x,1). (3.69)
The integral functions I3 and IS are given by
5z, t)—/lcf:u[P (x )Fs(g,t) +qu(x)c:(§,t)}, (3.70)
I¥S(x, 1) / —vas )FNS (5 t) (3.71)

The explicit forms of the functions P, (), P,y(z) and P¥4(x) are given in Appendix
C.

Here we consider the numerical parameter 7y such that T3(¢t) = T,T(t) where
T(t):a‘;—ff). The value of 77 is determined by phenomenological analysis, like Tp,
from a particular range of Q? under study and by an appropriate choice of T} we can
reduce the error to a minimum. Thus Eqs. (3.68) and (3.69) can be simplified as

_tﬁFzs(x, t)
ot

OFY (z,1)

+ Lg(x) e

+ M (x)F5 (z,t) = 0, (3.72)
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L OF(x,)
ot

OFNS ()

+ L3 ()=

+ MY (2)FN5(x,t) = 0. (3.73)
Here

@) = Ag|(Aa(e) + K@) Ai(@)) + Ty Ba() + K(2)Ba(w))
T (cg(x) + K(x)@(x))] , (3.74)

0K (x)
ox

MS(x) = Af[<A1(x) + K () As(z) + A4(x)> +T0<Bl(x)

+ K (2)Bs(x) + agf) 34(x)) T (cl () + K(2)Cy ()

+ agf)@(x))}, (3.75)
L5(2) = Ag [ Ao(2) + Ty Ba() + T Ca(a)] (3.76)
MY5(z) = A, [Al(:c) + TyBi(z) + TlOl(:c)} (3.77)

with C;(z) (i=1,2,3,4) being the functions of x (see Appendix A).
We solve Eq. (3.72) following the same procedure as earlier and obtain the ¢ and

x-evolutions of singlet structure function at NNLO given by

FLH(b-b2) /8 b—c—bInt b—c—bIn’t
s _ s S :
Fy(z,t) = Fy(z,to) <té+(bb2)/to> ’ exp( - )

t ()
(3.78)
and
R | M3 (z)
FS(2,t) = F (z0,1) - [/ - =) da 3.79
2 (0] = Fylo, 1) - oxp 20 (Lég(x) Lg(x)) ! (379
respectively. The input functions are defined as
- b—c—bIn*t 1
s ) 0Y . /
2 (l‘, tO) 7 0 exp( to > eXp|: (Lg(l')
Mg (@)
_ d } .
Lg(x)) x|, (3.80)
2 b—c—b*In’t 1
Fz‘g(x(],t) = _’Yt(lﬂb b/ -exp( : ) : exp[/ (Lg(l’)
Mg ()
- .81
L5(x) )dx} _— (3:81)
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with b = 6—%, =12 Accordingly substituting Egs. (3.78) and (3.79) in Eq. (3.44)

=3
0 BO

we get

AHb—0?)/t ) (b —c—bIn’t b—c—bn? to)
- exp —

Fd 7t — Fd 7t <—
2(1’ ) 2($ 0) té-{—(b—bz)/to t to

(3.82)

and

T S T
Fi(z,t) = Fd(wo, 1) -exp[ / ( Lgl(@ . ]‘Lig (;)))dx], (3.83)

which provide us the ¢ and z-evolutions of deuteron structure functions at NNLO.

Thus using Eq.(3.82) we can calculate the evolution of deuteron structure function
with ¢t or Q? at fixed x at NNLO by choosing an appropriate input distribution
Fd(z,to) at Q? = Q3. Similarly Eq.(3.83) helps us to estimate the z-evolution
of deuteron structure function at fixed ¢ or Q® with a suitable input distribution
Fi(zo,t) at a given value z = .

Similarly, the solution of (3.73) provide us the ¢ and z-evolutions of the non-

singlet structure function given by

L 0-b)/t b—c—bIn%t b—c—bln’t
FY'S(a,1) = FYS(a,to) ) exp(FE s - 2

t[1)+(b—62)/to t to
(3.84)
and
x 1 MNS(LE)
FNS(x,t) = ENS(z0,t) - exp[/ -3 dm} (3.85)
: : P T Iw)
respectively. The input functions are defined as
_ b—c—b*In*t 1
F¥S(ats) =t e ) -exp /
5 (@, t0) Tto €xp o eXp (Lévs(a:)
M5 (x)
_ d } 3.86
L5 (350
ENS(uo.t) = 0020 exp<b—c——b21f12t> exp] / (—h
M5 (x)
_ d } . 3.87
Lévs(l') ) o T=x0 ( )

Thus putting Eq.(3.78) and Eq. (3.84) in Eq.(3.45) we obtain

FLH b))t b—c—02In*t b—c— b1t
) -exp( - >,

FY(,t) = B3 (0, t0) (St
2 (w,1) = Fy (2, 10) [l t to

(3.88)
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which gives the t-evolution of proton structure function. By considering a suitable
input distribution F¥(z,ty) at a given value Q? = Q2, we can determine the evolution
of proton structure function with ¢ or Q% at some fixed z from Eq.(3.88). The x
evolution of proton structure function is not possible at NNLO for the same reason
discussed earlier.

For phenomenological analysis of ¢t-evolution, we take the input distributions
Fd(z,to) and FY(x,ty) from experimental data corresponding to the lowest value
of the Q? range considered in our study. Similarly the input functions Fy(zo,t)
for phenomenological analysis of z-evolution are taken from the experimental data

corresponding to the highest value of the x range under consideration.

3.3 Result and discussion

In this chapter, we calculate the Q% or ¢ (t = In(Q?/A?)) and z-evolutions of singlet
and non-singlet structure functions. The deuteron and proton structure functions
are related to the singlet and non-singlet structure functions as given by the Egs.
(3.48) and (3.49). We calculate the ¢ and z-evolutions of deuteron stucture function
at LO, NLO and NNLO respectively. The t-evolution of proton structure function is
also obtained up to NNLO. We test the validity of the solutions, by comparing them
directly with the available data on deuteron and proton structure function. For our
analysis we use the data from the fixed target experiments viz. the NMC [23] in
muon-deuteron DIS from the merged data sets at incident momenta 90, 120, 200 and
280 GeV?, the Fermilab E665 [24] collaboration in muon-deuteron DIS at an average
beam energy of 470 GeV? and the H1 collaboration of HERA experiment data [25]
taken with a 26.7 GeV electron beam in collision with a 820 GeV proton beam. We
consider the H1 1995 data because these data sets are available in the range of our
consideration. Moreover, we compare our results with those obtained by the fit to
F¢ produced by the NNPDF parametrization [26]. The NNPDF parametrization
presents a determination of the probability density in the space of F; structure func-
tions for the proton, deuteron and non-singlet structure function, as determined from
experimental data of NMC [23], E665 [24], BCDMS [36] and H1 [37] collaborations.
Their results take the form of a set of 1000 neural nets, for each of the three structure

functions, which give a determination of F for given x and Q2. The central value and
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the errors of the structure functions determined in the NNPDF fit can be computed
out of the ensemble of 1000 nets according to standard Monte Carlo techniques.
We consider the range 0.0045 < z < 0.19 and 0.75 < Q? < 27 GeV? for NMC data,
0.0052 < 2 < 0.18 and 1.094 < Q? < 26 GeV? for E665 data and 0.004 < z < 0.03
and 5.5 < Q% < 38 GeV? for H1 data for our phenomenological analysis. Similarly
we use the range 0.0045 < z < 0.095 and 1.25 < Q% < 26 GeV? to compare our
results with the NNPDF parametrization. For the fit we consider Aj;g = 323 MeV
for a,(M?) = 0.11940.002. The vertical error bars represent the total combined
statistical and systematic uncertainties of the experimental data. To compute the
dependence of structure functions on Q% or in other words for t-evolution, we take
the input distributions from the data point corresponding to the lowest value of 2
for a particular range of Q2 under study. Similarly the data point corresponding to
the highest value of x of a particular range of x under consideration are taken as

input distribution to determine the x dependence of the structure functions.

0.020 T T T T T

— T%(t)+0.011

0.016 - - -T,T(t)+0.011

/

0.012 |- -

0.008 |- .

T(t), T,T(t) and T'(t), T,T(t)

0.004 |-

0.001 i 1 i 1 i 1 i 1 i 1 i
0 5 10 15 20 25 30

Figure 3.1: Comparison of T2 and Ty.T'(t) as well as T and T1.T'(t) versus Q2.

As mentioned earlier for the analytical solution of DGLAP evolution equation for
singlet structure function we consider a function K (x) which relates the singlet struc-
ture function and gluon densities. For simplicity we consider the function K (z) = K,
where K is an arbitrary constant parameter. We examine the dependence of our pre-

dictions on the values of the arbitrary constant K and find that the best fit results
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are obtained in the range 0.45 < K < 1.6 for our entire region of discussion.

As discussed in section 3.2 the numerical parameters T and 77, considered for
the solutions of the DGLAP equations at NLO and NNLO respectively, are obtained
for a particular domain of Q2 under study. To this end in Figure 3.1 we plot T?(t) and
ToT(t) as well as T3(t) and T1T(t) as a function of Q*. We find that for Ty = 0.048 the
difference between T?(t) and TyT'(t) is reduced to a minimum and for 77 = 0.008 the
difference between T3(t) and TyT'(t) becomes negligible in the range 0.75 < Q* < 50
GeV2. Therefore the consideration of the parameters Ty and T does not induce any
unexpected change in our results.

In Figure 3.2 we plot the predictions of the deuteron structure function ob-
tained from Eqgs.(3.46), (3.63) and (3.82) for LO, NLO and NNLO respectively as
functions of Q% at four representative values x = 0.0045,0.0125,0.0175 and 0.025
respectively. Here we compare our results with the NMC experimental data in the
range 0.75 < Q% < 27 GeV2.

In Figure 3.3 we plot our our set of solutions Eqs. (3.47), (3.64) and (3.83) for
deuteron structure function at LO, NLO and NNLO respectively as functions of x for
four fixed Q% = 7,11.5,20 and 27 GeV? respectively. Our predictions are compared
with the NMC experimental data in the range 0.0045 < x < 0.19.

Figure 3.4 represent the comparison of our results of ¢ or () evolution of deuteron
structure function calculated from Egs.(3.46), (3.63) and (3.82) for LO, NLO and
NNLO respectively with the E665 experimental data. Here we plot our predictions of
deuteron structure function as functions of Q? considering the range 1.094 < ) < 26
GeV? at fixed values of z, viz. x = 0.0052,0.00893,0.0125 and 0.0173 respectively.

In Figure 3.5 we plot our computed results of deuteron structure function ob-
tained from Eqgs.(3.47), (3.64) and (3.83) for LO, NLO and NNLO respectively as
functions of x and compare with the E665 experimental data considering the range
0.0052 < 2 < 0.18. The comparison is shown for four fixed Q? = 5.236,9.795, 18.323
and 25.061 GeV? respectively.

Figure 3.6 shows the Q% evolution of deuteron structure function obtained from
Eqgs.(3.46), (3.63) and (3.82) at LO, NLO and NNLO respectively compared with
the NNPDF parametrization in the range 1.25 < Q% < 26 GeV2. We perform
the comparison for four different values of x, x=0.0045, 0.008, 0.0125 and 0.0175
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Figure 3.2: Comparison of Q? evolution of deuteron structure functions at LO, NLO and NNLO
with the NMC data for four fixed values x. The dot lines represent the LO results (Eq.3.46), dash-
dot lines represent the NLO results (Eq.3.63) and solid lines represent the NNLO results Eq.(3.82).

respectively.

In Figure 3.7 show the comparison of our results of x-evolutions of deuteron
structure function obtained from Eqs.(3.47), (3.64) and (3.83) at LO, NLO and NNLO
with those obtained by the NNPDF parametrization in the range 0.0045 < z < 0.095.
The comparison is done for four fixed values of Q2 viz. Q? = 5,9,15 and 25 GeV?
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Figure 3.3: Plots of x evolution of deuteron structure function at LO, NLO and NNLO compared
with the NMC data for four fixed Q2. The dot lines represent the LO results (Eq.3.47), dash-dot
lines represent the NLO results (Eq.3.64) and solid lines represent the NNLO results Eq.(3.83).

respectively.

We also calculate the t or Q?-evolution of proton structure function at LO, NLO

and NNLO from Eq. (3.48), (3.67) and (3.88). Figure 3.8 show the comparison of

our results of proton structure function with those measured at NMC as functions

of Q% in the range 0.75 < Q? < 27 GeV2. We show the comparison for four fixed

x = 0.008,0.0125,0.025 and 0.035 respectively.
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Figure 3.9 show the comparison of our solution of proton structure function given

by Egs.(3.48), (3.67) and (3.88) for LO, NLO and NNLO respectively with the E665

experimental data in the range 1.094 < Q? < 26 GeV2. Here we plot the computed

values of proton structure function as functions of Q? at four representative values

of z, namely x = 0.00693,0.01225,0.0173 and 0.02449 respectively.

In Figure 3.10 we plot our computed results of proton structure function ob-
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tained from Eqs.(3.48), (3.67) and (3.88) for LO, NLO and NNLO respectively as
functions of Q% and compare with the H1 1995 data in the range 5.5 < Q? < 38
GeV?2. The comparison is done for for four fixed x = 0.00421,0.0075,0.0133 and
0.0237 respectively.

From the figures we observe that our results of Q? and z-evolutions of deuteron
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Figure 3.6: Comparison of Q? evolution of deuteron structure functions at LO, NLO and NNLO
with the NNPDF data for four fixed values . The dot lines represent the LO results (Eq.3.46),
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Eq.(3.82).

and proton structure functions are in good consistency with the experimental data
and parametrizations. Our predictions at NNLO provide better agreement than LO
and NLO results, nevertheless, the difference between the LO, NLO and NNLO re-

sults is small. From our analysis in can be anticipated that the region of validity

of our method is approximately in the range 1073 < 2 < 107! and 0.5 < Q? < 40
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GeV2. But this method may also applicable for other ranges of z and Q2. Though
various methods like Laguerre polynomials [38, 39], Brute-Force method [40], Matrix
method [41], Mellin transformation [42, 43] etc. are available in order to obtain a
numerical solution of DGLAP evolution equations, our method to solve these equa-

tions analytically is also a workable alternative. Here we consider a parameter K (z)
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in assuming a relation between singlet structure function and gluon parton densities.
We have also used two other parameters like Ty and 7. However the number of
parameters used here are less in comparison to the numerical methods where several
parameters have been used mainly in input functions [55, 56]. Moreover, with this

method we can calculate the z-evolutions of deuteron structure function in addition
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results Eq.(3.88).

to the t-evolutions.

For a quantitative estimate of the goodness of fit of our results with the experi-
mental data and parametrizations, we perform a x? test. In table 1 we present the y?
values for the solutions of deuteron structure function at LO, NLO and NNLO respec-

tively. We observe that our analtical solutions of the deuteron structure function at
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Figure 3.10: Comparison of Q? evolution of proton structure function at LO, NLO and NNLO
with the H1 1995 data for four fixed . The dot lines represent the LO results (Eq.3.48), dash-dot
lines represent the NLO results (Eq.3.67) and solid lines represent the NNLO results Eq.(3.88).

Table 3.1: x? values for Fg(x, Q%)

Order NMC E665 NNPDF
LO 3.943 2.215 1.396
NLO 1.733 1.873 0.783
NNLO 1.142 2.07 0.656
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LO, NLO and NNLO respectively are in good agreement with the experimental data

and parametrizations. However the NNLO results are found to be more compatible.

Table 3.2: x? values for F}(z, Q?)

Order NMC E665 H1
LO 2.235 2477 0.226
NLO 1.097 2.62 0.141
NNLO 0.824 1.92 0.361

Similarly table 2 shows the y? values for the solutions of the proton structure
function at LO, NLO and NNLO. Here also we find that our results of proton structure
function at LO, NLO and NNLO are almost comparable with the experimental data

and parametrizations, nevertheless the NNLO results are more consistent.

3.4 Summary

The Taylor approximated DGLAP equations for the singlet and non-singlet struc-
ture functions are solved analytically at LO, NLO and NNLO by the Lagrange’s
auxilliary method. We also calculate the Q? and z-evolutions of deuteron structure
function as well as the Q2-evolution of proton structure function from the solutions
of singlet and non-singlet structure functions. The Taylor series expansion changes
the integro-differential DGLAP equations into first order partial differential equa-
tions which are much easier to solve. This method is comparatively simple and less
time consuming for the numerical calculations. We adopt two numerical parameters
Ty and T to evaluate the Q? and x-evolutions of singlet and non-singlet structure
functions. We also consider the function K(x) = K, where K is a constant parame-
ter to relate the singlet and gluon distribution functions and find that K lies in the
range 0.45 < K < 1.6, for our results to be comparable with experimental data and
parametrizations. Nevertheless the number of parameters are very few compared to
the numerical methods where several parameters are included mainly in the input
function. Moreover, with this approch we can calculate the xz-evolution of deuteron
structure function in addition to the t-evolution. Thus, although various numerical
methods are available in order to obtain a numerical solution of DGLAP evolution

equations, our approach to solve these equations analytically is also a viable alterna-
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tive.

We compare our predictions with the NMC data, E665 data, H1 data as well
as with the results of NNPDF parametrization. From our phenomenological analysis
we observe that our predicted solutions can explain the general trend of data in a
decent manner. Moreover, the inclusion of NNLO contributions provides excellent
consistency with the experimental data and parametrizations. Our results show
that at fixed z the structure functions increase with increasing 9, whereas at fixed
Q? the structure functions increase with decreasing x which is in agreement with
perturbative QCD fits at small-xz. By analysing our results we can anticipate that
our solutions are valid vis-a-vis the data and parametrizations in the small-z region,
roughly in the region 1072 < x < 10~!. However, our method may loose its validity
at very small-x where recombination of gluons have to be taken into account, since
these higher order corrections are not included in the derivation of linear DGLAP

equations.
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