
Chapter 5

Shadowing Corrections to the
Small-x Behaviour of Gluon
Distribution Function

5.1 Introduction

The dynamics of the the high density QCD, the regime of large gluon densities, is one

of the present-day extremely demanding undecided issues in the area of high energy

or small-x physics, where x is the small fraction of proton’s momentum conveyed

by the struck parton. Enormous theoretical and experimental endeavours towards

the perception of hadron structure in the high density regime at small-x occurs from

DIS at HERA to the proton-(anti)proton collisions at LHC. The gluon saturation

is one of the most fascinating problems of the small-x physics, which is presumed

on theoretical basis and there is emerging indications of its existence [1-3]. The

linear QCD evolution equations at the twist-2 level like DGLAP [4-6] predicts an

abrupt rise of the gluon densities towards small-x which is also perceived in the DIS

experiments at HERA. This sharp growth of gluon density generates cross sections

which in the high-energy limit violate the Froissart bound [7, 8] on physical cross

sections. Accordingly a new formulation of the QCD at high partonic density is

essential, in the very small-x region, to incorporate the unitarity corrections in a

suitable way. In general it is anticipated that, the gluon recombination processes

provide the mechanism responsible for the unitarization of the cross section at high

energies. As we move towards small-x at fixed Q2 the number of gluons of fixed size
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∼ 1/Q increases and at some critical value of x, the entire transverse area inhabited

by gluons turns out to be analogous to or larger than the transverse area of a proton.

Thus, the likelihood of interaction between two gluons can no longer be overlooked

and it sooner or later engenders a situation in which individual partons inevitably

overlap or shadow each other. In the derivation of the linear DGLAP equation

the correlations among the initial gluons in the physical process of interaction and

recombination of gluons are not usually taken into account. But at small-x the

corrections of the correlations among the initial gluons to the evolutionary amplitude

should be considered which eventually leads to a control of the maximum gluon

density per unit of phase-space. The conventional linear DGLAP evolution equation

will have to be modified accordingly in order to take these into effect. The multiple

gluon interactions take part in the evolution nonlinearly, taming the growth of the

gluon density in the kinematic domain where αs remains small but the density of

gluons evolves into very high. The pioneering perturbative QCD studies reporting

the recombination of two gluon ladders into one were performed by Gribov, Levin and

Ryskin [9], and by Mueller and Qiu [10, 11]. They insinuated that the shadowing

or nonlinear corrections due to gluon recombination could be expressed in a new

evolution equation with an additional nonlinear term quadratic in gluon density. This

equation, widely known as the GLR-MQ equation, can be regarded as the upgraded

version of the linear DGLAP equation.

The GLR-MQ equation incorporates all fan diagrams, that is, all workable 2 → 1

ladder recombinations, in the double leading logarithmic approximation (DLLA) in

order to deal with the gluon recombination processes. The fan diagrams portrays

the decisive role in the restoration of unitarity by taking into consideration some

of the gluon recombination processes that become vital at small-x. Gribov, Levin

and Ryskin at the outset introduced the concept of shadowing, arising from gluon

recombination, based on the Abramovsky-Gribov-Kancheli (AGK) cutting rule [12] in

the DLLA. Later Mueller and Qiu successfully carried out a perturbative calculation

of the recombination probabilities in the DLLA which empowers the equation to be

applied phenomenologically [10]. The GLR-MQ equation prognosticate a critical line

separating the perturbative regime from the saturation regime and it is legitimate

only in the vicinity of this critical line. Moreover it predicts a saturation of the gluon
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density at very small-x. Therefore the study of the GLR-MQ equation is extremely

important for understanding the nonlinear effects of gluon recombination at small

enough x as well as for the determination of the saturation momentum (QS) that

incorporates physics in addition to that of the linear evolution equations commonly

used to fit DIS data.

Until now the majority of our knowledge on the modifications of the higher order

QCD effects is established on the semi-classical approach [9, 13-15] and on numeri-

cal studies [16-21]. The approximate analytical solutions of the nonlinear GLR-MQ

evolution equation have also been reported in recent years [22, 23]. In this thesis we

attempt to use, to a feasible extent, semi-analytic methods to solve this equation.

We report, in this chapter, the approximate semi-analytical solution of the nonlin-

ear GLR-MQ equation as well as the validity of the well known Regge-like ansatz

in the region of small-x and moderate virtuality of photon. The aim of this work

is to check the evidence for gluon recombination at very small-x. We investigate

the effect of shadowing corrections on the small-x behavior of gluon distribution at

fixed virtuality of photon from the solution of GLR-MQ equation in LO with consid-

erable phenomenological success. Moreover, we obtain the Q2-dependence of gluon

distribution with shadowing corrections at fixed small-x. Our resulting gluon distri-

butions are compared with different experimental data and parametrizations. Our

predictions for nonlinear gluon density are further compared with different models

based on GLR-MQ equation. Moreover, we examine the extent of nonlinearity in our

predictions by comparing the gluon distributions obtained from nonlinear GLR-MQ

equation with those obtained from linear DGLAP equation.

5.2 Formalism

5.2.1 General framework

The GLR-MQ equation depends on two processes in the parton cascade, namely

the gluon emission generated by the QCD vertex g→g + g as well as the gluon

recombination by the same vertex g + g→g. The probability that a gluon splits into

two gluons is proportional to αsρ whereas the probability of gluon recombination is

proportional to α2
sr

2ρ2. Here, ρ is the density of gluons in the transverse plane and

r is the size of the gluon produced in the recombination process and for DIS, r∝ 1
Q
.
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It is very clear that, at x ∼ 1 only the production of new partons (quarks or gluons)

is essential because ρ≪1 , however at x→0 the value of ρ becomes so large that

the recombination of gluons turns into crucial. The number of partons in a phase

space cell (∆ln(1/x)∆lnQ2), thus, increases through gluon splitting and decreases

through gluon recombination and correspondingly the balance equation for emission

and recombination of partons can be written as [9-11]

∂2ρ(x,Q2)

∂ ln(1/x)∂ lnQ2
=

αs(Q
2)Nc

π
ρ(x,Q2)− α2

s(Q
2)γ

Q2
[ρ(x,Q2)]2, (5.1)

which is referred to as the GLR-MQ equation. Here ρ=
xg(x,Q2)

πR2 , where πR2 is the

target area and R is the correlation radius between two interacting gluons i.e. the

size of the relevant region for the gluon recombination processes. The factor γ is

found to be γ = 81
16

for Nc = 3, as evaluated by Mueller and Qiu [10]. In terms of

gluon distribution function the above equation can be expressed as

∂2xg(x,Q2)

∂ln(1/x)∂ lnQ2
=

αs(Q
2)Nc

π
xg(x,Q2)− α2

s(Q
2)γ

πQ2R2
[xg(x,Q2)]2, (5.2)

The first term in the r.h.s. is the usual DGLAP term in the DLLA and and is therefore

linear in the gluon field. The second term carries a negative sign and it reduces

the growth of the gluon distribution once the fan diagrams become admissible. It

expresses the nonlinearity in respect of the square of the gluon distribution. Here, the

representation for the gluon distribution G(x,Q2) = xg(x,Q2) is used, where g(x,Q2)

is the gluon density. The quark-gluon emission diagrams are not given attention here

due to their little importance in the gluon-rich small-x region. A general criterion

for the validity of Eq.(5.2) is that the nonlinear correction term should not be larger

than the first term since in that case further corrections must be considered and

non-perturbative effects could be of importance [24].

The parameter R does not become operative as long as one uses the DGLAP

evolution equation, which is linear in gluon density. Nonetheless, this size parameter

becomes relevant in the GLR-MQ equation where one takes into account the first

nonlinear term in the evolution and therefore it is essential to define it precisely.

Since the size parameter R in the denominator and the gluon distribution G in the

numerator appear in the second term of Eq.(5.2) as squared, so they are extremely

decisive for the magnitude of the recombination effect. R is of the order of proton
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radius Rh, that is R ∼ 5 GeV−1 if the gluons are distributed uniformly across the

whole of the proton and in that case recombination or shadowing corrections can be

negligibly small [10, 25]. On the other hand, R is of the order of the transverse size of

a valence quark i.e. R ∼ 2 GeV−1 if the gluons are condensed in the hot spots [10, 25,

26] inside the proton. The hot spots can enumerate rapid commencement of gluon-

gluon interactions in the environs of the parton and and so uplift the recombination

effect. Accordingly in such hot-spots the shadowing corrections are expected to be

large.

5.2.2 Solution of GLR-MQ equation for gluon distribution
function and effect of gluon shadowing

In order to study the effect of nonlinear or shadowing corrections on the behaviour

of gluon density we rewrite the GLR-MQ equation given by Eq.(5.2) in a convenient

form

∂G(x,Q2)

∂lnQ2
=

∂G(x,Q2)

∂lnQ2

∣∣∣
DGLAP

− 81

16

α2
s(Q

2)

R2Q2

∫ 1

x

dω

ω

[
G
(x
ω
,Q2

)]2
, (5.3)

We perform the analysis in the leading twist approximation and therefore have taken

the strong coupling constant αs(Q
2) = 4π

β0ln(Q2/Λ2) , where β0 = 11−2
3Nf . At small-x

gluons essentially turn out to be the most abundant partons and therefore, the quark

contributions to the gluon distribution function can be overlooked in the small-x

region. Accordingly the first term in the r.h.s. of Eq. (5.3) can be expressed as [27]

∂G(x,Q2)

∂lnQ2

∣∣∣
DGLAP

=
3αs(Q

2)

π

[(11
12

− Nf

18
+ ln(1− x)

)
G(x,Q2)

+

∫ 1

x

dω
{ωG( x

ω
, Q2

)
−G(x,Q2)

1− ω

+
(
ω(1− ω) +

1− ω

ω

)
G
(x
ω
,Q2

)}]
. (5.4)

To obtain an analytical solution of the GLR-MQ equation in the small-x region

we incorporate a Regge-like behavior of gluon distribution function. The behaviour

of structure functions at small-x can be described effectively in terms of Regge-like

ansatz [28]. The Regge theory is a highly ingenuous parameterization of all total cross

sections and supposed to be applicable at large-Q2 values if x is small enough x < 0.01

[29]. Moreover, as advocated in Refs.[30, 31], the Regee behavior is anticipated to
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be valid at small-x and some intermediate Q2, where Q2 must be small but not so

small that αs(Q
2) is too large. Since the total center of mass energy squared is

defined as s2 = Q2
(
1
x
− 1
)
, therefore the small-x behaviour of structure functions for

fixed Q2 emulates the high energy behaviour of total cross section with increasing

s2 [32]. For this reason the Regge pole exchange picture [28] sounds convenient for

the theoretical description of this behaviour. Again, as the structure functions are

proportional to the total virtual photon-nucleon cross section, therefore they are

expected to have Regge behaviour corresponding to pomeron or reggeon exchange

[30]. According to the Donnachie-Landshoff (DL) model, the high energy attitude

of hadronic cross sections as well as structure functions will be governed by two

contributions, especially by a pomeron proliferating the rise of structure function at

small-x and by reggeons related with meson trajectories. The high energy i.e. small-x

behaviour of both gluons and sea quarks are conducted by the same singularity factor

in the complex angular momentum plane [31] in accordance with Regge theory. The

Regge behavior of the sea-quark distribution for small-x is given by qsea(x) ∼ x−αP

corresponding to a pomeron exchange with an intercept of αP = 1. But the valence-

quark distribution for small x given by qval(x) ∼ x−αR corresponds to a reggeon

exchange with an intercept of αR = 0.5. The x dependence of the parton densities

is often estimated at moderate Q2 and thus the leading order calculations in ln(1/x)

with fixed αs predict a steep power-law behavior of xg(x,Q2) ∼ x−λG , where λG =

(4αsNc/π) ln 2 ≃ 0.5 for αs ≃ 0.2, as relevant for Q2 ∼ 4 GeV 2.

Furthermore, the Regge theory is presumed to be applicable if W 2, the mass

invariant squared in a DIS process, is much greater than all the other variables [33]

and so, models based upon this idea have been fruitful in explaining the DIS cross-

section when x is small enough (x < 0.7), whatsoever be the value of Q2 [33-35]. The

small-x limit of DIS corresponds to the case when 2Mν >> Q2, where x = Q2/2Mν,

butQ2 is still maintained large i.e. Q2 > Λ2, with Λ being the QCD cut off parameter.

The limit 2Mν >> Q2 is equivalent to s >> Q2 and is therefore the Regge limit of

DIS. Moreover, as Q remains greater than the QCD cut off parameter Λ so it enables

us to use perturbative QCD calculations and therefore Regge theory is applicable in

the region of large s, i.e. in the region of small-x [28, 29]. Hence it is feasible to use

Regge theory for the study of the GLR-MQ equation which is an improved version
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of DGLAP equation in the very small-x region. The Regge pole model gives the

parametrization of the DIS structure function F2(x,Q
2) at small-x as F2 ∝ x−λ with

λ > 0 being a constant or depending on Q2 or x [29, 33].

On that account, we employ the Regee like ansatz of gluon distribution function

to solve the nonlinear GLR-MQ equation at small-x. We assume a simple form of

Regge ansatz for gluon distribution function given as

G(x,Q2) = H(Q2)x−λG , (5.5)

where H(Q2) is a function of Q2 and λG is the Regge intercept for gluon distribution

function. This form of Regge behaviour is extensively used by many authors with

considerable success [33, 36, 37]. With this ansatz the term G( x
ω
, Q2) can be written

as

G
(x
ω
,Q2

)
= ωλGG(x,Q2). (5.6)

One of the applications of the Regge behaviour is the DL two pomeron model where

the rise of structure function is described by powers of 1/x. In the DL model it is

assumed that the exchange of two pomerons contribute to the amplitude, however, at

small-x the gluon distribution function is dominated exclusively by the hard pomeron

exchange [33]. In the DL two pomerons exchange model, the hard pomeron has an

intercept ϵh = 0.418. Moreover, as the values of Regge intercepts for all the spin-

independent singlet, non-singlet and gluon structure functions should be close to 0.5

in quite a broad range of small-x [37], so we also consider the value of λG to be 0.5

in our analysis and expect to obtain our best fit results with this value of λG.

To simplify our calculations we consider a variable t, such that t = ln(Q
2

Λ2 ). Then

using the Eqs.(5.5) and (5.6) together with the Eq.(5.4), Eq.(5.3) can be simplified

as

∂G(x, t)

∂t
=

3αs(t)

π
G(x, t)

[(11
12

− Nf

18
+ ln(1− x)

)
+

∫ 1

x

dω
{ωλG+1 − 1

1− ω

+
(
ω(1− ω) +

1− ω

ω

)
ωλG

}]
− 81

16

α2
s(t)

R2Λ2et
G2(x, t)

∫ 1

x

ω2λG−1dω.

(5.7)

Now rearranging the terms Eq. (5.7) can be expressed as

∂G(x, t)

∂t
= γ1(x)

G(x, t)

t
− γ2(x)

G2(x, t)

t2et
, (5.8)
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where the x dependent functions γ1(x) and γ2(x) are defined as

γ1(x) = 3Af

[11
12

−Nf

18
+ln(1−x)+

∫ 1

x

dω
{ωλG+1 − 1

1− ω
+
(
ω(1−ω)+

1− ω

ω

)
ωλG

}]
,

(5.9)

γ2(x) =
81

16

A2
fπ

2

R2

∫ 1

x

ω2λG−1dω. (5.10)

where Af = 4
β0
.

Eq.(5.8) is a partial differential equation for the gluon distribution function with

respect to the variables x and Q2 (t = ln(Q2/Λ2)). Thus apart from its conventional

use in Q2-evolution, Eq.(5.8) can also be used to examine the x-dependence of gluon

distribution. Solution of Eq.(5.8) then leads us to a solution for the nonlinear gluon

density as given below

G(x, t) =
tγ1(x)

C + γ2(x)
∫
tγ1(x)−2e−tdt

, (5.11)

where C is a constant to be determined from initial boundary conditions. Thus we

solve Eq.(5.3) by employing the Regge ansatz for gluon distribution given by Eq.(5.5)

and obtain a solution of the nonlinear gluon density. As the Regge behaviour is

supposed to be legitimate at small-x and some intermediate Q2, therefore the solution

of the GLR-MQ equation in the form of Eq.(5.11) is expected to be worthwhile.

We believe that our solution is correct in the vicinity of the saturation where all

our assumptions look natural. Now to determine the Q2 (t = ln(Q2/Λ2)) and x-

dependence of the gluon distribution we apply the following two physically plausible

boundary conditions

G(x, t) = G(x, t0) (5.12)

at some lower value Q2 = Q2
0, where t0 = ln(Q2

0/Λ
2) and

G(x, t) = G(x0, t), (5.13)

at some high x = x0.

The boundary condition (5.12) gives us

G(x, t0) =
t
γ1(x)
0

C + γ2(x)
∫
t0

γ1(x)−2e−t0dt0
, (5.14)
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From this equation the constant C can be evaluated by considering an appropriate

input distribution G(x, t0) at a given value of Q2
0. Now Eq.(5.11) and Eq.(5.14) lead

us to the Q2-evolution of gluon distribution function for fixed x given as

G(x, t) =
tγ1(x)G(x, t0)

t
γ1(x)
0 + γ2(x)

[ ∫
tγ1(x)−2e−tdt−

∫
t0

γ1(x)−2e−t0dt0

]
G(x, t0)

. (5.15)

Thus we have obtained an expression for the Q2-evolution of nonlinear gluon density

at LO by solving the nonlinear GLR-MQ evolution equation semi-analytically. From

this expression we can easily compute the dependence of gluon distribution function

on Q2 for a particular value of x by choosing an appropriate input distribution at a

given value of Q2
0. Eq.(5.15) also assist us to investigate the nonlinear or shadowing

corrections to the gluon distribution functions at moderate values of Q2.

Similarly, the boundary condition (5.13) yields

G(x0, t) =
tγ1(x0)

C + γ2(x0)
∫
tγ1(x0)−2e−tdt

, (5.16)

so that using Eqs. (5.11) and (5.16) we obtain

G(x, t) =
tγ1(x)G(x0, t)

tγ1(x0) +
[
γ2(x)

∫
tγ1(x)−2e−tdt− γ2(x0)

∫
tγ1(x0)−2e−tdt

]
G(x0, t)

. (5.17)

Thus Eq. (5.17) provides the solution of the GLR-MQ equation for gluon distribution

at small-x for fixed Q2. Accordingly from Eq. (5.17) we can easily predict the small-x

dependence of nonlinear gluon distribution function for a particular value of Q2 by

picking out a suitable input distribution at an initial value of x = x0. The effect of

nonlinear or shadowing corrections to the gluon distribution functions at small-x can

be studied as well by employing Eq. (5.17).

We analyze the region of validity of our solution given by Eq.(5.11) and we

expect that the solution is only valid in the region of small-x and intermediate values

of Q2. It is clear from Eq.(5.11) that at large Q2 (t = ln(Q2/Λ2)), we can neglect the

nonlinear corrections and our solution takes the form

G(x, t) =
tγ1(x)

C + γ2(x)
∫
tγ1(x)−2e−tdt

t≫1−→ tγ1(x)/C, (5.18)

However, in the region where Q2 is not very large, the corrections for the nonlinear

term in Eq.(5.11) can not be neglected and in that case Eq.(5.11) does not reduce

to Eq.(5.18). In our analysis we consider intermediate values of Q2 (1 ≤ Q2 ≤ 30
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GeV2) to calculate the gluon distribution function. In this region the corrections

for the nonlinear term γ2(x)
∫
tγ1(x)−2e−tdt cannot be neglected in comparison to C,

where C is defined by Eq.(5.14), and so our solution given by Eq.(5.11) does not

reduce to Eq.(5.18).

On the other hand we observe that in the region 10−5 ≤ x ≤ 10−2 Eq.(5.11)

predicts an increase of gluon distribution with decreasing-x, which is in accordance

with the Regge ansatz of Eq.(5.5). Nevertheless Eq.(5.11) yields a slower growth

of gluon density towards small-x in comparison to the solution of linear DGLAP

equation, since the nonlinear effects due to gluon-gluon interactions play a significant

role in the small-x (x ≤ 10−2) region. However in the region of very small-x (x <

10−5) but fixed Q2, we can neglect the dependence of the functions γ1(x) and γ2(x)

on x. Accordingly the solution suggested in Eq.(5.11) does not depend on x taking

the form

Gx→0(x, t) =
tγ10

C + γ20
∫
tγ10e−tdt

, (5.19)

where the r.h.s is a constant. In that case the solution to the nonlinear equation given

by Eq.(5.11) contradicts the ansatz of Eq.(5.5). So we can conclude that Eq.(5.11)

is not a valid solution at very small-x (x < 10−5). It is to note that in the region of

x > 10−2 the process of gluon-recombination does not play an important role on the

QCD evolution and therefore nonlinear corrections to the DGLAP equation is not

essential. In other words in the region of x > 10−2 DGLAP equation is sufficient to

explain the available experimental data. So we can interpret that the solution given

by Eq.(5.11) may not be applicable in the region of x < 10−5 as well as x > 10−2.

But in the kinematic region 10−5 ≤ x ≤ 10−2 the x-dependence of the functions γ1(x)

and γ2(x) can not be neglected and under this situation Eq.(5.11) does not reduce to

Eq.(5.19) and thus it does not contradict the ansatz given by Eq.(5.5). Hence we can

conclude that the solution suggested in Eq.(5.11) is expected to be a valid solution

of the nonlinear GLR-MQ equation in the kinematic region 1 ≤ Q2 ≤ 30 GeV2 and

10−5 ≤ x ≤ 10−2 and it can delineate the small-x dependence of nonlinear gluon

density in a satisfactory manner.
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5.2.3 Comparative analysis of DGLAP and GLRMQ equa-
tions

To estimate the effect of shadowing corrections for the gluon distribution function

in our predictions we make a comparative study of the nonlinear GLR-MQ equation

with the linear DGLAP approach. For this purpose we solve the linear DGLAP

equation at small-x at LO defined by Eq.(5.4) by employing the Regge ansatz of

gluon distribution function and compare it with the solution of the GLR-MQ equation

discussed above. Using the Regge ansatz of Eq.(5.5), Eq.(5.4) can be simplified as

∂G(x, t)

∂t

∣∣∣
DGLAP

= γ1(x)
G(x, t)

t
, (5.20)

which can be easily solved to have

G(x, t) = Atγ1(x). (5.21)

Here A is a constant to be fixed by initial boundary conditions. The x dependent

function γ1(x) is defined in Eq.(5.9). Now defining

g10 = G(x, t0) = At
γ1(x)
0 (5.22)

at some lower value Q2 = Q2
0, we get from Eq.(5.21)

G(x, t) = g10

( t

t0

)γ1(x)
. (5.23)

Eq.(5.23) provides the solution of the linear DGLAP equation at LO for gluon dis-

tribution with the ansatz of Eq.(5.5) and it describes the Q2 dependence of linear

gluon density for a fixed value of x, provided a suitable input distribution g10 has

been chosen from the initial boundary condition.

Again, defining

g20 = G(x0, t) = Atγ1(x0) (5.24)

at some initial higher value x = x0, Eq.(5.21) can be expressed as

G(x, t) = g20t
γ1(x)−γ1(x0). (5.25)

Eq.(5.25) is the solution of the linear DGLAP equation at LO for gluon distribu-

tion at small-x with the ansatz of Eq.(5.5) and it describes the small-x behavior of
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linear gluon density for a particular value of Q2 by choosing an appropriate input

distribution g20 from the initial boundary condition.

The effect of shadowing corrections to the gluon distribution function can be ex-

amined considering the solutions of the DGLAP and GLR-MQ equations respectively.

To do this we calculate the ratio RG of the predicted values of gluon distribution func-

tion obtained from the solution of nonlinear GLR-MQ equation given by Eq. (5.17)

to that obtained using the linear DGLAP equation given by Eq.(5.25)

RG =
GGLR−MQ(x, t)

GDGLAP (x, t)
, (5.26)

as a function of variable x for different values of Q2. By evaluating this ratio we

have observed a taming behavior of gluon distribution in the HERA kinematic re-

gion (3 ≤ ln(1/x) ≤ 12) due to shadowing corrections to the linear evolution. Thus

employing the expression (5.26) we can interpret the influence of nonlinear or shad-

owing corrections as a consequence of gluon recombinations on the behavior of gluon

distribution at small-x. It also assists us to understand whether Froissart bound can

be restored at small-x. We have explored the phenomenological aspect of Eq.(5.26)

in section 3.

5.2.4 Compatibility of Regge like solutions of gluon density
with the DLA solution

The DGLAP evolution equation predicts that the gluon distribution function rises

steeply as a power of x toward small-x which is observed at HERA too. This is

in accordance with the Double Logarithmic Approximation (DLA) at small-x and

large photon virtualities Q2. The DLA accounts for only the leading double loga-

rithmic contributions (αs ln(Q
2/Q2

0) ln(1/x)) to multiparton cross sections. In DLA

it is considered that αs

π ≪ 1, αs

π lnQ2 ≪ 1, αs

π ln2Q2 ∼ 1 [38]. DLA analysis man-

ifests the structure of intrajet parton cascades and as a matter of fact, the DLA

predictions provide an assumption for the parton picture. The parton cascade is an

excellent replica in consideration of DLA ladder diagrams. The DLA is applicable

to perturbative QCD evolution in the asymptotic regime characterized by Q2 ≫ Q2
0

and x ≪ x0, x0 ≤ 0.1, [39]. The proton structure function data explored at HERA

have been demonstrated to evolve in consonance with DLA as suggested in Ref. [30].

The DLA asymptotics of the structure function derived by the addition of diagrams
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corresponding to (αs ln(Q
2/Q2

0))
n and of those (αs ln(1/x))

n occur simultaneously

and produce the solution of the DGLAP equation in the form ∼ exp

(√
ln t

t0
ln x0

x

)
[9]. The gluon distribution produced by the DLA DGLAP evolution naturally por-

trays the data in a satisfactory manner exclusively in a somewhat confined kinematic

domain of small-x and large-Q2.

Any LO solution of DGLAP equation is presumed to be consistent with the DLA

result. That being so, it is worthwhile to investigate the prospect of compatibility of

our Regge type solution of DGLAP equation with the DLA one. Even though Regge

behavior is not in agreement with the DLA in general, but, when x is small enough

(x < 0.7) the Regge theory is assumed to be applicable, whatsoever the value of Q2

[34, 35]. Accordingly the Regge type solution of DGLAP equation is expected to be

valid. The conventional DLA formula [38] for gluon distribution function is

GDLA(x, t) = G(x, t0) exp

(
2

√
Nc

πb
ln
( t

t0

)
ln
(x0

x

))
, (5.27)

with the function b =
11Nc−2Nf

12π
. Here Nc = 3 is the number of color. Our solution

of linear DGLAP equation given by Eq. (5.25) is in agreement with DLA formula of

Eq. (5.27) as long as the following condition is satisfied,

ln
(

GDLA(x,t0)
GDGLAP (x0,t)

)
(
γ1(x)− γ1(x0)

)
t
+

2

√
12Nc

11Nc−2Nf
ln
(

t
t0

)
ln
(

x0

x

)
(
γ1(x)− γ1(x0)

)
t

= 1. (5.28)

An analysis of the phenomenological aspects of Eq.(5.28) is presented in section 3

where we denote the l.h.s. of Eq.(5.28) as P (x,Q2).

5.3 Result and discussion

We solve the nonlinear GLR-MQ evolution equation by considering the Regge like

behavior of gluon distribution function and examine the effects of adding the non-

linear GLR-MQ corrections due to gluon recombination processes at small-x to the

LO DGLAP evolution equations. We investigate the behavior of gluon distribution

function at small-x and moderate Q2 from the predicted solution of the GLR-MQ

equation. The solutions suggested in Eqs.(5.15) and (5.17) are directly related to

the initial conditions. Our predictions of x and Q2 dependence of gluon distribu-

tion function G(x,Q2) are compared with with those obtained by the global QCD
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fits to the parton distribution functions, viz. GRV1998LO [40], GJR2008LO [41],

MRST2001LO [42], MSTW2008LO [43], NNPDF [44], HERAPDF0.1 [45, 46] and

CT10 [47, 48] parametrizations respectively. To evolve our solutions, we use the

GRV1998LO input and MRST2001LO input for two different representations of our

solutions.

Furthermore, we present a comparative analysis of our computed results with the

results of the EHKQS [20] and BZ models [23]. In the EHKQS model the effects of

the first nonlinear corrections to the DGLAP evolution equations are studied by using

the recent HERA data for the structure function F2(x,Q
2) of the free proton and the

parton distributions from CTEQ5L and CTEQ6L as a baseline [49]. The EHKQS

model shows that the nonlinear corrections improve the agreement with the F2(x,Q
2)

data in the region of x ∼ 3 × 10−5 and Q2 ∼ 1.5 GeV2. On the other hand in BZ

model using a Laplace-transform technique, the behavior of the gluon distribution is

obtained by solving the GLR-MQ evolution equation with the nonlinear shadowing

term incorporated.

Figure 5.1 represent our predictions of the gluon distribution function with the ef-

fect of nonlinear or shadowing corrections obtained from Eq.(5.15), plotted againstQ2

for four fixed values of x, viz. x = 10−2, 10−3, 10−4 and 10−5 respectively. We compare

our predictions with GRV1998LO, GJR2008LO, MRST1001LO and MSTW2008LO

global parton analysis as well as with the EHKQS model. The input distribution is

taken from the GRV1998LO. The red solid curve represents the effect of the shad-

owing correction of gluon distribution function predicted by using Eq.(5.15) for the

hot spots with R = 2 GeV−1 whereas the results for R = 5 GeV−1 is shown by the

blue solid line.

Similarly, in Figure 5.2 we plot our computed results of the gluon distribution

function obtained from Eq.(5.15) vs. Q2, considering the MRST2001LO input gluon

distribution, for x = 10−2, 10−3, 10−4 and 10−5 respectively as before. Here also the

red and blue solid lines represent our predictions of nonlinear gluon density for R = 2

GeV−1 and R = 5 GeV−1 respectively. We perform a comparison of our results with

different parametrizations namely, HERAPDF0.1, CT10 and NNPDF.

Figure 5.3 represent the small-x behavior of the gluon distribution with the effect

shadowing corrections to the gluon distribution function determined from Eq.(5.17)
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Figure 5.1: Q2 dependence of gluon distribution with shadowing corrections obtained from
Eq.(5.15) for four fixed values of x at R = 2 GeV −1 (red solid curves) and R = 5 GeV −1 (blue solid
curves) respectively. Our predictions are compared with GRV1998LO (dash), GJR2008LO (dash-
dot), MRST2001LO (short-dash) and MSTW2008LO (dash-dot-dot) parametrizations as well as
with the EHKQS model (dot). The input gluon distribution is taken from GRV1998LO.

as a function of x for four fixed values of Q2, viz. Q2 = 5, 10, 15 and 20 GeV2. Here

the input gluon distribution is taken from GRV1998LO to evolve our solutions and

our predictions of the small-x behaviour of nonlinear gluon density are compared

with the global QCD analysis namely GRV1998LO, GJR2008LO, MRST2001LO,

MSTW2008LO as well as with the H1 data. The red and blue solid lines represent

our best fit results of nonlinear gluon density for R = 2 GeV−1 and R = 5 GeV−1

respectively.

On the other hand, our predictions of gluon distribution function with the shad-

owing corrections evaluated from Eq. (5.17) using the MRST2001LO input are plot-

ted in Figure 5.4 as a function of x for four fixed Q2, viz. Q2 = 5, 10, 15 and and
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Figure 5.2: Q2 dependence of gluon distribution function incorporating shadowing corrections
computed from Eq.(5.15) for four fixed values of x at R = 2 GeV −1 (red solid curves) and R =
5 GeV −1 (blue solid curves) respectively. Our predictions are compared with HERAPDF0.1 (short-
dot), CT10 (dash-dot) and NNPDF (dash-dot-dot) parametrizations. The input gluon distribution
is taken from MRST2001LO.

20 GeV2 as in the previous case. We make a comparison of our computed results of

nonlinear gluon density with the HERAPDF0.1, CT10, NNPDF parametrizations as

well as with the results of BZ model. Here too the computed results of the small-x

behaviour of nonlinear gluon density corresponding to R = 2 GeV−1 and R = 5

GeV−1 are represented by the red and blue solid lines respectively.

From Figure 5.1 to Figure 5.4 we have observed that our results are in good

agreement with different experimental data, global parametrizations and also with

different models. The gluon distribution increases with increasing Q2 and decreasing

x, which complements the perturbative QCD fits at small-x, but this behaviour is

tamed with respect to the nonlinear terms in GLR-MQ equation. It is very interesting

to observe that our predictions for the x and Q2 dependence of nonlinear gluon
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Figure 5.3: Small-x behaviour of gluon distribution with shadowing corrections obtained from
Eq.(5.17) for four fixed values of Q2 at R = 2 GeV −1 (red solid curves) and R = 5 GeV −1 (blue
solid curves) respectively. Our results are compared with GRV1998LO (dash), GJR2008LO (dash-
dot), MRST2001LO (short-dash), MSTW2008LO (dash-dot-dot) parametrizations as well as with
H1 data (up-triangle). The input gluon distribution is taken from GRV1998LO.

density are in excellent agreement with the gluon density function obtained from

HERAPDF0.1 and CT10 parametrizations. Moreover, we observe from Figure 5.2

that our results of the effect of shadowing corrections to the moderate-Q2 behaviour of

gluon distribution function are comparable with those obtained in a similar analysis

by the EHKQS model. We further note that, our results follow the general trend of

H1 data but they get saturated towards very small-x due to shadowing corrections.

Similarly, we see that the shapes of the curves in Figure 5.4 representing the small-x

behaviour of nonlinear gluon density are almost similar to the results of BZ model.

Therefore we can say that the Regge type solution of the GLR-MQ equation for the

nonlinear gluon distribution suggested in Eq.(5.11) can describe the available data in
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Figure 5.4: Small-x behaviour of gluon distribution considering shadowing corrections calculated
from Eq.(5.17) for four fixed values ofQ2 at R = 2 GeV −1 (red solid curves) and R = 5 GeV −1 (blue
solid curves) respectively. Our results are compared with HERAPDF0.1 (dot), CT10 (dash-dot-dot)
and NNPDF (dash-dot) parametrizations and BZ model (dash). The input gluon distribution is
taken from MRST2001LO.

a satisfactory manner. We perform our analysis in the kinematic region 1 ≤ Q2 ≤ 30

GeV2 and 10−5 ≤ x ≤ 10−2 and our solution of the nonlinear gluon density is found

to be legitimate in this kinematic domain. The effect of shadowing corrections as a

consequence of gluon recombination processes in our predictions is observed to be

very high at the hot-spots with R = 2 GeV−1 when the gluons are centered within the

proton, compared to at R = 5 GeV−1 when the gluons are disseminated throughout

the entire proton.

Moreover, to examine the effects of nonlinear or shadowing corrections to the

gluon distributions in our prediction, we have plotted the ratio RG of the gluon distri-

bution function obtained from the solution of nonlinear GLR-MQ equation for R = 2

GeV−1 to that obtained from the solution of linear DGLAP equation using Eq.(5.26)
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Figure 5.5: A comparison of the gluon distribution function in terms of RG defined in Eq.(5.26).
The comparison is shown for six different bins in Q2 = 2, 5, 10, 15, 20 and 30 GeV2.

1 7 14 21 28 35
0

15

30

45

60

75

90

 

 

x=10-5

x=10-4

x=10-3

x=10-2

G
(x

, Q
2 )

Q2 (GeV2)

 R=2 GeV-1

 R=4 GeV-1

 R=5 GeV-1

Figure 5.6: Sensitivity of the correlation radius R in our predictions for four values of x.

10-7 10-6 1x10-5 1x10-4 10-3
0.30

0.50

0.75

1.00

1.25

1.50

 

 

P
(x

,Q
2 )

x

 Q2=5 GeV2

 Q2=20 GeV2

 Q2=40 GeV2

 Q2=60 GeV2

 Q2=80 GeV2

 Q2=100 GeV2

 Q2=300 GeV2

 Q2=500 GeV2
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in Figure 5.5. This comparison helps us to estimate the shadowing corrections for

the gluon distribution function. We plot the ratio RG for gluon distribution as a

function of the variable x for six representative values Q2 = 2, 5, 10, 15, 20 and 30

GeV2 respectively. We observe that as x grows smaller the GLR-MQ/DGLAP ratios

decrease which implies that the effect of nonlinearity increases towards small-x due

to gloun recombination. The fall of the ratio at small-x (x < 10−2) is a consequence

of the gluon recombination or shadowing corrections. Results also clearly indicates

that towards smaller values of Q2 the value of the ratio between nonlinear gluon den-

sity and linear gluon density also goes smaller. In other words, gluon recombination

plays an important role in the region of small-x and Q2 whereas, with the evolution

to large-Q2 (Q2 > 30 GeV 2) and large-x (x ≥ 10−2), gluon recombinations play less

of a role, and as a consequence the nonlinear effects have a very little impact.

We have further investigated the effect of nonlinearity in our results by performing

an analysis to check the sensitivity of the correlation radius R between two interacting

gluons. For this analysis our computed values ofG(x,Q2) from Eq. (5.15) for R = 2, 4

and 5 GeV−1 respectively are plotted against Q2 in Figure 5.6 for four fixed values of

x, x = 10−2, 10−3, 10−4 and 10−5. For this analysis we take the input distribution from

MRST2001LO global parametrization for a given value of Q2
0. The gluon distribution

function is observed to be more tamed at R = 2 GeV1, where gluons are supposed to

be condensed in the hot-spots within the proton, compared to at R = 4 GeV−1 and

R = 5 GeV−1 where gluons are almost scattered over the entire proton. Moreover, we

note that that the differences between the data as we approach from R = 2 GeV−1

to R = 5 GeV−1 increase with decreasing x as anticipated.

Figure 5.7 represents the plot of P (x,Q2) vs. x for different values of Q2, where

P (x,Q2) represents the l.h.s of Eq.(5.28) which represents the condition of compat-

ibility of the Regge like solution of DGLAP equation to the DLA one. This figure

illustrates that our Regge type solution of linear DGLAP equation given by Eq.(5.23)

is comparable with the DLA result of Eq.(5.27) in a finite domain of x and Q2 as

long as the constraint given by Eq.(5.28) is fulfilled. It is obvious from the figure

that for each value of Q2, there is a corresponding value of x for which the l.h.s and

r.h.s. of Eq.(5.28) are identical and the value of x, where this happens, switches to

lower limit as Q2 increases. We observe that for the Q2 values 5 ≤ Q2 ≤ 500 GeV2,
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considered in our analysis, the condition of compatibility is satisfied in the region of

x between 10−4 and 10−3. Accordingly the Regge like solution of the linear DGLAP

equation in LO is expected to be applicable in the region of 10−4 ≤ x ≤ 10−3 and

high-Q2 if it is appealed to be consistent with the DLA one.

5.4 Summary

In summary, the behavior of gluon distributions in the region of small-x and moderate-

Q2 are semi-analytically predicted by solving the nonlinear GLR-MQ equation in

leading twist approximation incorporating the well known Regge ansatz. We make a

deliberate attempt to explore the effect of nonlinear or shadowing corrections arises

due to the gluon recombination processes on the behavior of gluon distribution at

small-x and moderate-Q2. We observe that the gluon distribution function increases

with increasing Q2 and decreasing x, but with the inclusion of the nonlinear terms,

this behaviour of gluon density is slowed down relative to DGLAP gluon distribu-

tion. We investigate how the inclusion of nonlinear effects changes the behavior of

gluon density and it is interesting to observe that although the gluon distribution in-

creases with increasing Q2 and decreasing x as usual, which is in agreement with the

perturbative QCD fits at small-x, however the gluon recombination processes tame

the rapid growth of gluon densities towards small-x. This suggests that the gluon

distributions unitarize leading to the restoration of Froissart bound in the small-x

region where density of gluons becomes very high. For the gluon distribution the

nonlinear effects are found to play an increasingly important role at x ≤ 10−3. The

nonlinearities, however, vanish rapidly at larger values of x. Furthermore, our results

manifest that the nonlinearity increases with decreasing value of correlation radius

R as expected which is very fascinating.

Our results indicates that the nonlinear effects or shadowing corrections, emerged

as a consequence of recombination of two gluon ladders, play a significant role on QCD

evolution for gluon distribution in the kinematic region of small-x and moderate-Q2.

Accordingly the suggested solution of the GLR-MQ equation for gluon distribution

function is anticipated to be legitimate only in the vicinity of saturation i.e. in the

kinematic region 1 ≤ Q2 ≤ 30 GeV2 and 10−5 ≤ x ≤ 10−2. Our phenomenological

analysis also supports this as the obtained results of nonlinear gluon density using
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the Regge ansatz are in accordance with different parametrization as well as models.

Finally, we derive the condition of compatibility of the LO solution of linear

DGLAP equation for gluon, obtained by employing the Regge ansatz, with the DLA

solution in a finite range of the variables x and Q2. From our phenomenological

analysis we understand that in the Q2 region 5 ≤ Q2 ≤ 500 GeV 2, considered in

our study, the condition of compatibilty is satisfied in the region of x between 10−4

and 10−3. Accordingly we can expect the Regge type solution of the linear DGLAP

equation in LO to be applicable in the region of 10−4 ≤ x ≤ 10−3 and high-Q2 if we

demand it to be consistent with the DLA one.
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