
Chapter 6

Shadowing Corrections to the
Singlet Structure Function and
Behaviour of F2 Slope

6.1 Introduction

Perturbative QCD manifests that the sea quark distributions, in a hadron evolves

rapidly with ln (1/x) at fixed Q2 in the same manner as the gluon distribution

xg(x,Q2). However in the region of very small-x the sharp growth of the sea quark

density is expected to slow down eventually in order to restore the Froissart bound

[1, 2] on physical cross sections. In general the gluon recombination processes, which

lead to the nonlinear or shadowing corrections to the linear QCD evolution, is consid-

ered to be responsible for this taming behaviour. The sea quark distribution, which

overshadows the valence quarks at small x, is supposed to be generated through glu-

ons and therefore it is extensively believed that the gluon and sea quark distribution

functions almost feel the same effect of shadowing. The nonlinear or shadowing cor-

rections in DIS arise due to two processes, one is the taming of the gluon density as a

result of gluon recombination gg → g and the other is the Glauber-like rescattering of

the qq̄ fluctuations off gluons [3]. The second process can also be regarded as a parton

recombination, particularly as a recombination of gluons into a quark-antiquark pair,

gg → qq̄. Gribov, Levin and Ryskin (GLR-MQ) [4], at the onset, investigated the

shadowing corrections of gluon recombination to the parton distributions i.e quark

and gluon distribution. Following that Mueller and Qiu (MQ) [3, 5] completed the
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equation numerically using a perturbative calculation of the recombination probabili-

ties in the DLLA, and also formulated the equation for the conversion of gluons to sea

quarks. This is a triumph of great significance as it empowers the GLR-MQ equation

to be applied phenomenologically and thus provides the connection to experiments.

This equation was made widely applicable in order to include the contributions from

more higher order corrections in the Glauber-Mueller formula [3].

In this chapter, we solve the GLR-MQ equation for sea quark distribution in-

corporating the well known Regge like ansatz and investigate the effect of shadowing

corrections on the small-x and moderate-Q2 behaviour of singlet structure function.

Our predictions of x and Q2 dependence of singlet structure function with shadowing

corrections are compared with NMC [6] and E665 [7] experimental data as well with

the NNPDF collaboration [8]. Moreover, we perform a comparison of our predictions

of singlet structure function obtained from nonlinear GLR-MQ equation with those

obtained from linear DGLAP equation to examine the effect of nonlinear or shad-

owing corrections on the behaviour of singlet structure function. We further predict

the logarithmic derivative of the singlet structure function and compare the results

with H1 data [9, 10].

6.2 Formalism

6.2.1 General framework

The nonlinear corrections arising from the recombination of two gluon ladders into

one gluon or a qq̄ pair, modify the evolution equations of sea qurak distribution as

[11]

∂xq(x,Q2)

∂lnQ2
=

∂xq(x,Q2)

∂lnQ2

∣∣∣
DGLAP

− 27

160

α2
S(Q

2)

R2Q2
[xg(x,Q2)]2 +HT. (6.1)

This equation is known as the GLR-MQ evolution equation for sea quark distribution.

Here q(x,Q2) is the quark density and g(x,Q2) is the gluon density. The represen-

tation for the gluon distribution G(x,Q2) = xg(x,Q2) is used. The first term on

the right-hand side is given by standard linear DGLAP equation whereas the term

quadratic in G is the result of gluon recombination into quarks. The negative sign

in front of the non-linear term tames the strong growth of sea quark distribution

generated by the linear term at very small-x and it describes the shadowing correc-
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tions. HT stands for an additional term revealed by Mueller and Qiu but it is not

given in all respects. Therefore this term is not taken into account in our analysis

presented below. The parameter γ is calculated by Mueller and Qiu in perturba-

tion theory and is found to be γ = 81
16

for Nc = 3. The size of the nonlinear term

crucially depends on the value of the correlation radius R between two interacting

gluons. πR2 is the target area occupied by the gluons. If the gluons originate from

sources which occupy distinct regions in longitudinal coordinate space then R is of

the order of proton radius, i.e. R = 5 GeV−1. In that case recombination probability

is very negligible [12, 13]. On the other hand, a considerable effect of recombination

or shadowing corrections is expected if the gluons are condensed in hot spots [14]

inside the proton, where R is considered to be of the order of the transverse size of

a valence quark, i.e. R = 2 GeV−1.

In the QCD improved parton model approximation, the structure functions are

usually identified by summing quark distributions weighted by squared charges as

usual

F2(x,Q
2) =

∑
i

e2ixqi(x,Q
2) (6.2)

where the sum implies summation over all flavours of quarks and anti-quarks and ei

is the electric charge of a quark of type i. The F2 structure functions measured in

DIS can be written in terms of singlet and non-singlet quark distribution functions

as [15]

F2 =
5

18
F S
2 +

3

18
FNS
2 (6.3)

As the structure function in the small-x region is mainly dominated by the gluon

and sea quark distributions, therefore at small-x the non-singlet contribution can be

neglected. It is reasonable to consider this from the experimental point of view as

well. The H1 Collaboration presents a global fit of their data of the singlet quark

distribution, qS = u + ū + d + d̄ + s + s̄, which determines practically the F2(x,Q
2)

behaviour at small-x in the form xqS(x) = AxB(1− x)C(1 +Dx) where A,B,C and

D are numerical constants at Q2 = 4 GeV2 and x > 2 × 10−4. At x ≤ 10−2, one

can rewrite this expression as xqS(x) = AxB and one may neglect the non-singlet

contribution within a few percent accuracy. Similarly ZEUS Collaboration presented

their data for singlet quark distribution in a similar form xqS(x) = AxB(1− x)C(1+
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D
√
x + Ex) with the numerical constants A,B,C,D and E at Q2 = 7 GeV2 and

x > 0.67 × 10−4. Also in this case one can rewrite the expression in the form

xqS(x) = AxB.

Thus the contribution of the non-singlet part of the structure function can be

ignored in the small-x region and in that situation Eq.(6.1) can be approximated as

∂F S
2 (x,Q

2)

∂lnQ2
=

5

18

∂F S
2 (x,Q

2)

∂lnQ2

∣∣∣
DGLAP

− 5

18

27

160

α2
S(Q

2)

R2Q2
G2(x,Q2), (6.4)

Again the first term of Eq.(6.4), which is the linear DGLAP equation for singlet

structure function, in the leading twist approximation is given by [28]

∂F S
2 (x,Q

2)

∂lnQ2

∣∣∣
DGLAP

=
αs(Q

2)

2π

[
2

3

(
3 + 4 ln(1− x)

)
F S
2 (x,Q

2)

+
4

3

∫ 1

x

dω

1− ω

{
(1 + ω2)F S

2

(x
ω
,Q2

)
− 2F S

2 (x,Q
2)
}

+NF

∫ 1

x

(
ω2 + (1− ω)2

)
G
(x
ω
,Q2

)
dω

]
. (6.5)

6.2.2 Solution of GLR-MQ equation for singlet structure
function and effects of gluon shadowing

Now to solve the GLR-MQ equation for singlet structure function we employ a Regge

like behaviour of singlet structure function As discussed in chapter 5, the Regge

ansatz can successfully describe the behaviour of structure functions at small-x [16].

The Regge theory is supposed to be applicable if x is small enough [17, 18] as long

as Q2 is sufficiently large that a perturbative treatment is possible. The Regge pole

model gives the parametrization of the DIS structure function F2(x,Q
2) at small-x

as F2 ∝ x−λ with λ > 0 [15]. To this end, we take into account a simple form of

Regge like behaviour of singlet structure function as

F S
2 (x,Q

2) = J(Q2)x−λS , (6.6)

where J(Q2) is a function of Q2 and λS is the Regge intercepts for singlet structure

function. According to Regge viewpoint, the high energy or small-x behaviour of both

gluons and sea quarks are controlled by the same singularity factor in the complex

angular momentum plane [16] since the same power is expected for sea quarks and

gluons. Therefore likewise the value of the Regge intercept λG for gluon distribution

function, the values of λS in our analysis is also taken to be 0.5 .
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Again to obtain a solution of the GLR-MQ equation for singlet structure function,

we have to assume a relation between singlet structure function and gluon distribution

function as discussed in chapter 3 and chapter 4. The frequently used relation is [19-

21]

G(x,Q2) = K(x)F S
2 (x,Q

2), (6.7)

with the ad hoc parameter K(x) to be determined from phenomenological analysis.

Now employing the Regge ansatz of Eq.(6.6) for singlet structure function and

using the relation defined by Eq.(6.7) in Eq.(6.4) we arrive at

∂F S
2 (x,Q

2)

∂Q2
= p1(x)

F S
2 (x,Q

2)

ln(Q2/Λ2)
− p2(x)

[
F S
2 (x,Q

2)
]2

Q2 ln(Q2/Λ2)
, (6.8)

The explicit forms of the functions p1(x) and p2(x) are

p1(x) =
5

9β0

[
2

3

(
3 + 4 ln(1− x)

)
+

4

3

∫ 1

x

dω

1− ω

(
{(1 + ω2)ωλS − 2

)
+NF

∫ 1

x

(
ω2 + (1− ω)2

)
ωλSK(x)dω

]
, (6.9)

p2(x) =
27

36

π2
(
K(x)

)2
β2
0R

2
. (6.10)

Here we consider the leading twist approximation of the strong coupling constant

αs(Q
2) = 4π

β0ln(Q2/Λ2) with β0 = 11−2
3
Nf and Nf being the number of active quark

flavours. Eq.(6.8) is a partial differential equation for the singlet structure function

F S
2 (x,Q

2) with respect to the variables x and Q2. This equation can be used to

examine the x-evolution of singlet structure function apart from its conventional use

in Q2-evolution. Solving of Eq.(6.8) we get

F S
2 (x, t) =

tp1(x)

C + p2(x)
∫
tp1(x)−2e−tdt

, (6.11)

which leads us to the solution for the singlet structure function with nonlinear or

shadowing corrections. Here we have use the variables t = ln(Q
2

Λ2 ) for convenience

and C is a constant to be determined from initial boundary conditions. We note

that in the kinematic region 0.6 ≤ Q2 ≤ 30 GeV2 and 10−4 ≤ x ≤ 10−1 the solution

given by Eq.(6.11) is in good agreement with the Regge ansatz of Eq.(6.6) and and

satisfactorily describes the shadowing corrections to the singlet structure function.
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So we restrict our analysis in this kinematic region and observe that the solution

of singlet structure function with the inclusion of shadowing corrections given by

Eq.(6.11) is valid in the region of small-x and moderate values of Q2. However the

solution suggested in Eq.(6.11) loose its validity at large-x and large-Q2 where the

effect of gluon recombination on the QCD evolution is very trivial.

Now we can determine the Q2 and small-x dependence of singlet structure func-

tion from Eq.(6.11) using the appropriate boundary conditions. The physically plau-

sible boundary conditions are

F S
2 (x, t) = F S

2 (x, t0) (6.12)

at t = t0 where t0 = ln
(

Q2
0

Λ2

)
for some lower value of Q2 = Q2

0 and

F S
2 (x, t) = F S

2 (x0, t), (6.13)

at some high x = x0.

The boundary condition (6.12) leads us to

F S
2 (x, t0) =

t
p1(x)
0

C + p2(x)
∫
t0

p1(x)−2e−t0dt0
, (6.14)

where t0 = ln
(

Q2
0

Λ2

)
. From this equation the constant C can be determined by

choosing a suitable input distribution F S
2 (x, t0) at a given value of Q2

0. Now from

Eqs.(6.11) and (6.14) we get the Q2-evolution of shadowing singlet structure function

for fixed x given as

F S
2 (x, t) =

tp1(x)F S
2 (x, t0)

t
p1(x)
0 + p2(x)

[ ∫
tp1(x)−2e−tdt−

∫
t0

p1(x)−2e−t0dt0

]
F S
2 (x, t0)

. (6.15)

This expression gives the Q2-evolution of shadowing singlet structure function at

LO. We can easily compute the dependence of singlet structure function on Q2 for a

particular value of x by choosing an appropriate input distribution at a given value

of Q2
0 using Eq.(6.15). The effect of nonlinear or shadowing corrections to the singlet

structure functions for a set of Q2 can also be studied from this equation.

Similarly, the boundary condition (6.13) yields

F S
2 (x0, t) =

tp1(x0)

C + p2(x0)
∫
tp1(x0)−2e−tdt

, (6.16)
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so that using Eqs. (6.11) and (6.16) we obtain

F S
2 (x, t) =

tp1(x)F S
2 (x0, t)

tp1(x0) +
[
p2(x)

∫
tp1(x)−2e−tdt− p2(x0)

∫
tp1(x0)−2e−tdt

]
F S
2 (x0, t)

. (6.17)

Thus Eq.(6.17) provides us the solution of the GLR-MQ equation for singlet struc-

ture function at small-x for fixed Q2. Using this equation the small-x dependence

of nonlinear singlet structure function can be predicted for a particular value of Q2

taking a convenient input distribution at an initial value of x = x0. Eq.(6.17) fur-

ther helps us to examine the effect of shadowing corrections to the singlet structure

functions at small-x.

6.2.3 Comparative analysis of DGLAP and GLR-MQ equa-
tions for singlet structure function

In this section we find a solution of the linear DGLAP equation (Eq.(6.5)) for singlet

structure function at LO employing the Regge ansatz of Eq.(6.6) and compare it

with the solution of the GLR-MQ equation for singlet structure function discussed

above. This comparison assists us to estimate the effect of shadowing corrections

in our predictions of singlet structure function. Now employing the Regge ansatz of

Eq.(6.6) the solution of Eq.(6.5) is obtained as

F S
2 (x, t) = Dtp1(x), (6.18)

where D is a constant to be fixed by initial boundary condition. The x dependent

function p1(x) is defined in Eq.(6.9). We define

f10 = F S
2 (x, t0) = Dt

p1(x)
0 (6.19)

at t = t0 at some lowe value Q2 = Q2
0. Then Eq.(6.18) and Eq.(6.19) leads us to

F S
2 (x, t) = f10

( t

t0

)p1(x)
. (6.20)

which provides the solution of the linear DGLAP equation for singlet structure func-

tion with the ansatz of Eq.(6.6) and it describes the Q2-evolution of linear singlet

structure function for a fixed value of x provided a suitable input distribution f10 has

been chosen from the initial boundary condition.

Again, defining

f20 = F S
2 (x0, t) = Dtp1(x0) (6.21)
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at some initial higher value x = x0, Eq.(6.18) can be expressed as

F S
2 (x,Q

2) = f20t
p1(x)−p1(x0). (6.22)

Eq.(6.22) is the solution of the linear DGLAP equation for singlet structure function

at small-x with the ansatz of Eq.(6.6) and it describes the small-x behavior of linear

singlet structure function for a particular value of Q2 by choosing an appropriate

input distribution f20 from the initial boundary condition.

Now considering the solutions of the linear DGLAP and nonlinear GLR-MQ

equations respectively we can examine how the gluon recombination processes effect

the linear QCD evolution of singlet structure functions. For this purpose we calculate

the ratio of the solution of nonlinear GLR-MQ equation to that of linear DGLAP

equation for singlet structure function using the Eqs.(6.17) and (6.22)

RFS
2
=

F S
2
GLR−MQ

(x, t)

F S
2
DGLAP

(x, t)
, (6.23)

as a function of variable x for different values ofQ2. From this ratio we can investigate

the effect of shadowing corrections as a consequence of gluon recombination on the

behavior of singlet structure function at small-x. The phenomenological analysis of

Eq.(6.23) is presented in section 3.

6.2.4 Derivative of the singlet structure function with re-
spect to lnQ2

It is very interesting to study the logarithmic derivative of the F2 structure function

with a shadowing corrections interpretation which provides information pertinent to

the Regge analyses of F2 in x and Q2 kinematic domains. We make an attempt to

study the Q2 dependence of ∂F s
2 /∂lnQ

2 at given fixed value of x and examine the

effect of shadowing corrections. There are several methods suggesting the relation

between the scaling violations of F2(x,Q
2) to the gluon density at small-x [22-26].

These methods are based on the fact that at very small-x the structure function

becomes gluon dominated. We use the the following approximate relation between

the gluon density and the scaling violation of F2(x,Q
2) at some point x [26]

∂F S
2

∂lnQ2
=

5αS(Q
2)

9π

∫ 1

x

(
ω2 + (1− ω)2

)
G
(x
ω
,Q2

)
dω, (6.24)
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for four flavours. Since the non-singlet contributions of the structure function can

be neglected in the small-x region, therefore we have considered the F2 structure

function as equivalent to F S
2 . The nonlinear gluon distribution function has a Regge

like behavior

G(x,Q2) = H(Q2)x−λG , (6.25)

in the small-x region as discussed earlier in chapter 5. Thus the function G(x/ω,Q2)

can be expressed as

G
(x
ω
,Q2

)
= ωλGG(x,Q2), (6.26)

Using Eq.(6.24) along with the Eq.(6.26), we can express Eq.(6.4) in terms of gluon

distribution function as

∂F S
2 (x,Q

2)

∂ln(Q2)
=

5αs(Q
2)

9π
M(x)G(x,Q2)− 3α2

s(Q
2)

64R2Q2
G2(x,Q2), (6.27)

with,

M(x) =

∫ 1

x

(
ω2 + (1− ω)2

)
ωλG . (6.28)

Thus from Eq.(6.27) we can determine the effect of shadowing corrections on the

behaviour of the logarithmic derivative of the singlet structure function. For phe-

nomenological analysis of Eq.(6.27) we take the results of the gluon distribution

function G(x,Q2) obtained in chapter 5 of this thesis. Due to the negative nonlinear

term as a result of gluon recombination Eq.(6.27) is expected to predict a slower

growth of ∂F s
2 /∂lnQ

2 towards small-x.

6.3 Result and discussion

We have solved the nonlinear GLR-MQ evolution equation by considering the Regge

like behavior of singlet and gluon structure function and examine the effects of shad-

owing corrections due to gluon recombination processes at small-x to the LO DGLAP

evolution equations. The behavior of singlet structure function at small-x and moder-

ate Q2 is investigated for both at R = 2 GeV−1 and R = 5 GeV−1 from the predicted

solution of the GLR-MQ equation. Our computed values of singlet structure function

with shadowing corrections are compared with the CERN’s NMC [6], Fermilab E665
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Collaboration [7] as well as with those obtained in the NNPDF [8] collaboration. It

is worthwhile to mention here that the NMC and E665 experiments measured the

deuteron structure function F d
2 from which F S

2 can be extracted using the relation

F d
2 = 5

9
F S
2 . We perform our analysis in the kinematic region 0.6 ≤ Q2 ≤ 30 GeV2

0.8 1.2 1.6 2.0 2.4
0.16

0.24

0.32

0.40

0.48

0.56

  

 

 

R=2 GeV-1

R=5 GeV-1

(a) x=0.0045  NMC data
 Our result (R=2 GeV-1)
 Our result (R=5 GeV-1)

Q2 (GeV2)

F 2S (x
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2 )
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0.32

0.40

0.48

0.56

0.64

F 2S (x
,Q

2 )

 

 

 

R=2 GeV-1

R=5 GeV-1

(b) x=0.008
 NMC data
 Our result (R=2 GeV-1)
 Our result (R=5 GeV-1)

Q2 (GeV2)

Figure 6.1: Q2 dependence of singlet structure function with shadowing corrections for R = 2
GeV−1 (solid lines) and R = 5 GeV−1 (dash lines) computed from Eq. (6.15) compared with the
NMC data [6].

and 10−4 ≤ x ≤ 10−1 where the suggested solution of the GLR-MQ equation for sin-

glet structure function given by Eq.(6.11) is found to be legitimate. We consider the

range 0.6 < Q2 < 3.6 GeV2 and 10−4 < x < 0.013 for NMC data, 1 < Q2 < 4 GeV2

and 10−4 < x < 0.01 for E665 data and 1 < Q2 < 27 GeV2 and 10−4 < x < 0.011

for NNPDF data in our phenomenological analysis. To compute the dependence of

structure functions on Q2 we take the input distributions from the data point corre-

sponding to the lowest value of Q2 for a particular range of Q2 under study. On the

other hand, the data point corresponding to the highest value of x of a particular

range of x under consideration are taken as input distribution to determine the x de-

pendence of the structure functions. In the present analysis we consider the function

K(x) = K, where K is a constant parameter, to relate the singlet structure function

and gluon densities as a simplest assumption and find that the best fit results are

obtained in the range 0.28 < K < 1.2 for our entire region of discussion. The vertical

error bars represent the total combined statistical and systematic uncertainties of the

experimental data.

In Figure 6.1 we plot the Q2 dependence of singlet structure function with shad-
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(b) x=0.00693  E665 data
 Our result (R=2 GeV-1)
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(c) x=0.00893
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Figure 6.2: A plot showing the Q2 dependence of singlet structure function with shadowing

corrections for R = 2 GeV−1 (solid lines) and R = 5 GeV−1 (dash lines) computed from Eq. (6.15)

compared with the E665 data [7].

owing corrections computed from Eq.(6.15) for R = 2 GeV−1 and R = 5 GeV−1 and

check the compatibility of our predictions with the NMC data at two representative

x = 0.0045 and 0.008 respectively. The solid lines represent the predictions of singlet

structure function for the hot spots with R = 2 GeV−1 whereas the results for R = 5

GeV−1 is shown by the dash lines.

In Figure 6.2 we show the comparison of our predictions of the singlet structure

function for R = 2 GeV−1 and R = 5 GeV−1 obtained from Eq.(6.15) with the

E665 data. Here the predicted values of singlet structure function with shadowing

corrections are plotted against Q2 at some fixed x = 0.0052, 0.00693 and 0.00893

respectively. The solid lines represent the results for R = 2 GeV−1 whereas the dash
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Figure 6.3: Q2 dependence of singlet structure function with shadowing corrections for R = 2
GeV−1 (solid lines) and R = 5 GeV−1 (dash lines) obtained from Eq.(6.15) compared to NNPDF
data [8].

lines represent the results for R = 5 GeV−1.

Similarly, in Figure 6.3 the Q2 dependence of the singlet structure function with

shadowing corrections obtained from Eq.(6.15) for R = 2 GeV−1 and R = 5 GeV−1

are compared with the NNPDF parametrizations. Here the plots are shown for two

values of x, viz. x = 0.0045 and 0.008. The results for R = 2 GeV−1 are depicted by

the solid lines and the results for R = 5 GeV−1 are shown by the dash lines.

On the other hand, Figure 6.4 represents the small-x behavior of singlet structure

function with shadowing corrections computed from Eq.(6.17) for R = 2 GeV−1 and

R = 5 GeV−1 respectively. The consistency of our results are examined with the

NMC data at fixed values of Q2 = 1.25, 1.75 and 2.5 GeV2 respectively. The results

for R = 2 GeV−1 are shown by the solid lines whose those for R = 5 GeV−1 are

shown by the dash lines.

In Figure 6.5 we show the comparison of the small-x behavior of singlet structure

function with shadowing corrections computed from Eq.(6.17) for R = 2 GeV−1 and

R = 5 GeV−1 with E665 data. The comparison is shown for four representative Q2,

viz. Q2 = 1.094, 1.496, 2.046 and 2.799 GeV2 respectively. The solid lines represent

the results for R = 2 GeV−1 whereas the dash lines represent the results for R = 5

GeV−1.

Figure 6.6 shows the plots of singlet structure function with shadowing corrections

computed from Eq.(6.17) for R = 2 GeV−1 and R = 5 GeV−1 vs. x compared with
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Figure 6.4: Small-x behavior of singlet structure function with shadowing corrections for R = 2
GeV−1 (solid lines) and R = 5 GeV−1 (dash lines)from Eq.(6.17) compared to NMC data [6].

the NNPDF data at four representative Q2, viz. Q2 = 4.03, 8.958, 12.242 and 18.808

GeV2 respectively. The solid lines represent the results for R = 2 GeV−1 whereas

the dash lines represent the results for R = 5 GeV−1.

From Figure 6.1 to Figure 6.6 we observe that the obtained results of singlet

structure function with shadowing corrections show the general trend of experimental

data and parametrization. The singlet structure function increases with increasing

Q2 and decreasing x, but this attitude is tamed with respect to the nonlinear terms in

the GLR-MQ equation. The effect of shadowing corrections as a consequence of gluon

recombination processes in our predictions is observed to be very high at the hot-spot

with R = 2 GeV−1 when the gluons are centered within the proton, compared to at

R = 5 GeV−1 when the gluons are disseminated throughout the entire proton.
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Figure 6.5: Small-x behaviour of singlet structure function with shadowing corrections for R = 2
GeV−1 (solid lines) and R = 5 GeV−1 (dash lines) computed from Eq.(6. 17) compared to E665
data [7].

Moreover, to examine the effect of nonlinear or shadowing corrections to the

singlet structure function in our prediction, we plot the ratio of the solution of

nonlinear GLR-MQ equation to that of the linear DGLAP equation for singlet

structure function in Figure 6.7. The ratio RFS
2

defined in Eq.(6.22) is plotted

against the variable x in the range 10−4 ≤ x ≤ 10−2 for five representative val-

ues Q2 = 4.03, 5.675, 8.958, 12.242 and 18.808 GeV2 respectively. We observe that as

x grows smaller the GLR-MQ/DGLAP ratio for singlet structure function decreases

which implies that the effect of nonlinearity increases towards small-x due to gluon

recombination. We also observe that towards smaller values of Q2 the value of the

ratio goes smaller.
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Figure 6.6: Small-x behavior of singlet structure function with shadowing corrections for R = 2
GeV−1 (solid lines) and R = 5 GeV−1 (dash lines) computed from Eq.(6.17) compared to NNPDF
data [8].

In Figure 6.8 we show a plot of logarithmic derivative of the singlet structure

function obtained at the hot-spot point R = 2 GeV−1 from Eq.(6.27) vs. Q2 at three

fixed values of x = 0.0005, 0.005 and 0.008 respectively. We compare our results

with the H1 [9, 10] data. The corresponding values of G(x,Q2) are obtained from

Eq.(5.15) of chapter 5 using the MRST2001LO [26] input gluon parametrization.

Similarly, we show a plot of logarithmic slop of the singlet structure function for a

set of x values in Figure 6.9 at two different bins in Q2, viz. Q2 = 2.2 and 7.4 GeV2

respectively. Here also we check the consistency of our results with the H1 [9, 10]

data. The corresponding values of G(x,Q2) are obtained from Eq.(5.17) of chapter

5 using the MRST2001LO [27] input gluon parametrization. We observe that the

derivative of the singlet structure function with respect to lnQ2 has a tamed behavior
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Figure 6.8: A plot of the derivative of the singlet structure function with respect to ln(Q2) vs.
Q2 compared with the H1 data [9, 10] at x = 0.0005, 0.005 and 0.008 respectively.
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Figure 6.9: A plot of the derivative of the singlet structure function with respect to ln(Q2) vs. x
compared with the H1 data [9, 10] at Q2 = 2.2 and 7.4 GeV2.

due to gluon recombination as x grows smaller. It can be easily seen from the figure

that the H1 data shows a steep rise of the logarithmic derivative of the structure

function towards small-x, however this steep behavior is observed to be tamed for

x ≤ 10−4. This tamed behaviour is correlated with the shadowing corrections as a

result of gluon recombination at very small-x. It is very interesting to note that our

results obtained in the GLR-MQ framework are comparable with the H1 data in the

small-x region.

6.4 Summary

To summaries, we solve the nonlinear GLR-MQ equation for sea quark distribution

function in leading twist approximation incorporating the well known Regge ansatz

and investigate the effect of nonlinear or shadowing corrections arises due to the gluon

recombination processes on the behavior of singlet structure function at small-x and

moderate-Q2. We note that the solution of the GLR-MQ equation for singlet struc-

ture function with shadowing corrections suggested in this work is found to be valid

only in the kinematic domain 0.6 ≤ Q2 ≤ 30 GeV2 and 10−4 ≤ x ≤ 10−1, where the

gluon recombination processes play an important role on the QCD evolution. Our

predictions of singlet structure function is found to show the general trend of exper-

imental data and parametrization, nevertheless with the inclusion of the nonlinear

terms, this behaviour of singlet structure function is slowed down towards small-x
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leading to a restoration of the Froissart bound. Moreover the effect of shadowing

corrections on the behaviour of singlet structure function with decreasing x become

significant at the hot spot with R = 2 GeV−1 when the gluons and the sea quarks

are assumed to condensed in a small region within the proton. The predictions of

the GLR-MQ/DGLAP ratio for F S
2 (x,Q

2) also indicate that the gluon recombina-

tion processes become significant towards smaller values of x and Q2 . Moreover our

results show that the behavior of the derivative of the singlet structure function with

respect to lnQ2 is consistent with the H1 experimental data. Our results show that

in the small-x region the logarithmic derivative of the singlet structure function has

a tamed behavior related to shadowing corrections due to gluon recombination.
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