
Chapter 7

Comparative Analysis of Various
Nonlinear Evolution Equations

7.1 Introduction

The growth of total hadronic cross sections at very high energies is one of the most

challenging problems of QCD and accordingly the study of the high density QCD

turns out to be the center of intensive studies in the last few years. The attempts

to understand the aspects of the higher twist phenomena led to many different kinds

of model in the past times. The corrections of the higher order QCD effects, which

suppress or shadow the growth of the parton densities, leading to a possible restora-

tion of the Froissart bound on physical cross-section in the very small-x region are

at the onset accounted for by Gribov, Levin and Ryskin, and Mueller and Qiu in

the GLR-MQ [1-3] equations. Several other nonlinear evolution equations are pro-

posed in later times reporting the corrections of the gluon recombination to the

linear DGLAP [4-6] and BFKL [7-9] evolutions, viz. the Modified-DGLAP (MD-

DGLAP) [10, 11], Balitsky-Kovchegov (BK) [12, 13], Modified-BFKL (MD-BFKL)

[14] and Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) [15-

17] equations. The nonlinear equations viz. Modified-BFKL (MD-BFKL), BK and

JIMWLK are based on BFKL evolution, whereas, the MD-DGLAP equation is based

on DGLAP evolution. The BK and the MD-DGLAP equations are the most widely

studied among these . The GLR-MQ equation takes the double leading logarithmic

approximation (DLLA) for both Q2 and 1/x, keeping only the ln(Q2/Λ2) ln(1/x) fac-
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tor in the solutions of the evolution equation, whereas, the MD-DGLAP equation is

derived under the leading logarithmic LL(Q2) approximation. Unlike the GLR-MQ

equation, the MD-DGLAP equation sums the Feynman diagrams in the framework of

the time-ordered perturbation theory (TOPT) [18] instead of using the AGK cutting

rule [19]. Moreover, apart from the shadowing corrections, the MD-DGLAP equation

also takes into account the antishadowing effects which balance the momentum lost in

the shadowing process. The antishadowing corrections may change the predictions of

the GLR-MQ equations. On the other hand, the BK equation is an upgraded version

of the GLR-MQ equation and it determines the saturation of parton densities at very

small-x. The BK equation considers the more precise triple-pomeron vertex [20, 21]

and can be used for the non-forward amplitude. The BK equation is obtained in the

leading ln(1/x) approximation of perturbative QCD, i.e. it sums all contributions of

the order (αs ln(1/x))
n.

In this chapter we present a comparative analysis of the GLR-MQ equation with

the MD-DGLAP and BK equations. Here the gluon distribution function obtained

from the semi analytical solution of the GLR-MQ equation discussed in chapter 5 are

compared with the results of MD-DGLAP and BK equations in the region of small-x.

To compare our predictions in the GLR-MQ approach with those of MD-DGLAP and

BK equations we have used the results of Ref.[22] and Ref.[23] respectively where the

numerical analysis of these equations are presented.

7.2 Formalism

The GLR-MQ equation for the gluon distribution function can be expressed as [1-3,

24]

∂G(x,Q2)

∂lnQ2
=

∂G(x,Q2)

∂lnQ2
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DGLAP

− 81
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2)
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∫ 1

x

dω

ω

[
G
(x
ω
,Q2

)]2
, (7.1)

In chapter 5 we have solved this equation semi analytically and investigated the effect

of shadowing corrections on the behaviour of small-x and Q2-dependence of gluon

distribution function using a simple form of Regge like ansatz. Here we have used

these results to perform a comparative analysis of the small-x dependence of gluon

distribution function obtained in the GLR-MQ approach with the results of MD-

DGLAP and BK equations respectively. For convenience, we rewrite here some of
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the important results of chapter 5.

By incorporating the Regge like behaviour of the gluon distribution function,

i.e., G(x,Q2) = H(Q2)x−λG with the Regge intercept λG, the solution of Eq.(7.1) is

obtained as

G(x, t) =
tγ1(x)

C + γ2(x)
∫
tγ1(x)−2e−tdt

. (7.2)

Here t = ln(Q2/Λ2) and the constant C is determined from initial boundary condi-

tions. So we use the physically plausible boundary condition at some high x = x0 in

Eq.(7.2) and obtain the x dependence of the gluon distribution function as

G(x, t) =
tγ1(x)G(x0, t)

tγ1(x0) +
[
γ2(x)

∫
tγ1(x)−2e−tdt− γ2(x0)

∫
tγ1(x0)−2e−tdt

]
G(x0, t)

. (7.3)

This equation helps us to predict the effect of shadowing corrections to small-x be-

haviour of nonlinear gluon distribution function by picking out suitable input dis-

tribution at an initial value of x = x0. The Regge type solution of the GLR-MQ

equation is found to be valid in the kinematic region 1 ≤ Q2 ≤ 30 GeV2 as well as

10−5 ≤ x ≤ 10−2 as discussed in chapter 5.

The MD-DGLAP equation [10, 11] derived by Zhu and Ruan sums up all possible

twist-4 cut diagrams in the LL(Q2) approximation and describes the corrections of

parton recombination to the QCD evolution equation. For gluon distribution the

MD-DGLAP equation is given by [22]

dxG(x,Q2)

d ln(Q2)
= Pgg ⊗G(x,Q2) + Pgq ⊗ S(x,Q2)

+
α2
sk

Q2

∫ x

x/2

dx1xx1G
2(x1, Q

2)
∑
i

P gg→g
i (x1, x)

−α2
sk

Q2

∫ 1/2

x

dx1xx1G
2(x1, Q

2)
∑
i

P gg→g
i (x1, x) (7.4)

where Pgg and Pgq are the evolution kernels of the linear DGLAP equation. The

explicit form of the recombination function is∑
i

P gg→g
i (x1, x) =

27

64

(2x1 − x)(−136xx3
1 − 64x1x

3 + 132x2
1x

2 + 99x4
1 + 16x4)

xx5
1

. (7.5)

The nonlinear coefficient k is based on the definition of the double parton distribution

and the geometric distributions of partons inside the target. The positive third term
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on the right-hand side represents the anti-shadowing effect, whereas the negative

fourth term is the result of the shadowing correction.

In Ref.[22] an analysis of MD-DGLAP equation is presented by W. Zhu et al.,

where the parton distributions in the small-x region in the nucleus and free pro-

ton are numerically predicted considering the GRV-like input distributions with and

without anti-shadowing corrections. Here the Q2 and x behaviour of the parton

distributions at high gluon density are studied in LL(Q2) approximation using the

MD-DGLAP equation. The initial gluon density in the GRV98LO set is used as the

input distribution at Q2
0 = 0.34 GeV2, i.e.,

xg(x,Q2
0) = 17.47x1.6(1− x)3.8, (7.6)

with the representation G(x,Q2) = xg(x,Q2). The results obtained in Ref.[22] show

that the growth of the predicted gluon distribution in the proton toward small-x

is slower than ln(1/x) for x < 10−6 which implies that the gluon recombination at

twist 4 level suppresses the rapid growth of gluon densities with decrease in x. We

consider the results of Ref.[22] for a comparative analysis of our predictions of gluon

distribution obtained from the solution of GLR-MQ equation with the MD-DGLAP

results.

The BK equation [12, 13] is derived by Balitsky and Kovchegov in the LL(1/x)

approximation of perturbative QCD, i.e. it sums all contributions of the order

(αs ln(1/x))
n. This equation is written in coordinate space in terms of the dipole

scattering amplitude N . This equation provides the basic indication of the fact that

the correct degrees of freedom at high energies in QCD are colour dipoles. It provides

an explanation of the more specific triple-pomeron vertex [20, 21] and can be utilized

for the non-forward amplitude. The BK equation reads

∂N(r, Y ; b)

∂Y
=

ᾱs

2π

∫
d2r′r2

(r − r′)2r′2

×
[
2N
(
r′, Y ; b+

1

2
(r − r′)

)
−N(r, Y ; b)

−N
(
r′, Y ; b− 1

2
(r − r′)

)
N
(
r − r′, Y ; b− 1

2
r′
)]
, (7.7)

where ᾱs = (αsNc)/π, N(r, Y ; b) is the scattering amplitude of interaction for the

dipole with the size r and rapidity Y = ln(1/x), at impact parameter b. In the

large Nc limit CF = Nc/2, where Nc is the number of colors. Eq.(7.7) implies
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that the dipole of size r decays in two dipoles of sizes r′ and r − r′ which interact

with the target. The linear part of Eq.(7.7) represents the conventional LO BFKL

equation [7-9]. The non-linear term accounts for the simultaneous interaction of two

produced dipoles with the target and the high twist contributions. A fascinating

characteristics of the BK equation is that its solution predicts a limiting form of the

scattering amplitude resulting in parton saturation. For small dipole densities N the

quadratic term in the brackets is negligible and Eq.(7.7) reduces to the conventional

BFKL equation, whereas, sauration is reached when N = 1.

In Ref.[23] the solution of the LO BK equation is reported where the authors

include the impact parameter dependence of the amplitude at initial values of rapidity

Y = ln(1/x) and find the amplitude in each point of impact parameter space. The

gluon density is related to the dipole amplitude as

G(x,Q2) =
4

π3

∫ 1

x

dx′

x′

∫ ∞

4/Q2

dr2

r2

∫
d2b2N(r, x′; b), (7.8)

where the representation G(x,Q2) = xg(x,Q2) is used. The calculated results of

the gluon density function in Ref.[23] are found to be in good agreement with the

GRV parametrization. Here we use the results of Ref.[23] to perform a comparative

analysis of our results of gluon distribution obtained from the solution of GLR-MQ

equation with those of the BK equation.

7.3 Result and discussion

The x dependence of gluon distribution function with shadowing corrections calcu-

lated in the framework of GLR-MQ equation is compared with the results of MD-

DGLAP and BK equations taken from the Refs.[22] and [23] respectively. We perform

these comparisons in the kinematic region 1 ≤ Q2 ≤ 30 GeV2 and 10−5 ≤ x ≤ 10−2

as our predicted solution of GLR-MQ equation is found to be valid only in this do-

main. In Figure 7.1 the gluon distribution function calculated from Eq.(7.3) at the

hot spots R = 2 GeV−1 are plotted as a function of x for fixed values of Q2=2.2, 3, 5,

10 and 20 GeV2 respectively. Our results manifest that the gluon density increases

with the decreasing x but this behavior is tamed as x grows smaller due to nonlinear

or shadowing corrections. For each Q2 our predictions obtained in the framework of

GLR-MQ equation are in very good agreement with the results of the BK equation.
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Moreover, concerning the shape of the curves we observe that the shapes of the curves

found in the GLR-MQ approach are very similar to the shape of the BK curves. On

the other hand, we note that our predictions do not match with the results of MD-

DGLAP equation, as the MD-DGLAP curves have opposite concavities in the region

of x > 10−3. However in the region x ≤ 10−3 the shape of our results is almost

similar to that of the MD-DGLAP equation with a completely different slope. The

MD-DGLAP equation predicts a steeper gluon distribution towards small-x which

implies the presence of strong antishadowing effect in the results of MD-DGLAP

equation, whereas our predictions show significant effect of shadowing corrections as

a consequence of gluon recombination processes towards small-x which results in a

flatter gluon distribution.

7.4 Summary

To summarize, the gluon distribution function obtained in the framework of nonlinear

GLR-MQ equation in leading twist approximation is compared with the MD-DGLAP

and BK equations. We make the comparison in the kinematic domain 1 ≤ Q2 ≤ 30

GeV2 and 10−5 ≤ x ≤ 10−2 as the predicted solution of GLR-MQ equation is found

to be valid only in this region. It is a very captivating finding that the predictions

of nonlinear gluon density obtained from the GLR-MQ equation are very compatible

with the results of the BK equation. Our results of nonlinear gluon density are

also found to almost comparable with those of the MD-DGLAP equation but with

a completely different slope. The MD-DGLAP equation predicts a steeper gluon

distribution due to a relatively stronger antishadowing effect, whereas a flatter gluon

distribution is observed in our predictions due to significant shadowing corrections at

small-x. In this work we have not considered other nonlinear equations such as the

JIMWLK equation for comparative analysis with the GLR-MQ equation, owing to

the fact that the JIMWLK equation deals with the process dependent unintegrated

parton distributions and the cross sections whereas the GLR-MQ equation considers

the shadowing in the process independent parton distributions.
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Figure 7.1: Comparison of the gluon distribution function obtained from Eq.(7.3) in the GLR-MQ
approach with the MD-DGLAP results [22] as well as the BK results [23].
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