
Chapter 8

Conclusion and Outlook

In this thesis we have examined the behaviour of DIS structure functions in the

framework of both linear DGLAP and non-linear GLR-MQ evolution equations at

small-x. The small-x behavior of quark and gluon densities, where x is the Bjorken

scaling variable, is one of the challenging issues of QCD. A key discovery of the

past years is the prevalent role of gluons with very small fractional momentum x

in nucleons when observed by a high energy probe. On that account, the study of

lepton-nucleon DIS or in particular the determination of the gluon density in the

region of small-x is of great significance. The increase of energy generates a rapid

growth of the gluon density in the limit x → 0 which is eventually expected to

saturate in order to preserve unitarity. Accordingly, the corrections of the higher

order QCD effects, which suppress or shadow the growth of the parton densities,

have been rigorously studied in the last few years.

The linear DGLAP evolution equations are the standard and the basic theoretical

tools to explore the scale dependence of the PDFs and ultimately the DIS structure

functions are. In part I of this thesis we have solved the DGLAP equations for the sin-

glet and non-singlet structure functions, as well as the gluon distribution function at

LO, NLO and NNLO respectively in an analytical approach by using the Taylor series

expansion method. The Taylor series expansion transforms the integro-differential

DGLAP equations into first order partial differential equations which are much easier

to solve. The resulting equations are then solved by the Lagrange’s auxiliary method

to obtain Q2 and x evolutions of the singlet and non-singlet structure functions and

the gluon distribution functions. We have also calculated the Q2 and x evolutions of
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deuteron structure function as well as the Q2 evolution of proton structure function

from the solutions of the singlet and non-singlet structure functions. We compare

our predictions of deuteron and proton structure function with the NMC data, E665

data, H1 data as well as with the results of NNPDF parametrization. Our results

show that at fixed x the structure functions increase with increasing Q2 whereas at

fixed Q2 the structure functions decrease as x decreases which is in agreement with

perturbative QCD fits at small-x. We further observe that our computed results

can explain the general trend of data in a decent manner in the kinematic region

10−3 < x < 10−1 and 0.5 ≤ Q2 ≤ 40 GeV2. On the other hand, our results of gluon

distribution function obtained by solving DGLAP equation are compared with the

GRV1998NLO, MRST2004NNLO, MSTW2008NNLO and JR09NNLO global QCD

analysis as well as with the BDM model. The obtained results can be described

within the framework of perturbative QCD. We perform our analysis in the x and

Q2 range, viz. 10−4 ≤ x ≤ 0.1 and 5 ≤ Q2 ≤ 110 GeV2 and find that in this domain

our predictions are comparable with different global analysis of parton distributions.

It is observed from our phenomenological analysis that the inclusion of the NNLO

contributions provides better agreement of our results with the experimental data

and parametrizations. The Taylor series expansion is a very feasible and convenient

method for analytical solution of DGLAP equations. We have considered some nu-

merical parameters to obtain the solution of DGLAP equations, however the number

of parameters are less compared to the numerical. Moreover, this approach also en-

ables us to calculate the x-evolution of deuteron structure function in addition to

the Q2-evolution. Even though various numerical methods are available in order to

obtain the solution of DGLAP evolution equations, but it is always interesting to

obtain an analytical solution and in this regard the Taylor series expansion method

is a good alternative.

In the very small-x region the growth of the gluon distribution is incredibly

enunciated. Accordingly at small-x the likelihood of interaction between two gluons

can no longer be overlooked and therefore, gluon recombination will be as important

as gluon splitting. So the standard linear DGLAP evolution equation will have to

be modified in order to include the the modifications due to the correlations among

initial gluons to the evolutionary amplitude. A traditional tool in this research is the
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GLR-MQ equation that takes into account the nonlinear corrections arising from the

recombination of two gluon ladders into one gluon. In part II of this thesis we have

made an deliberate attempt to explore the higher order QCD effects of the gluon

recombination processes at very small-x in the framework of nonlinear GLR-MQ

equation. We have solved the GLR-MQ equation in the leading twist approxima-

tion in a semi-analytical approach by employing the well-known Regge-like ansatz

with considerable phenomenological success. We have investigated the behavior of

the gluon distributions in the vicinity of saturation region. Our resulting gluon dis-

tributions are compared with different global QCD fits to the parton distribution

functions, viz. GRV1998LO, GJR2008LO, MRST2001LO, MSTW2008LO, NNPDF,

HERAPDF0.1, CT10 as well as with the H1 experimental data, and are found to

be quite compatible. Furthermore, we present a comparative analysis of our com-

puted results with the results of the EHKQS and BZ models. We have examined

how the inclusion of nonlinear effects changes the behavior of gluon density and it

is interesting to observe that although the gluon distribution increases with increas-

ing Q2 and decreasing x, but the rapid growth of gluon densities is tamed due to

shadowing corrections as x grows smaller. This indicates that the gluon distributions

unitarize leading to the restoration of Froissart bound in the small-x region. This

tamed behaviour of gluon density is observed to be more the the hot-spots when the

correlation radius between two interacting gluons is of the order of the transverse size

of a valance quark, i.e. R = 2 GeV−1. We have further checked the effect of shadow-

ing corrections in our results by comparing the gluon distributions obtained in the

nonlinear GLR-MQ approach with those obtained in the linear DGLAP approach.

Careful investigation of our results indicates that the nonlinear effects or shadowing

corrections, emerged as a result of recombination of two gluon ladders, play a signifi-

cant role on QCD evolution for gluon distribution in the kinematic region of small-x

(10−5 ≤ x ≤ 10−2) and moderate Q2 (1 ≤ Q2 ≤ 30 GeV2).

We have also obtained a semi analytical solution of the GLR-MQ equation for

sea quark distribution in leading twist approximation using the Regge like ansatz.

The solution of the GLR-MQ equation for singlet structure function with shadowing

corrections is found to be legitimate in the kinematic domain 10−4 ≤ x ≤ 10−1 and

0.6 ≤ Q2 ≤ 30 GeV2. We have examined the effect of shadowing corrections on the
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small-x and moderate-Q2 behaviour of singlet structure function and compared our

predictions with the NMC and E665 experimental data as well with the NNPDF

collaboration. Our predictions are found to show the general trend of experimental

data and parametrization, nevertheless with the inclusion of the nonlinear terms, the

behaviour of singlet structure function is slowed down towards small-x leading to a

restoration of the Froissart bound. Moreover we note that in the small-x region the

logarithmic derivative of the singlet structure function has a tamed behavior related

to shadowing corrections due to gluon recombination.

We have further made a comparative analysis of our predictions obtained in the

framework of GLR-MQ equation in a semi-analytical approach with the results of the

MD-DGLAP and BK equations. It is very fascinating to note that the predictions

of nonlinear gluon density obtained from the GLR-MQ equation are in a very good

agreement with the results of the BK equation. Our results are also found to almost

comparable with those of the MD-DGLAP equation but with a completely different

slope. The MD-DGLAP equation predicts a steeper gluon distribution caused by

strong antishadowing effect, whereas a flatter gluon distribution is observed in our

predictions due to significant shadowing corrections at small-x.

As a future prospect, this work encourages a more detailed study of the properties

of the high density parton system. The GLR-MQ equation only includes the first

non-linear term reporting the recombination of two gluon ladders into one. Therefore

although it predicts saturation in the asymptotic regime, but its validity does not

extend to very high density regime where significant contributions from the higher

twist effects should be taken into account. Moreover, the suggested Regge type

solution of the GLR-MQ equation has a limited range of validity. Nevertheless for

more reliable predictions beyond this range, towards much smaller-Q2 or smaller-x,

further analysis is required incorporating the evolution dynamics at higher order.

It will be interesting to study the other nonlinear equations relevant at high gluon

density.
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Appendices

Appendix A

The explicit forms of the functions Ai(x), Bi(x) and Ci(x) (where i=1,2,3,4) are

A1(x) = 2x+ x2 + 4 ln(1− x), (1)

A2(x) = x− x3 − 2x ln(x), (2)

A3(x) = 2Nf

(2
3
− x+ x2 − 2

3
x3
)
, (3)

A4(x) = 2Nf

(
− 5

3
x+ 3x2 − 2x3 +

2

3
x4 − x ln(x)

)
, (4)

B1(x) = x

∫ 1

0

f(ω)dω −
∫ x

0

f(ω)dω +
4

3
Nf

∫ 1

x

Fqq(ω)dω, (5)

B2(x) = x

∫ 1

x

[
f(ω) +

4

3
NfF

s
qg(ω)

]1− ω

ω
dω, (6)

B3(x) =

∫ 1

x

F S
qg(ω)dω, (7)

B4(x) = x

∫ 1

x

1− ω

ω
F S
qg(ω)dω, (8)

where the functions f(ω), Fqq(ω) and F S
qg(ω) are defined in Appendix B. Again,

C1(x) = Nf

∫ 1−x

0

ωdω

1− ω
R1(ω), (9)

C2(x) = Nf

∫ 1−x

0

ωxdω

(1− ω)2
R1(ω), (10)

C3(x) = Nf

∫ 1−x

0

ωxdω

(1− ω)2
R1(ω), (11)

C4(x) = Nf

∫ 1−x

0

ωxdω

(1− ω)2
R2(ω), (12)
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with,

R1(ω) = {ln(ω) ln(1− ω)[−173.1 + 46.18 ln(1− ω)] + 178.04 ln(1− ω)

+ 6.892 ln2(1− ω) +
40

27
[ln4(1− ω)− 2 ln3(1− ω)]}+ ω{ln(ω)

(−163.9(1− ω)−1 − 7.208(1− ω)
)
+ 151.49 + 44.51(1− ω)

−43.12(1− ω)2 + 4.82(1− ω)3}+ ω2{−5.926 ln3(ω)

−9.751 ln2(ω)− 72.11 ln(ω) + 177.4 + 392.9(1− ω)

−101.4(1− ω)2 − 57.04 ln(1− ω) ln(ω)− 661.6 ln(1− ω)

+131.4 ln2(1− ω)− 400

9
ln3(1− ω) +

160

27
ln4(1− ω)

−506.0(1− ω)−1 − 3584

27
(1− ω)−1 ln(1− ω)}+Nfω{1.778 ln2(ω)

+5.944 ln(ω) + 100.1− 125.2(1− ω) + 49.26(1− ω)2

−12.59(1− ω)3 − 1.889 ln(1− ω) ln(ω) + 61.75 ln(1− ω)

+17.89 ln2(1− ω) +
32

27
ln3(1− ω) +

256

81
(1− ω)−1} (13)

R2(ω) = {100
27

ln4(ω)− 70

9
ln3(ω)− 120.5 ln2(ω) + 104.42 ln(ω) + 2522

−3316(1− ω) + 2126(1− ω)2 − 252.5(1− ω) ln3(1− ω)

+ ln(ω) ln(1− ω)
(
1823− 25.22 ln(1− ω)

)
+ 424.9 ln(1− ω)

+881.5 ln2(1− ω)− 44

3
ln3(1− ω) +

536

27
ln4(1− ω)− 1268.3

(1− ω)−1 − 896

3
(1− ω)−1 ln(1− ω)}+Nf{

20

27
ln3(ω) +

200

27
ln2(ω)

−5.496 ln(ω)− 252.0 + 158.0(1− ω) + 145.4(1− ω)2

−139.28(1− ω)3 − 98.07(1− ω) ln2(1− ω) + 11.70(1− ω)

× ln3(1− ω)− ln(ω) ln(1− ω)(53.09 + 80.616 ln(1− ω))

−254.0 ln(1− ω)− 90.80 ln2(1− ω)− 376

27
ln3(1− ω)

−16

9
ln4(1− ω) +

1112

243
(1− ω)−1} (14)
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Appendix B

The functions involved in the DGLAP equations for singlet and non-singlet struc-

ture functions at NLO are

f(ω) = C2
F [PF (ω)− PA(ω)] +

1

2
CFCA[PG + PA(ω)]+CFTRNfPNf

(ω), (15)

F S
qq(ω) = 2CFTRNfFqq(ω), (16)

F S
qg(ω) = CFTRNfF

1
qg(ω) + CGTRNfF

2
qg(ω) (17)

where,

Fqq(ω) =
20

9ω
− 2 + 6ω − 56

9
ω2 +

(
1 + 5ω +

8

3
ω2
)
ln(ω)−(1 + ω) ln2(ω), (18)

F 1
qg(ω) = 4− 9ω − (1− 4ω) ln(ω)− (1− 2ω) ln2(ω) + 4 ln(1− ω)

+
[
2 ln2(

1− ω

ω
)− 4 ln(

1− ω

ω
)− 2

3
π2 + 10

]
P 1
qg(ω), (19)

F 2
qg(ω) =

182

9
+

14

9
ω +

40

9ω
+
(136

3
ω − 38

3

)
ln(ω)− 4 ln(1− ω)

−(2 + 8ω) ln2(ω) +
[
− ln2(ω) +

44

3
ln(ω)− 2 ln2(1− ω)

+4 ln(1− ω) +
π2

3
− 218

3

]
Pqg(ω)

+2Pqg(−ω)

∫ 1
1+ω

ω
1+ω

dz

z
ln

1− z

z
, (20)

Here, the Casimir operators of the color group SU(3) are defined as CG ≡ NC = 3,

CF =
N2

c − 1

2Nc

=
4

3
and TR = 1

2
.

PNf
(ω) =

2

3

[1 + ω2

1− ω
(− lnω − 5

3
)− 2(1− ω)

]
, (21)

PF (ω) = −2(1 + ω2)

(1− ω)
ln(ω) ln(1− ω)−

( 3

1− ω
+ 2ω

)
lnω−1

2
(1 + ω) lnω

+
40

3
(1− ω), (22)

PG(ω) =
(1 + ω2)

(1− ω)

(
ln2(ω) +

11

3
ln(ω) +

67

9
− π2

3

)
− 1

2
(1 + ω) lnω

+
40

3
(1− ω), (23)
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PA(ω) =
2(1 + ω2)

(1 + ω)

∫ ( 1
1+ω

)

( ω
1+ω

)

dk

k
ln
(1− k

k

)
+ 2(1 + ω) ln(ω)+4(1− ω). (24)

Appendix:C

The functions involved in the DGLAP equations for singlet and non-singlet struc-

ture functions at NNLO are given below.

The three-loop quark-quark splitting function is

P 2
qq = P 2

NS + P 2
PS, (25)

The third-order pure-singlet contribution to the quark-quark splitting function

is

P
(2)
PS(x) ≃

[
Nf (−5.92L3

1 − 9.751L2
1 − 72.11L1 + 177.4 + 392.9x− 101.4x2

−57.04L0L1 − 661.61L0 + 131.4L2
0 −

400

9
L3

0 +
160

27
L4
0 − 506.0x−1

−3584

27
x−1L0) +N2

f (1.778L
2
1 + 5.944L1 + 100.1− 125.2x+ 49.26x2

−12.59x3 − 1.889L0L1 + 61.75L0 + 17.89L2
0 +

32

27
L3
0 +

256

81
x−1)

]
(1− x),

(26)

with L0 = ln(x), L1 = ln(1− x).

The non-singlet splitting function calculated upto third order is given by

P
(2)
NS(x) = Nf

[
{L1(−163.9x−1 − 7.208x) + 151.49 + 44.51x− 43.12x2

+4.82x3}(1− x) + L0L1(−173.1 + 46.18L0) + 178.04L0

+6.892L2
0 +

40

27
(L4

0 − 2L3
0)
]
. (27)

The three-loop quark-gluon splitting function is

P (2)
qg (x) ≃ Nf

(100
27

L4
1 −

70

9
L3
1 − 120.5L2

1 + 104.42L1 + 2522− 3316x+ 2126x2

+L0L1(1823− 25.22L0)− 252.5xL3
0 + 424.9L0 + 881.5L2

0 −
44

3
L3
0

+
536

27
L4
0 − 1268.3x−1 − 896

3
x−1L0

)
+N2

f

(20
27

L3
1 +

200

27
L2
1 − 5.496L1

−252.0 + 158.0x+ 145.4x2 − 98.07xL2
0 + 11.70xL3

0 − L0L1(53.09

+80.616L0)− 254.0L0 − 90.80L2
0 −

376

27
L3
0 −

16

9
L4

0 +
1112

243
x−1
)
.

(28)
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Appendix:D

The explicit forms of the functions Ag
i (x), B

g
i (x) (i=1,2,3,4) and Cg

i (x) (i=1,2)

are

Ag
1(x) = −11

6
+ 2x− 1

2
x2 +

1

3
x3 − ln(x), (29)

Ag
2(x) = 1 +

4

3
x− 3x2 + x3 − 1

4
x4 + 2x ln(x). (30)

Ag
3(x) =

2

9
(−3

2
+ 2x− 1

2
x2 − 2 ln(x)), (31)

Ag
4(x) =

2

9
(2 +

1

2
x− 3x2 +

1

2
x3 + 4x ln(x), (32)

Bg
1(x) = −52

3
ln(x), (33)

Bg
2(x) = −52

3
(1− x+ x ln(x)), (34)

Bg
3(x) =

∫ 1

x

A(ω)dω, (35)

Bg
4(x) = x

∫ 1

x

1− ω

ω
A(ω)dω, (36)

Cg
1 (x) =

∫ 1

x

P 2
gg(ω)dω, (37)

Cg
2 (x) = x

∫ 1

x

1− ω

ω
P 2
gg(ω). (38)

Here, the functions A(ω) and P 2
gg(ω) are defined in Appendices E and F respectively.

Appendix:E

The functions involved in the DGLAP equations for gluon distribution functions

at NLO are

P 1
gg(ω) = CFTF (−16 + 8z +

20

3
z2 +

4

3
z − (6 + 10z) ln(z)− (2 + 2z)lnz2)

+CATF (2− 2z +
26

9
(z2 − 1/z)− 4

3
(1 + z) ln(z)− 20

9
Pgg(z))

+C2
A(

27

2
(1− z) +

26

9
(z2 − 1/z)− (

25

3
− 11

3
z +

44

3
z2) ln(z)

+4(1 + z) ln(z2) + 2Pgg(−z)S2(z) + (
67

9
− 4 ln(z) ln(1− z)

+ ln(z2)− π2

3
)Pgg(z)). (39)
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A(ω) = C2
FA1(ω) + CFCGA2(ω) + CFTRNFA3(ω) (40)

where

A1(ω) = −5

2
− 7

2
ω + (2 +

7

2
ω) + (−1 +

ω

2
) ln2 ω − 2ω. ln(1− ω)

+(−3 ln(1− ω)− ln2(1− ω))
1 + (1− ω)2

ω
, (41)

A2(ω) =
28

9
+

65

18
.ω +

44

9
ω2 + (−12− 5ω − 8

3
ω2) lnω + (4 + ω) ln2 ω

+2ω ln(1− ω) + (−2 lnω ln(1− ω) +
1

2
ln2 ω +

11

3
ln(1− ω)

+ ln2(1− ω)− 1

6
π2 +

1

2
)
1 + (1− ω)2

ω

−1 + (1 + ω)2

ω

∫ 1/1+ω

ω/1+ω

dz

z
ln(

1− z

z
), (42)

A3(ω) = −4

3
ω − (

20

9
+

4

3
ln(1− ω))(

1 + (1− ω)2

ω
). (43)

Appendix:F

The functions involved in the DGLAP equations for gluon distribution functions

at NNLO are

P 2
gg(ω) = 2643.524D0 + 4425.894δ(1− z) + 3589L1 − 20852 + 3968z − 3363z2

+4848z3 + L0L1(7305 + 8757L0) + 274.4L0 − 7471L2
0 + 72L3

0 − 144L4
0 +

142141

z
+

2675.81

z
L0 +Nf (412.142D0 − 528.723δ(1− z)− 320l1

−350.2 + 755.7z − 713.8z2 + 559.3z3 + L0L1(26.85− 808.7L0) + 1541L0

+491.3L2
0 +

832

9
L3

0 +
512

27
L4
0 +

182.961

z
+

157.271

z
L0)

+N2
f (−

16

9
D0 + 6.4630δ(1− z)− 13.878 + 153.4z − 187.7z2 + 52.75z3

L0L1(115.6− 85.25z + 63.23L0)− 3.422L0 + 9.680L2
0 −

32

27
L3

0

− 680

2431z)
(44)

where, L0=ln(z), L1=ln(1− z) and D0=
1

(1−z)
.
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Appendix G

To obtain the analytical solutions of DGLAP evolution equations for singlet struc-

ture function or gluon distribution function, we assume the following ansatz [a-c]

G(x,Q2) = K(x)F S
2 (x,Q

2) (45)

which gives the possibility to extract the gluon distribution function directly from

the experimental data. Here K(x) is a function of x or may be a suitable parameter

which can be determined by phenomenological analysis.

In the DGLAP formalism the gluon distribution turns out to be very large at

small-x and so it contributes crucially to the evolution of the parton distribution.

Subsequently, the gluon distribution governs the structure function F2(x,Q
2) through

the evolution g → qq̄ in the small-x region. For lower Q2 (Q2 ≈ Λ2), however, there

is no such clear cut distinction between the two. Thus for small-x and high Q2,

the gluons are expected to more dominant than the sea quarks and therefore the

determination of gluon density in the small-x region is particularly interesting. But

the gluon distribution function G(x,Q2) cannot be measured directly through exper-

iments. It is determined only via the quark distributions together with the evolution

equations. The most precise determinations of the gluon momentum distribution

in the proton can be obtained from a measurement of the deep inelastic scattering

(DIS) proton structure function F2(x,Q
2) and its scaling violation. The Q2-evolution

of the proton structure function F2(x,Q
2) is related to the gluon distribution func-

tion G(x,Q2) in the proton and to the strong interaction coupling constant αS. It

is, therefore, important to measure the G(x,Q2) indirectly using F2(x,Q
2). Hence

the direct relations between F2(x,Q
2) and G(x,Q2) are extremely important because

using those relations the experimental values of G(x,Q2) can be extracted using the

data on F2(x,Q
2). A plausible way of realizing this is through the above ansatz. The

evolution equations of gluon distribution function and singlet structure function are

in the same forms of derivative with respect to Q2. Moreover the input singlet and

gluon parameterizations, taken from global analysis of PDFs, in particular from the

GRV1998, MRST2001, MSTW2008 parton sets [d-f], to incorporate different high

precision data, are also functions of x at fixed Q2. So the relation between sin-

glet structure function and gluon parton densities can be expressed in terms of x at

fixed-Q2. Accordingly the above assumption is justifiable.
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The function K(x) may be assumed to have some standard functional form such

as K(x) = K, axb, cedx where K, a, b, c, d are suitable parameters which can be

determined by phenomenological analysis, however we can not rule out the other

possibilities [a-c, g, h]. The actual functional form of K(x) can be determined by

simultaneous solutions of coupled equations of singlet structure functions and gluon

parton densities, nevertheless it is beyond the scope of thesis. In this thesis we per-

form our analysis considering the function K(x) as an arbitrary constant parameter

K for a particular range of x and Q2 in defining the relation between gluon and sin-

glet structure functions as the simplest assumption. But, we need to adjust its value

for satisfactory description of different experiments. The best fit graphs are obtained

by choosing an appropriate value of K for a proper description of each experiment.

Our phenomenological analysis reveals that the best fit results of singlet structure

functions obtained from the solutions of linear DGLAP equations are in very good

agreement with NMC data in the range 0.0045 ≤ x ≤ 0.19 and 0.75 ≤ Q2 ≤ 27 GeV2

for 0.92 < K < 1.2, E665 data in the range 0.0052 ≤ x ≤ 0.18 and 1.094 ≤ Q2 ≤ 26

GeV2 for 0.45 < K < 0.87 and NNPDF parametrizations in the range 0.0045 ≤ x

≤ 0.095 and 1.25 ≤ Q2 ≤ 26 GeV2 for 1.1 < K < 1.6 respectively. Thus the

parameter K lies in the range 0.45 < K < 1.6 to obtain the best fit results of singlet

structure functions compared with different experiments and parametrizations for

the entire domain of x and Q2 under study. Similarly we perform our analysis for

gluon distribution functions obtained from the solutions of DGLAP equations in the

x and Q2 domain, viz. 10−4 ≤ x ≤ 0.1 and 5 ≤ Q2 ≤ 110 GeV2 and obtain our

best fit results compared with different global analysis of parton distributions in

the range 0.14 < K1 < 0.85, where K1 = 1/K. We observe that our results show

excellent consistency with the global parametrizations namely GRV1998, MRST2004,

MSTW2008, JR09 and with the BDM model for 0.72 < K1 < 0.85, 0.5 < K1 < 0.64,

0.14 < K1 < 0.48, 0.56 < K < 0.68 and 0.62 < K < 0.78 respectively. On the other

hand from the phenomenological analysis of singlet structure functions obtained from

the solution of nonlinear GLR-MQ equation we note that the best fit results are

obtained in the range 0.28 < K < 1.2 for the entire domain of x and Q2 under study.

The computed values of singlet structure functions with shadowing corrections are

found to be quite compatible with NMC data in the range 0.6 < Q2 < 3.6 GeV2 and
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10−4 < x < 0.013 for 0.52 < K < 0.9, E665 data in the range 1 < Q2 < 4 GeV2 and

10−4 < x < 0.01 for 0.28 < K < 0.86 and with the NNPDF parametrization in the

range 1 < Q2 < 27 GeV2 and 10−4 < x < 0.011 for 0.72 < K < 1.2 respectively.

To conclude, we examine the dependence of our predictions on the values of the

arbitrary parameters K and K1 for different experimental data or parametrizations

and observe that the values of K or K1 lie in a very small range. Therefore it is

legitimate to take these parameters as constant parameters.
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