
Chapter 2

Evolution of Longitudinal Structure Function FL Us-

ing Taylor Series Expansion Method at Small-x

In this chapter, we study the behaviour of the longitudinal structure function FL of

proton from its QCD evolution equation in NNLO approximation at small-x. Here we

use the Taylor series expansion method to solve the evolution equation. The solution of

this equation provides the expressions for t=
[

ln(Q
2

Λ2 )
]

- and x-evolution equations for the

computation of the longitudinal structure function. Our calculated results are compared

with the recent H1 [1–5], ZEUS [6] experimental data, results of Donnachie-Landshoff

(DL) models [7] and the theoretical predictions of MSTW08 [8], CT10 [9], ABM11 [10],

NNPDF2.3 [11, 12] parameterizations. We have also compared our x-evolution results

with the gluon dominating FL structure function obtained by Boroun et al. [13]. Our

predicted results show good agreement with the recent data and related fit and can be

described within the framework of pQCD.

2.1 Theory

At small values of x, the density of gluons in the proton is considerably larger than

densities of quarks and antiquarks. Thus, at small-x the structure of proton is mainly

described by the distribution of gluons only. At small-x (x ≤ 10−3) the gluon contribu-

tion to the FL structure function dominates over the singlet and non-singlet contribu-
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tion [14]. Now the QCD evolution equation for gluon dominating FL structure function

is given by [15]

∂F g
L(x,Q

2)

∂lnQ2
= KG(x,Q

2)⊗ F g
L(x,Q

2). (2.1)

Here KG(x,Q
2) is the gluon kernel known perturbatively up to the first few orders in

αs(Q
2). The symbol ⊗ represents the standard Mellin convolution and is given by

A(x)⊗B(x) =

∫ 1

0

dy

y
A(y)B

(x

y

)

. (2.2)

The kernel KG(x,Q
2) can be written as

KG(x,Q
2) =

αs(Q
2)

4π
K0

G(x) +
(αs(Q

2)

4π

)2

K1
G(x) +

(αs(Q
2)

4π

)3

K2
G(x) (2.3)

up to NNLO, where K0
G(x), K

1
G(x) and K2

G(x) are the gluon splitting kernel [16, 17]

in LO, NLO and NNLO respectively. The expressions for K0
G(x), K

1
G(x) are defined

in Appendix A. K2
G(x) is available in co-efficient function form in Refs. [18, 19] and

its expression is given in Appendix A. Using all these and simplifying QCD evolution

equations for the longitudinal structure function in LO, NLO and NNLO, we get

∂F g
L(x, t)

∂t
− αs(t)

4π

[

80

9

∫ 1

x

dww2(1− w)F g
L

( x

w
, t
)

]

= 0, (2.4)

∂F g
L(x, t)

∂t
− αs(t)

4π

[

80

9

∫ 1

x

dww2(1− w)F g
L

( x

w
, t
)

]

−
(αs(t)

4π

)2

IG1 (x, t) = 0 (2.5)

and

∂F g
L(x, t)

∂t
− αs(t)

4π

[

80

9

∫ 1

x

dww2(1− w)F g
L

( x

w
, t
)

]

−
(αs(t)

4π

)2

IG1 (x, t)−
(αs(t)

4π

)3

IG2 (x, t) = 0, (2.6)
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where

IG1 (x, t) =
160

9

∫ 1

x

dwf(w)F g
L

( x

w
, t
)

(2.7)

and

IG2 (x, t) =

∫ 1

x

dwK2
G(w)F

g
L

( x

w
, t
)

. (2.8)

Here t = ln
Q2

Λ2
, Λ is the QCD cut-off parameter and the function f(w) is defined in

Appendix A. The strong coupling constant in higher order has the form [20, 21]

αs(t) =
4π

β0t

[

1− β1

β2
0

lnt

t
+

1

β3
0t

2

{β2
1

β0
(ln2t− lnt− 1) + β2

}

+O
( 1

t3

)]

, (2.9)

where

β0 = 11− 2

3
Nf , (2.10)

β1 = 102− 38

3
Nf (2.11)

and

β2 =
2857

2
− 5033

18
Nf +

325

54
N2

f (2.12)

are the one loop, two loop and three loop correction to the QCD β-function, Nf being

the number of flavours. Here we take Nf = 4.

Equations (2.4), (2.5) and (2.6) can be solved by Taylor series expansion method

as described in ref. [22, 23]. Considering the variable u = 1 − w, and since x < w < 1,

we have 0 < u < 1 − w ; so the series
x

w
=

x

1− u
is convergent for |u| < 1 and using

the Taylor expansion method and neglecting the higher order terms, F g
L

( x

w
, t
)

can be

approximated for small-x as
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F g
L

( x

w
, t
)

= F g
L

(

x+
xu

1− u
, t
)

= F g
L(x, t) +

xu

1− u

∂F g
L(x, t)

∂x
. (2.13)

Using (2.13) in equations (2.4), (2.5) and (2.6) and performing u-integrations we get

∂F g
L(x, t)

∂t
− 1

t

[

A1(x)
∂F g

L(x, t)

∂x
+B1(x)F

g
L(x, t)

]

= 0, (2.14)

∂F g
L(x, t)

∂t
− 1

t

(

1− b
lnt

t

)[

A2(x)
∂F g

L(x, t)

∂x
+B2(x)F

g
L(x, t)

]

= 0 (2.15)

and

∂F g
L(x, t)

∂t
− 1

t

(

1− b
lnt

t
+

b2

t2
(ln2t− lnt− 1) +

c

t2

)

[

A3(x)
∂F g

L(x, t)

∂x
+B3(x)F

g
L(x, t)

]

= 0, (2.16)

where

A1(x) =
1

β0
P2(x), B1(x) =

1

β0
P1(x), A2(x) =

1

β0
(P2(x) + T0Q2(x)),

B2(x) =
1

β0
(P1(x) + T0Q1(x)), A3(x) =

1

β0
(P2(x) + T0Q2(x) + T1R2(x)),

B3(x) =
1

β0
(P1(x) + T0Q1(x) + T1R1(x)),

P1(x) =
80

9

( 1

12
− x3

3
+

x4

4

)

, P2(x) =
80

9
x
( 1

12
− x2

2
+

2x3

3
− x4

4

)

,
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Q1(x) =
160

9

∫ 1

x

f(w)dw, Q2(x) =
160

9
x

∫ 1

x

(1− w)

w
f(w)dw,

R1(x) =

∫ 1

x

K2
G(w)dw, R2(x) = x

∫ 1

x

(1− w)

w
K2

G(w)dw,

b =
β1

β2
0

and c =
β2

β3
0

.

Here we consider two numerical parameters T0 and T1, such that T 2(t) = T0.T (t) and

T 3(t) = T1.T (t) with T (t) =
αs(t)

4π
. These numerical parameters are obtained for a

particular range of Q2 under study. As described in ref. [23], these two parameters are

chosen in such a way that the difference between T 2(t), T0.T (t) and T 3(t), T1.T (t) are

negligible in our required range. This is explained in figure 2.1. Here, we have considered

the values of T0 = 0.0278 and T1 = 0.000892 within the range 1.5 ≤ Q2 ≤ 800GeV 2.
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Figure 2.1: T 2(t) = T0.T (t) and T 3(t) = T1.T (t) versus Q
2(GeV 2).
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The general solution of equation (2.14) is F (U, V ) = 0, where F (U, V ) is an arbi-

trary function [22]. Now, U(x, t, F g
L) = C1 and V (x, t, F g

L) = C2 with C1 and C2, two

constants, form a solution of the Lagrange’s equation

dx

A1(x)
= −dt

t
= − dF g

L(x, t)

B1(x)F
g
L(x, t)

(2.17)

from which we obtain

U(x, t, F g
L) = t · exp

[

∫

dx

A1(x)

]

(2.18)

and

V (x, t, F g
L) = F g

L(x, t) · exp
[

∫

B1(x)

A1(x)
dx

]

. (2.19)

It thus has no unique solution. The simplest possibility is that a linear combination

of U and V is to satisfy F (U, V ) = 0 so that α · U + β · V = 0, where α and β are

arbitrary constants [22]. This combination gives

F g
L(x, t) = −

(α

β

)

· t · exp
[

∫

( 1

A1(x)
− B1(x)

A1(x)

)

dx

]

. (2.20)

Now defining

F g
L(x, t0) = −

(α

β

)

· t0 · exp
[

∫

( 1

A1(x)
− B1(x)

A1(x)

)

dx

]

at t = t0 , where t0 = ln
(

Q2
0

Λ2

)

at any lower value Q = Q0, we get from equation (2.20)

F g
L(x, t) = F g

L(x, t0)
( t

t0

)

. (2.21)

Again defining

F g
L(x0, t) = −

(α

β

)

· t · exp
[

∫

( 1

A1(x)
− B1(x)

A1(x)

)

dx

]

x=x0

,
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at any higher values of x = x0, we obtain from equation (2.20)

F g
L(x, t) = F g

L(x0, t) exp

[

∫ x

x0

( 1

A1(x)
− B1(x)

A1(x)

)

dx

]

. (2.22)

Equations (2.21) and (2.22) give the t- and x-evolutions of longitudinal structure func-

tion F g
L in LO respectively. Similarly, from equations (2.15) and (2.16), we obtain the

t- and x-evolutions for FL structure function in NLO and NNLO as

F g
L(x, t) = F g

L(x, t0)
t(1+b/t)

t
(1+b/t0)
0

exp

[

b
(1

t
− 1

t0

)

]

, (2.23)

F g
L(x, t) = F g

L(x0, t) exp

[

∫ x

x0

( 1

A2(x)
− B2(x)

A2(x)

)

dx

]

(2.24)

and

F g
L(x, t) = F g

L(x, t0)
t(1+b/t)

t
(1+b/t0)
0

exp









b
(

1
t
− 1

t0

)

+
(

b2

2
− c

2

)(

1
t2
− 1

t2
0

)

− b2

2

(

ln2t
t2

− ln2t0
t2
0

)









, (2.25)

F g
L(x, t) = F g

L(x0, t) exp

[

∫ x

x0

( 1

A3(x)
− B3(x)

A3(x)

)

dx

]

(2.26)

respectively.

In our calculations, we used up to first order term O(x) in Taylor expansion of

F g
L

(

x
w
, t
)

and neglecting the higher order terms in small-x approximation. Now instead

of neglecting the higher order terms O(x2) from the Taylor expansion series let us retain

the second order term and neglecting the higher order terms O(x3), F g
L

(

x
w
, t
)

can then

be approximated as

F g
L

( x

w
, t
)

∼= F g
L(x, t) +

xu

1− u

∂F g
L(x, t)

∂x
+

1

2

( xu

1− u

)2 ∂2F g
L(x, t)

∂x2
, (2.27)
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which gives from equation (2.4)

∂F g
L(x, t)

∂t
− 1

t

[

B1(x)F
g
L(x, t) + A1(x)

∂F g
L(x, t)

∂x
+ C1(x)

∂2F g
L(x, t)

∂x2

]

= 0, (2.28)

where C1(x) =
1

β0

(x2

8
− x3

2
+

3x4

4
− x5

2
+

x6

8

)

. A1(x) and B1(x) are given earlier.

The equation (2.28) is a second order partial differential equation and this can be

solved by Monges method [24]. According to this method, the solution of second order

partial differential equation

Rr + Ss+ T t = V (2.29)

can be obtained from the subsidiary equations

Rdy2 + Sdxdy + Tdx2 = 0 (2.30)

and

Rdpdy + Sdqdx− V dxdy = 0, (2.31)

where R, S, T and V are functions of x, y, z, p and q. Here z, p, q, r, s and t are

defined as follows

z = z(x, y) = F g
L(x, t), p =

∂z

∂x
, q =

∂z

∂y
, r =

∂2z

∂x2
=

∂p

∂x
,

s =
∂2z

∂x∂y
=

∂p

∂y
=

∂q

∂x
and t =

∂2z

∂y2
=

∂q

∂y
.

Comparing equations (2.28) and (2.29) we get

R = C1(x), S = 0, T = 0 and

V = t
∂F g

L(x, t)

∂t
− A1(x)

∂F g
L(x, t)

∂x
−B1(x)F

g
L(x, t).

Substituting the values of R, S, T and V in subsidiary equations (2.30) and (2.31) we

ultimately obtain V = 0, which gives

∂F g
L(x, t)

∂t
− 1

t

[

A1(x)
∂F g

L(x, t)

∂x
+B1(x)F

g
L(x, t)

]

= 0, (2.32)
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which is exactly same as the equation (2.14). Similarly, the other two equations (2.15)

and (2.16) become same when we include the second order term in the Taylor expansion

series. Thus it is clear that the inclusion of the second order term does not modify the

solutions of the evolution equations. Similarly, if one introduce more higher order terms

in Taylor expansion series, then for these cases also the term can be neglected due to

smaller values of x [25, 26].

Thus we have obtained an analytical expression for the t- and x-evolutions of

longitudinal structure function F g
L. From the final expressions (2.21), (2.23) and (2.25),

it is observed that our results, i.e., the t-evolutions depend upon the expressions of αs(t)

only. From these expressions we can easily calculate the t-evolutions of F g
L by taking an

input distribution at a given value of Q2
0. The x-evolutions of F

g
L is determined from the

expressions (2.22), (2.24) and (2.26) by taking an input distribution at a given value of

x0. Here, we have calculated the x-evolution up to NLO only. Due to the unavailability

of the evolution kernel at NNLO we are unable to calculate the same at this order. But

the co-efficient function and splitting function of quarks and gluon are available up to

NNLO. So, we have calculated the structure function up to NLO in this chapter and

up to NNLO in chapter 4 and 5. In chapter 4 and 5, we have calculated the structure

function using the QCD evolution equation in terms of co-efficient function and splitting

function of quarks and gluon and the details are described in the respective chapter.

2.2 Results and Discussions

Using the simple analytical expressions (2.21), (2.22), (2.23), (2.24) and (2.25), we

have calculated the the gluon dominating longitudinal structure function F g
L at small-x

in leading, next-to-leading and next-to-next-to-leading orders. The obtained results are

compared with the experimental data taken by H1 [1–5] and ZEUS collaboration [6],

results of the Donnachie-Landshoff (DL) model [7] and the theoretical predictions from
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MSTW08 [8], CT10 [9], ABM11 [10], NNPDF2.3 [11, 12] parameterizations. In H1

2001 data [2], the structure functions are measured in the kinematic range 1.5 ≤ Q2 ≤
150GeV 2 and 3× 10−5 ≤ x ≤ 0.2, for H1 2007 data [3,4], range is 2.5 ≤ Q2 ≤ 25GeV 2

and 5 × 10−5 ≤ x ≤ 0.12, for H1 2011 data [1], range is 1.5 ≤ Q2 ≤ 120GeV 2 and

2.9 × 10−5 ≤ x ≤ 0.01, for H1 2014 data [5], range is 35 ≤ Q2 ≤ 800GeV 2 and

6.5 × 10−4 ≤ x ≤ 0.65 and for ZEUS 2009 data [6], range is 20 < Q2 < 130GeV 2 and

5× 10−4 < x < 0.07 respectively.

DL model [7] is based on dipole picture with a soft and a hard pomeron, large

dipole couples to the soft pomeron and small dipole couples to the hard pomeron.

The parameters in the model are fixed by proton-proton scattering data and proton

structure function F p
2 data. The authors derived a good numerical fit to the output of

the DGLAP evolution for the small-x behaviour of the gluon distribution function which

is valid for Q2 between 5 and 500GeV 2. Here, they fitted their parameters with the H1

data sets [2]. The gluon distribution here is mainly dominated by the hard pomeron at

small-x and for all Q2. This not only describes the DGLAP evolution of hard part of

the F2, but also the longitudinal structure function. The MSTW08 PDFs [8] include

updated LO, NLO and NNLO parton distribution functions determined from global

analysis of hard-scattering data within the standard framework of leading-twist fixed-

order collinear factorisation in the MS scheme. These parton distributions are a major

update to the previously available MRST sets [27–29] and incorporate the maximum

amount of information from DIS and other hard-scattering data. The CT10 PDFs of

the proton describes theoretical advancements in the global QCD analysis that was used

to produce the previous CTEQ6.6 [30] and CT09 [31] PDFs. This analysis includes the

most recent collider data from deep-inelastic scattering, vector boson production, and

single-inclusive jet production [9]. In CT10 PDFs the combined H1/ZEUS data [32]

sets for DIS at HERA is also included. The ABM11 PDF fit is based on the world

data for deep-inelastic scattering, fixed-target data for the Drell-Yan process and also
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includes data from the LHC for the Drell-Yan process [10]. The NNPDF2.3 PDF fit,

is the most accurate determination to date from the NNPDF family, and it supersedes

previous existing sets. It differs from the NNPDF2.1 set because of the inclusion of

LHC data [11].

Here, the proton longitudinal structure function, measured in the range 5 ≤ Q2 ≤
800GeV 2 and 10−4 ≤ x ≤ 10−1, have been used for our analysis. The value of y used is

greater than or equal to 0.5, as from this value onwards the contribution of FL structure

function is significant towards the total cross section [33]. The average values of Λ in

our calculation is 0.22GeV . In figure 2.2, FL structure function is plotted against Q2

for different values of x in comparison with the H1, ZEUS data and results of DL

model. In figure 2.3, FL structure function is plotted against x for different values of

Q2 in comparison with the H1, ZEUS data and the results of DL model. In figure

2.4, FL structure function is plotted against x for different values of Q2 in comparison

with the H1, ZEUS data and the theoretical prediction of MSTW08. In figure 2.5, FL

structure function is plotted against x for different values of Q2 in comparison with the

H1, ZEUS data and theoretical prediction of CT10. Figures 2.6 and 2.7 describe our

x-evolution results in comparison with the H1, ZEUS data and theoretical predictions

of ABM11 and NNPDF2.3. The vertical error bars in all the plots are both statistical

and systematic error for both H1 and ZEUS data. In all the graphs, the data points

at lowest Q2 values are taken as input point for t-evolution graphs and data points

at highest x values are taken as input points for x-evolution graphs. To confirm that

in spite of the large uncertainty in the experimental data, our results are in better

agreement with the data, we add DL model results and the theoretical prediction of

different parameterizations in all the figures.

It is observed from the t-evolution graphs that, our result shows good agreement

with that of H1 and ZEUS data, i.e., with respect to the experimental data our result

shows increasing behaviour with increasing values of Q2. It is seen from the figure
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2.2 that, our plots are in good agreement with DL model fit also and as the energy

scale becomes larger, the agreement is better. But, at intermediate energy scale the

agreement is not so good, the reason for this is that the DL model approach comes

from a BFKL like evolution equation [7] and the Q2-evolution in that case is somewhat

different from a DGLAP approach. In all the cases, our calculated FL structure function

in LO, NLO and NNLO increase with the values of Q2 in the given range like the results

of DL model as expected from QCD. At small-x, FL increases with Q2 as we resolve

increasing numbers of soft partons with increasing Q2 [34]. The x-evolution results also

show compatibility with the experimental data, model fit and the theoretical predictions

of different parameterizations which are depicted in figure 2.3 to figure 2.7. Here the

calculated values of F g
L structure function increase with the decreasing x values. In

case of the x-evolution results described in figure 2.3 to figure 2.7, the behaviour of

LO, NLO curves are slightly different as we have considered the input point from

different parameterizations. The behaviour of LO, NLO and NNLO curves in both the

t- and x-evolutions of F g
L structure function are different (i.e., sometimes NLO results

overestimate LO prediction and vice versa) and this behaviour of the curves depend

only on the expressions used for calculation of the structure function. Moreover, with

reference to some recent papers [13, 35–37], we can say that the behaviour of the LO,

NLO, NNLO curves depend only on the applied method. In all the figures, in spite

of large uncertainty of the experimental data, all the plots show good agreement with

the model fit and theoretical predictions of the parameterizations. It is observed from

the x-evolution graphs that, our results show good agreement with the model fit and

parameterizations and as the energy scale becomes larger, the agreement is better. In

all our results for x-evolutions, we observe that the differences between LO and NLO

results are extremely small and our NLO results are in better agreement with the

data and fit. Moreover, in case of t-evolution the NLO and NNLO curves are almost

overlapping with increasing values of Q2 and our NNLO results are in better agreement
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Figure 2.2: t-evolution results of F g
L structure function up to NNLO using Taylor

expansion method in comparison with the H1, ZEUS data and results of DL model.
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Figure 2.3: x-evolution results of F g
L structure function up to NLO using Taylor
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Figure 2.4: x-evolution results of F g
L structure function up to NLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical

prediction of MSTW08.
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Figure 2.5: x-evolution results of F g
L structure function up to NLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical

prediction of CT10.
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Figure 2.6: x-evolution results of F g
L structure function up to NLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical

prediction of ABM11.
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Figure 2.7: x-evolution results of F g
L structure function up to NLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical

prediction of NNPDF2.3.
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Figure 2.8: x-evolution results of F g
L structure function up to NLO using Taylor

expansion method in comparison with the H1 data and the theoretical prediction

of Boroun et al. (GRB)

with data and related fits. In all the cases, the difference between different orders

become less as the energy scale increases, which lies within the framework of pQCD

i.e., running coupling constant becomes smaller as the energy value increases.

We have also presented a comparison of our results with the results reported in

a recent paper by Boroun et al. where they have calculated the gluon dominating

FL structure function using Laguerre polynomials method [13]. Figure 2.8 shows the

comparison of the results. Our results shows good agreement with the results of Boroun

et al. In both the cases, the structure function increases towards small values of x as

expected from QCD. Both the results does not show exactly the same behaviour as

the methods for evaluating the structure function in both the cases are different, in our
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case we have used ‘Taylor expansion method’ and they have used ‘Laguerre polynomials

method’.

2.3 Conclusions

In this chapter, we have obtained an analytical solution of evolution equation for

gluon dominating longitudinal structure function F g
L up to NNLO using the Taylor series

expansion method. The solutions of the evolution equation provide the expressions

for t- and x-evolution of F g
L structure function. With the help of these expression,

we have calculated the evolutions of F g
L structure function by considering the input

distributions from model fit and theoretical predictions of different parameterizations.

Here, for the calculation of t- and x-evolution of F g
L structure function we consider two

numerical parameters T0 and T1. This method is simple one and less time consuming

on the numerical calculations with less number of numerical parameters compared to

the other methods where several parameters are included in the input function [38].

So, this method may be a viable alternative to other methods. To confirm the validity

of our calculations, we have compared our results with recent experimental data. To

show that in spite of the large error bars of the experimental data, our results are

in good agreement with the data, we have compared our results with the results of

model fit and parameterizations. The variation of F g
L structure function with x and

Q2 shows similar nature with the H1, ZEUS experimental data as well as the results

of DL model and theoretical predictions of MSTW08, CT10, ABM11 and NNPDF2.3.

At small-x, our results show that the longitudinal structure function F g
L increases with

the increasing values of Q2 and it also increases with the decreasing values os x as

expected from QCD. As in our given range of x, the gluon contribution to the structure

function is dominant one, so we can conclude in general that the gluon contribution to

the longitudinal structure function increases with the values of Q2 and it also increases
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with the decreasing values of x.
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