
Chapter 3

Evolution of FL Structure Function at Small-x Using

Regge Like Behaviour of Structure Function

In this chapter, the evolutions of longitudinal structure function FL from its QCD evo-

lution equation in next-to-leading order (NLO) at small-x is presented using the Regge

like behaviour of the structure function. The proposed simple analytical expression for

FL structure function provides the t- and x-evolution equations to study the behaviour

of FL structure function at small-x. The calculated results are compared with the data

of H1 [1–5], ZEUS [6] collaborations, results of Donnachie-Landshoff (DL) [7] model

and theoretical predictions of MSTW08 [8], CT10 [9], ABM11 [10], NNPDF2.3 [11,12]

parameterizations. The comparison of our results with that of the results obtained

by Boroun [13] is also studied here. We have also presented a comparative study of

our predicted results with the results obtained in the previous chapter using Taylor

expansion method. Our calculated results can be described within the framework of

pQCD.

3.1 Theory

At small values of x (x ≤ 10−3), the QCD evolution equation for gluon dominating

F g
L structure function is given by [14]

∂F g
L(x,Q

2)

∂lnQ2
= KG(x,Q

2)⊗ F g
L(x,Q

2). (3.1)
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Here KG(x,Q
2) is the gluon kernel known perturbatively up to the first few orders

in αs(Q
2). The symbol ⊗ represents the standard Mellin convolution. The kernel

KG(x,Q
2) can be written as

KG(x,Q
2) =

αs(Q
2)

4π
K0

G(x) +
(αs(Q

2)

4π

)2

K1
G(x) (3.2)

up to NLO, where K0
G(x) and K1

G(x) are the gluon splitting kernels in LO and NLO

respectively. K0
G(x), K

1
G(x) are given in ref. [15, 16] and their expressions are defined

in Appendix A. Using all these and simplifying the QCD evolution equations for the

F g
L structure function in LO and NLO, we get

∂F g
L(x, t)

∂t
− αs(t)

4π

[

80

9

∫ 1

x

dww2(1− w)F g
L

( x

w
, t
)

]

= 0 (3.3)

and

∂F g
L(x, t)

∂t
− αs(t)

4π

[

80

9

∫ 1

x

dww2(1− w)F g
L

( x

w
, t
)

]

−
(αs(t)

4π

)2

IG1 (x, t) = 0, (3.4)

where

IG1 (x, t) =
160

9

∫ 1

x

dwf(w)F g
L

( x

w
, t
)

. (3.5)

Here t = ln
Q2

Λ2
, Λ is the QCD cut-off parameter and the function f(w) is defined in

Appendix A.

The strong coupling constant in higher order has the form [17]

αs(t) =
4π

β0t

[

1− β1

β2
0

lnt

t
+O

( 1

t2

)]

, (3.6)

where β0 and β1 are the one loop and two loop corrections to the QCD β-function which

are defined in chapter 2 (equations (2.10) and (2.11)).

Regge approach provides a very good description of the HERA data on the small-x

behaviour of the structure function F2(x,Q
2) [18]. It explains the strong rise of the
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structure function F2 towards small values of x. This phenomenon is usually described

with the help of the power like behaviour of the structure function at small-x as

F2(x,Q
2) ∝ x−λ,

where λ > 0. Here, the power λ is related with the intercept of the Reggeon contribution

dominating at x → 0, namely with the pomeron intercept, λ = αp(0)− 1. The small-x

behaviour of the structure function is mainly driven by the gluons in the proton and

this gluon density is determined from the data on the slope dF2�dlnQ2 [19]. Thus,

gluon density G(x,Q2) can be written as

G(x,Q2) ∼ dF2

dlnQ2
∼ f(Q2)x−λg ,

where f(Q2) is a function of Q2 and λg is the pomeron intercept minus one. The steep

behaviour of the gluon distribution function generates a similar power like behaviour

of F2 structure function which can be expressed as G(x,Q2) ∝ x−λg [19]. The power

of λg is found to be either λg ≃ 0 and λg ≃ 0.5 where the first one corresponds to

soft pomeron and the second one to the hard (Lipatov) pomeron intercept [20]. As

the longitudinal structure function is directly sensitive [21] to the gluon distribution

function at small-x, we can use the same type of Regge behaviour to study the previous

case.

Now, the Regge like behaviour of the longitudinal structure function can be ex-

pressed as

F g
L(x, t) = f(t)x−λg , (3.7)

where f(t) is a function of t, and λg is the pomeron intercept minus one. Now, F g
L

( x

w
, t
)

can be written as

F g
L

( x

w
, t
)

= F g
L(x, t)w

λg . (3.8)

Using equations (3.7), (3.8) and leading order term of equation (3.6) in equation (3.3)
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we get
∂F g

L(x, t)

∂t
=

F g
L(x, t)

t
P (x) (3.9)

with

P (x) =
80

9β0

∫ 1

x

dw(1− w)w2+λg .

Integrating equation (3.9) we get

F g
L(x, t) = CtP (x), (3.10)

where C is a constant of integration.

Applying initial conditions at t = t0, FL(x, t) = FL(x, t0) and at x = x0, FL(x, t) =

FL(x0, t), the t and x-evolutions for F g
L structure function in LO can be written as

F g
L(x, t) = F g

L(x, t0)
( t

t0

)P (x)

(3.11)

and

F g
L(x, t) = F g

L(x0, t)t
[P (x)−P (x0)] (3.12)

respectively. Here F g
L(x, t0) and F g

L(x0, t) are defined in chapter 2.

Proceeding in the similar manner from equation (3.4), we obtain the t- and x-

evolutions for F g
L structure function in NLO as

F g
L(x, t) = F g

L(x, t0)
t(1+

b
t
)P1(x)

t
(1+ b

t0
)P1(x)

0

exp
[

b
(1

t
− 1

t0

)

P1(x)
]

(3.13)

and

F g
L(x, t) = F g

L(x0, t)t
(1+ b

t
)[P1(x)−P1(x0)]exp

[b

t
(P1(x)− P1(x0))

]

(3.14)

respectively, where

P1(x) =
1

β0
[P (x) + T0Q(x)] and Q(x) =

160

9

∫ 1

x

dwwλgf(w).
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The numerical parameter T0 is calculated for the particular range of Q2 under study

as described in ref. [22]. Here we have considered the values of T0 = 0.0278 within the

range 1.5 ≤ Q2 ≤ 800GeV 2 as described in chapter 2.

Thus we have obtained the analytical expressions for the t- and x-evolutions of

longitudinal structure function F g
L as the solution of its evolution equation. Equations

(3.11), (3.13) and (3.12), (3.14) finally give us the t-evolutions and x-evolutions of F g
L

structure function in LO and NLO respectively.

3.2 Results and Discussions

In this chapter, we have calculated the t- and x-evolutions of the gluon dominating

longitudinal structure function F g
L at small-x in leading and next-to-leading orders using

the Regge like behaviour of the structure function. The obtained results are compared

with the available H1 [1–5] and ZEUS experimental data [6], results of the Donnachie-

Landshoff (DL) model [7] and the theoretical predictions from MSTW08 [8], CT10 [9],

ABM11 [10], NNPDF2.3 [11, 12] parameterizations at several x and Q2 values. The

kinematical ranges for H1 2001, H1 2007, H1 2011, H1 2014 and ZEUS 2009 data, are

1.5 ≤ Q2 ≤ 150GeV 2 and 3 × 10−5 ≤ x ≤ 0.2, 2.5 ≤ Q2 ≤ 25GeV 2 and 5 × 10−5 ≤
x ≤ 0.12, 1.5 ≤ Q2 ≤ 120GeV 2 and 2.9 × 10−5 ≤ x ≤ 0.01, 35 ≤ Q2 ≤ 800GeV 2 and

6.5× 10−4 ≤ x ≤ 0.65 and 20 < Q2 < 130GeV 2 and 5× 10−4 < x < 0.07 respectively.

The t- and x-evolution results of F g
L structure function are depicted in figure 3.1 to

figure 3.6, where we have compared our results with related experimental data and fit.

Here, the longitudinal structure function, measured in the range 5 ≤ Q2 ≤ 800GeV 2

and 10−4 ≤ x ≤ 10−1, have been used for our analysis. The value of y used is ≥ 0.5, as

from this value onwards the contribution of F g
L structure function is significant towards

the total cross section [23]. Here the value of gluon distribution function exponent

λg is taken as 0.5 as in the region of small-x this value describes the HERA data

well [24, 25]. In figure 3.1, F g
L(x,Q

2) structure function results are plotted against
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Q2 for different values of x in comparison with the H1, ZEUS data and results of DL

model. In figures 3.2 to 3.6, F g
L(x,Q

2) structure function is plotted against x for different

values of Q2 in comparison with the H1, ZEUS data, the results of DL model and the

theoretical predictions of FL using standard gluon distribution function by MSTW08,

CT10, ABM11 and NNPDF2.3 parameterizations. Here the vertical error bars are

both statistical and systematic errors for both H1 and ZEUS data. To show that in

spite of large uncertainty of the experimental data, our results lie within the framework

of pQCD we have compared our results with the model fit and parameterizations.

In case of the x-evolution results described in figure 3.2 to figure 3.6, the behaviour

of LO, NLO curves are not exactly the same as we have considered the input point

from different parameterizations. The behaviour of LO and NLO curves in both the

t- and x-evolutions of F g
L structure function are different (i.e., sometimes NLO results

overestimate LO prediction and vice versa) and this behaviour of the curves depend

only on the the expressions used for calculation of the structure function. Moreover,

with reference to some recent papers [26–29], we can say that the behaviour of the LO,

NLO curves depend only on the applied method.

It is observed from the t-evolution graphs in figure 3.1 that, our result shows almost

similar behaviour with that of H1 and ZEUS data. To indicate that in spite of large

uncertainty in experimental data we have compared our results with the results of DL

model which also shows good agreement with results of model. Here the Q2-dependence

behaviour of structure function shows slight increasing behaviour with respect to Q2.

This is due to the presence of evolution kernel in the final expression for t-evolution of

F g
L structure function. In case of the plot x = 0.0004, we have used the input point

from DL model to study the evolution of FL structure function. As the input point

is near the end of the error bar of FL data and our evolution of structure function

shows slightly increasing behaviour, so in this case our calculated results at some point

are outside the error bars. Among all the plots, the plot at x = 0.002 shows better
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Figure 3.1: t-evolution results of F g
L structure function up to NLO using Regge

theory in comparison with the H1, ZEUS data and results of DL model.



72

1E-4 1E-3 0.01 0.1

0.0

0.2

0.4

0.6

0.8

1E-4 1E-3 0.01 0.1

0.0

0.2

0.4

0.6

0.8

1E-4 1E-3 0.01 0.1

0.0

0.2

0.4

0.6

0.8

1E-4 1E-3 0.01 0.1

0.0

0.2

0.4

0.6

0.8

 

 

 

 
F Lg  (x

, Q
2 )

Q2=15 GeV2
 H1 2001
 H1 2011
 DL fit
 LO
 NLO

 

 

 

 

x

Q2=20 GeV2

 

 

 

 
F Lg  (x

, Q
2 )

x

Q2 = 80 GeV2  ZEUS 2009

 

 

 

 

Q2 = 200 GeV2  H1 2014

Figure 3.2: x-evolution results of F g
L structure function up to NLO using Regge

theory in comparison with the H1, ZEUS data and results of DL model.
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Figure 3.3: x-evolution results of F g
L structure function up to NLO using Regge

theory in comparison with the H1, ZEUS data and the theoretical prediction of

MSTW08.
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Figure 3.4: x-evolution results of F g
L structure function up to NLO using Regge

theory in comparison with the H1, ZEUS data and the theoretical prediction of

CT10.
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Figure 3.5: x-evolution results of F g
L structure function up to NLO using Regge

theory in comparison with the H1, ZEUS data and the theoretical prediction of

ABM11.
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Figure 3.6: x-evolution results of F g
L structure function up to NLO using Regge

theory in comparison with the H1, ZEUS data and the theoretical prediction of

NNPDF2.3.
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agreement with the model fit i.e., the Q2 dependence of structure function obtained by

our approach shows better agreement with the results of model fit for this x value. In

all the cases, our calculated FL structure function in LO and NLO increase with the

values of Q2 in the given range like the results of DL models. This is an expected result

from QCD also. At small-x, FL increases with Q2 as we resolve increasing numbers of

soft partons with increasing Q2 [30]. From the x-evolution graphs, it is observed that

our result shows good agreement with those of H1, ZEUS data and those predicted by

model and parameterizations. Also it is observed that compatibility with data becomes

better with increasing values of Q2.
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0.4

0.6
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x
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Figure 3.7: x-evolution results of F g
L structure function up to NLO using Regge

theory in comparison with the H1 data and the theoretical prediction of Boroun

(GRB) [13].

We have also compared our x-evolution results with the results obtained by Boroun



78

[13] which is shown in figure 3.7. Here they have reported an analytical expression to

determine the FL structure function in NLO at small-x. In their approach Regge

like behaviour of gluon distribution function is used which reflects good agreement of

their results with recent data and fit. As depicted in figure 3.7 our result shows similar

behaviour with the results in ref. [13]. In both the cases, the structure function increases

towards small values of x as expected from QCD. Both the results does not show exactly

the same behaviour as the methods for calculation of the structure function in both the

cases are different.

3.2.1 Comparative study of our results predicted by Regge theory and

Taylor expansion method

Here we have presented a comparative analysis of our results predicted by Regge

theory (RT) approach and results of chapter 2 i.e., obtained by Taylor expansion (TE)

method. Figures 3.8 to 3.13 show the comparison of the evolutions of F g
L structure

functions obtained by the two methods already discussed above.

The comparison of our results of the t-evolution of F g
L structure function at small-x

is presented in figure 3.8 which reflects similar nature with the results of DL model in

spite of the large uncertainties of the data. The results predicted by Taylor expansion

method shows better agreement with the results of the model than those obtained by the

Regge theory approach. This implies that the compatibility of the t-evolution results

with the model fit and data depends on the expression of evolution kernel of FL. Due

to the presence of evolution kernel in the final expression for t-evolution of F g
L struc-

ture function in equations (3.11) and (3.13) in Reege theory approach, the growth of

structure function is not sharp as that obtained by the Taylor expansion method where

the final expressions for determination of t-evolution of structure function, equations

(2.21) and (2.23) are independent of evolution kernel.

Figures 3.9 to 3.13 describe the comparison of the behaviour of F g
L structure function
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Figure 3.8: Comparison of t-evolution results of F g
L structure function predicted
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Figure 3.9: Comparison of x-evolution results of F g
L structure function predicted

by Regge theory approach and Taylor expansion method and DL model.
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Figure 3.10: Comparison of x-evolution results of F g
L structure function pre-

dicted by Regge theory approach and Taylor expansion method and MSTW08.
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Figure 3.11: Comparison of x-evolution results of F g
L structure function pre-

dicted by Regge theory approach and Taylor expansion method and CT10.
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Figure 3.12: Comparison of x-evolution results of F g
L structure function pre-

dicted by Regge theory approach and Taylor expansion method and ABM11.
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Figure 3.13: Comparison of x-evolution results of F g
L structure function pre-

dicted by Regge theory approach and Taylor expansion method and NNPDF2.3.



85

with respect to x which shows good agreement with the data, model fit and parameter-

izations. In all the graphs, F g
L structure function predicted by both approach increases

towards small values of x. Though the results of obtained by TE approach are slightly

higher than those of RT approach in almost all the cases, yet both the methods can be

applied to calculate the F g
L structure function at small-x.

3.3 Conclusions

In this chapter, we have obtained an analytical solution of evolution equation for

longitudinal structure function F g
L up to NLO using the Regge like behaviour of the

structure function. Here, we have studied the behaviour of the t and x-evolutions of F g
L

structure function up to NLO only. Due to the unavailability of the evolution kernel

at NNLO we are unable to calculate the same at this order. We have compared our

results with the recent experimental data to confirm the validity of our calculations.

The variation of F g
L structure function with x and Q2 shows similar nature with the

experimental data as well as the model fit and parameterizations which shows the

compatibility of Regge behaviour with the perturbative evolution of structure function

at small-x. At small-x, our results show that the longitudinal structure function F g
L

increases as the values of Q2 increases and x decreases. The increasing behaviour of

F g
L structure function in this approach follows the power law behaviour of structure

function as predicted by Regge theory. As in our given range of x, we have considered

only the gluon dominating part of the structure function, so we can say that the gluon

contribution to the longitudinal structure function increases as the values ofQ2 increases

and x decreases. From the comparative study of evolution of FL structure function

predicted by Regge theory approach and Taylor expansion method shows that results

obtained by both the method are in good agreement with data and parameterizations.
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