
Chapter 4

FL Structure Function from Gluon Distribution Func-

tion Using Taylor Expansion Method at Small-x

In this chapter, we have presented the relation between the FL structure function and

the gluon distribution function up to next-to-next-to-leading order analysis at small-

x using Taylor expansion method. We use the Altarelli-Martinelli equation in our

analysis to obtain the evolution of FL structure function at small-x. The obtained

theoretical results are compared with H1 [1–5], ZEUS [6] data, results of DL [7] model,

results predicted by MSTW08 [8], CT10 [9, 10], ABM11 [11] and NNPDF2.3 [12, 13]

parameterizations and results obtained by other authors.

4.1 Theory

In pQCD, the Altarelli-Martinelli equation for longitudinal structure function FL(x,Q
2)

of proton in terms of co-efficient function is given by [14, 15]

x−1FL = CL,ns ⊗ qns+ < e2 > (CL,s ⊗ qs + CL,g ⊗ g). (4.1)

Here qns, qs and g are the flavour non singlet, flavour singlet and gluon distribution func-

tion, < e2 >= 5
18

is the average squared charge for Nf (number of active light flavours)

and the symbol ⊗ represents the standard Mellin convolution. CL,a(a = ns, s, g)’s

are the co-efficient functions which can be written by the perturbative expansion as

follows [15]
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CL,a(αs, x) =
∑

n=1

(αs

4π

)n

Cn
L,a(x), (4.2)

where n denotes the order in running coupling constant αs(Q
2) [16] and the expression

of αs is mentioned in section 2.1 of chapter 2.

At small values of x (x ≤ 10−3) the gluon contribution to the FL structure function

dominates over the flavour singlet and non-singlet contribution [17]. Now the Altarelli

Martinelli equation for gluon dominating FL structure function is given by

F g
L(x,Q

2) =< e2 >

∫ 1

x

dw

w
CL,g(w,Q

2)G
( x

w
,Q2

)

. (4.3)

Here CL,g(w,Q
2) is the gluon co-efficient function for FL known perturbatively up to

first few orders in running coupling constant αs(Q
2) and can be written as

CL,g(w,Q
2) =

αs(Q
2)

4π
C1

L,g(w) +
(αs(Q

2)

4π

)2

C2
L,g(w) +

(αs(Q
2)

4π

)3

C3
L,g(w), (4.4)

where C1
L,g(w), C

2
L,g(w) and C3

L,g(w) are the gluon co-efficient functions for FL in LO,

NLO and NNLO respectively [15, 18, 19]. The analytical expression of the gluon co-

efficient function for FL are defined in the Appendix A.

At small values of x we can rewrite the equation (4.3) by substituting w = 1− z as

F g
L(x,Q

2) =< e2 >

∫ 1−x

0

dz

1− z
CL,g(1− z, Q2)G

( x

1− z
, Q2

)

, (4.5)

where F g
L is derived from the integrated gluon distribution function G(x,Q2). An

approximate relationship between F g
L and gluon distribution can be obtained from the

expansion of G
( x

1− z
, Q2

)

around a particular choice of point of expansion. Since

x < w < 1, we have 0 < z < 1 − x ; so the series
x

w
=

x

1− z
is convergent for |z| < 1.

So, we can take the point of expansion z as any value between 0 ≤ z < 1.

Using the Taylor expansion method for the gluon distribution function at an arbi-

trary point z = 1
2
, and neglecting the higher order terms at small-x, G

( x

1− z
, Q2

)

can
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be written as

G
( x

1− z
, Q2

)
∣

∣

∣

z= 1

2

= G
(

z =
1

2
, Q2

)

+
(

z − 1

2

)∂G
(

z = 1
2
, Q2

)

∂x

= G(2x,Q2) +
(

z − 1

2

)∂G(2x,Q2)

∂x
. (4.6)

Using equation (4.6) and leading order terms of equation (4.4) in equation (4.5) and

performing the integration, we get

F g
L(x,Q

2) =< e2 >
αs(Q

2)

4π
P (x)G

(

2x+
Q(x)

P (x)
, Q2

)

, (4.7)

where

P (x) =

∫ 1−x

0

dz

1− z

(

C1
L,g(1− z)

)

(4.8)

and

Q(x) =

∫ 1−x

0

dz

1− z

(

z − 1

2

)(

C1
L,g(1− z)

)

. (4.9)

This result shows that the longitudinal structure function F g
L(x,Q

2) can be calculated

using the low x gluon density from Donnachie Landshoff (DL) model [7] at LO. Similarly,

when gluon density is expanded at z = 0.8, the corresponding LO expression takes the

form

F g
L(x,Q

2) =< e2 >
αs(Q

2)

4π
P (x)G

(

5x+
R(x)

P (x)
, Q2

)

, (4.10)

where

R(x) =

∫ 1−x

0

dz

1− z
(z − 0.8)

(

C1
L,g(1− z)

)

. (4.11)

Both the equations (4.7) and (4.10) show the behaviour of F g
L(x,Q

2) with respect to

x. We have also checked this for z = 0.6, 0.7, 0.9; but the best result is obtained in the
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case of the expansion point of the gluon density at z = 0.8 in LO analysis, which is

depicted in figure 4.1 in comparison with the experimental data and model fit.
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Figure 4.1: Sensitivity of our results of F g
L structure function in LO with respect

to the expansion point of gluon density at z = 0.5, 0.6, 0.7, 0.8, 0.9 in comparison

with H1 data and DL model.

We have also obtained the relation between the longitudinal structure function and

the gluon distribution function at small-x in NLO and NNLO analysis by considering

the expansion point of the gluon density at z = 0.8. These are given by

F g
L(x,Q

2) =< e2 >
αs(Q

2)

4π
P1(x)G

(

5x+
R1(x)

P1(x)
, Q2

)

(4.12)
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and

F g
L(x,Q

2) =< e2 >
αs(Q

2)

4π
P2(x)G

(

5x+
R2(x)

P2(x)
, Q2

)

(4.13)

in NLO and NNLO respectively. Here

P1(x) =

∫ 1−x

0

dz

1− z

(

C1
L,g(1− z) + T0C

2
L,g(1− z)

)

, (4.14)

P2(x) =

∫ 1−x

0

dz

1− z

(

C1
L,g(1− z) + T0C

2
L,g(1− z) + T1C

3
L,g(1− z)

)

, (4.15)

R1(x) =

∫ 1−x

0

dz

1− z
(z − 0.8)

(

C1
L,g(1− z) + T0C

2
L,g(1− z)

)

(4.16)

and

R2(x) =

∫ 1−x

0

dz

1− z
(z − 0.8)

(

C1
L,g(1− z) + T0C

2
L,g(1− z) + T1C

3
L,g(1− z)

)

. (4.17)

Here we consider two numerical parameters T0 and T1, such that T 2(t) = T0.T (t) and

T 3(t) = T1.T (t) with T (t) =
αs(t)

2π
. These numerical parameters are obtained for a

particular range of Q2 under study. As described in chapter 2 and ref. [20], these two

parameters are chosen in such a way that the difference between T 2(t), T0.T (t) and

T 3(t), T1.T (t) are negligible in our required range. Here, we have considered the values

of T0 = 0.0278 and T1 = 0.000892 within the range 1.5 ≤ Q2 ≤ 200GeV 2. We have also

checked the sensitivity of our results of F g
L structure function in NLO and NNLO with

respect to the expansion point of the gluon density at z = 0.5, 0.6, 0.7, 0.8, 0.9 which is

depicted in figure 4.2. This figure shows that in case of the expansion point of gluon

density at z = 0.8, our results show better agreement with the results of model fit and

experimental data. Therefore, in all the cases of our calculated results of F g
L structure

function, i.e., in LO, NLO and NNLO analysis, the results calculated with respect to
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Figure 4.2: Sensitivity of our results of F g
L structure function in NLO and NNLO

with respect to the expansion point of gluon density at z = 0.5, 0.6, 0.7, 0.8, 0.9

in comparison with H1 data and DL model.

the expansion point of the gluon density at z = 0.8 shows compatibility with the results

of model fit and data. In a similar way we have also checked the sensitivity of z values

for all values of Q2 like the values of Q2 = 20GeV 2 which is found to be 0.8.

Thus using equations (4.10), (4.12) and (4.13) we have calculated the x-evolutions

for F g
L structure function in LO, NLO and NNLO respectively.

4.2 Results and Discussions

We have determined the approximate relation between the longitudinal structure

function of proton and gluon distribution function at small-x in next-next-to-leading

order analysis with respect to the expansion of the gluon density at an arbitrary point

of expansion. With the help of these relations we have calculated the F g
L structure
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function in the range 10−4 ≤ x ≤ 0.1 and 15 ≤ Q2 ≤ 200GeV 2 using the small-x gluon

distribution function of DL model and the co-efficient functions which are given in

Appendix A. The obtained results are compared with the the recent H1 [1–5], ZEUS [6]

experimental data and results of DL model [7]. The related plots are depicted in figure

4.3 which indicate a good agreement with experimental data and model fit. Here, the

vertical error bars are both statistical and systematic errors for both H1 and ZEUS data.

To confirm that in spite of the large uncertainty in the experimental data, our results

are in good agreement with the other results, we also add DL model results. We have

also compared our results with the theoretical predictions of MSTW08 [8], CT10 [9,10],

ABM11 [11] and NNPDF2.3 [12, 13] parameterizations. Figures 4.4 to 4.7 show the

related plots for different values of Q2 = 20, 25, 80 and 200GeV 2. These plots also reflect

better agreement of our results with these parameterizations. Here all the plots show

compatibility with predictions of parameterizations towards higher values of Q2 i.e.,

Q2 = 80 and 200GeV 2. In this procedure of evaluation of F g
L structure function as we

have taken the input distribution of gluon from DL model, so the behaviour of structure

function increases towards small-x depending on values of the input distribution. Our

calculated results of F g
L structure function in all the cases i.e., LO, NLO and NNLO

increases towards small values of x in the given range of x and Q2 as expected from

QCD.

In our analysis, we have determined the approximate relation between F g
L structure

function of proton and gluon distribution function at small-x in next-next-to-leading

order using the Altarelli- Martinelli equation for F g
L structure function in terms of the

co-efficient functions. We have also compared our results at moderate values of Q2 =

20GeV 2 with the similar results obtained by Sarkar et al (CS) [17] and Boroun et al

(GRB) [21]. In ref. [17], the authors suggested a relation between FL structure function

of proton and gluon distribution function at small-x in leading order approximation
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Figure 4.3: x-evolution results of F
g
L structure function up to NNLO using

Taylor expansion method in comparison with the H1, ZEUS data and results of

DL model.
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Figure 4.4: x-evolution results of F g
L structure function up to NNLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical

prediction of MSTW08.
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Figure 4.5: x-evolution results of F g
L structure function up to NNLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical

prediction of CT10.
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Figure 4.6: x-evolution results of F g
L structure function up to NNLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical

prediction of ABM11.
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Figure 4.7: x-evolution results of F g
L structure function up to NNLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical

prediction of NNPDF2.3.
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Figure 4.8: comparison of our x-evolution results of F g
L structure function with

the results of Sarkar et al (CS) and Boroun et al (GRB).

given by

F g
L(x,Q

2) =
2αs

π

∑Nf

i=1 e
2
i

5.9
G(2.5x,Q2) (4.18)

which shows the close relation between these two quantities. In ref. [21], the authors

reported an NLO analysis of the relation between FL structure function and gluon

distribution obtained by Sarkar et al. Figure 4.8 shows the comparison of our results

with the above mentioned two results which reflects similar behaviour with the results

obtained by Sarkar et al (CS) and Boroun et al (GRB). Thus our approximate relation

can be used to study the x-evolution of F g
L structure function at small-x up to NNLO

analysis.
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4.3 Conclusions

In this work, we have determined the proton longitudinal structure function up to

NNLO at small-x using the approximate relation between F g
L structure function and

gluon distribution function with respect to the expansion of the gluon density at an

arbitrary point of expansion i.e., at z = 0.8. The behaviour of F g
L structure function

with x shows good agreement with the experimental data and the model fit and param-

eterizations. Our predicted results also shows resemblance with the results obtained by

other authors. The calculated results of F g
L structure function in all orders lies within

the framework of pQCD i.e, it increases towards low values of x. As at small-x gluon

contents in the proton is dominant one we can say that gluon contribution to the FL

structure function increases as x decreases.
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