List of Figures

1.1	Feynmann diagram of Deep Inelastic Scattering	6
1.2	Ladder diagram for DIS in LLQ^2	17
1.3	Helicity conservation at hadronic vertex in QPM (a) and QCD improved parton model (b). The arrows represent the spin orientations [57]	19
1.4	Leading order Boson Gluon Fusion (BGF) diagram for heavy quark production in <i>ep</i> -collisions	22
1.5	Gluon distribution function extracted at HERA [11]	24
1.6	The reduced DIS cross section as a function of $y^2/(1+(1-y)^2)$ [11] .	27
2.1	$T^2(t) = T_0.T(t)$ and $T^3(t) = T_1.T(t)$ versus $Q^2(GeV^2)$	45
2.2	t -evolution results of F_L^g structure function up to NNLO using Taylor expansion method in comparison with the H1, ZEUS data and results of	
	DL model	53
2.3	x -evolution results of F_L^g structure function up to NLO using Taylor expansion method in comparison with the H1, ZEUS data and results of	54
	DL model	34
2.4	x -evolution results of F_L^g structure function up to NLO using Taylor expansion method in comparison with the H1, ZEUS data and the the-	
	oretical prediction of MSTW08	55

2.5	x -evolution results of F_L^g structure function up to NLO using Taylor	
	expansion method in comparison with the H1, ZEUS data and the theoretical prediction of CT10	56
2.6	x -evolution results of F_L^g structure function up to NLO using Taylor expansion method in comparison with the H1, ZEUS data and the theoretical prediction of ABM11	57
2.7	x -evolution results of F_L^g structure function up to NLO using Taylor expansion method in comparison with the H1, ZEUS data and the the-	01
2.8	oretical prediction of NNPDF2.3	58
	prediction of Boroun et al. (GRB)	59
3.1	t -evolution results of F_L^g structure function up to NLO using Regge theory in comparison with the H1, ZEUS data and results of DL model	71
3.2	x -evolution results of F_L^g structure function up to NLO using Regge theory in comparison with the H1, ZEUS data and results of DL model	72
3.3	x -evolution results of F_L^g structure function up to NLO using Regge theory in comparison with the H1, ZEUS data and the theoretical prediction	
3.4	of MSTW08	73
	of CT10	74
3.5	x -evolution results of F_L^g structure function up to NLO using Regge theory in comparison with the H1, ZEUS data and the theoretical prediction	
	of ABM11	75

3.6	x-evolution results of F_L^g structure function up to NLO using Regge the-	
	ory in comparison with the H1, ZEUS data and the theoretical prediction	
	of NNPDF2.3	76
3.7	x -evolution results of ${\cal F}_L^g$ structure function up to NLO using Regge the-	
	ory in comparison with the H1 data and the theoretical prediction of	
	Boroun (GRB) [13]	77
3.8	Comparison of t-evolution results of ${\cal F}_L^g$ structure function predicted by	
	Regge theory approach and Taylor expansion method and DL model. $% \left(1\right) =\left(1\right) \left(1\right) $.	79
3.9	Comparison of x-evolution results of ${\cal F}_L^g$ structure function predicted by	
	Regge theory approach and Taylor expansion method and DL model	80
3.10	Comparison of x-evolution results of ${\cal F}_L^g$ structure function predicted by	
	Regge theory approach and Taylor expansion method and MSTW08. $$.	81
3.11	Comparison of x-evolution results of ${\cal F}_L^g$ structure function predicted by	
	Regge theory approach and Taylor expansion method and CT10	82
3.12	Comparison of x-evolution results of \mathcal{F}_L^g structure function predicted by	
	Regge theory approach and Taylor expansion method and ABM11. $$	83
3.13	Comparison of x-evolution results of F_L^g structure function predicted by	
	Regge theory approach and Taylor expansion method and NNPDF2.3	84
4.1	Sensitivity of our results of F_L^g structure function in LO with respect	
	to the expansion point of gluon density at $z = 0.5, 0.6, 0.7, 0.8, 0.9$ in	
	comparison with H1 data and DL model	94
4.2	Sensitivity of our results of ${\cal F}_L^g$ structure function in NLO and NNLO	
	with respect to the expansion point of gluon density at $z = 0.5, 0.6, 0.7,$	
	0.8, 0.9 in comparison with H1 data and DL model	96

4.3	x -evolution results of F_L^g structure function up to NNLO using Taylor expansion method in comparison with the H1, ZEUS data and results of	
	DL model	98
4.4	x -evolution results of F_L^g structure function up to NNLO using Taylor expansion method in comparison with the H1, ZEUS data and the theoretical prediction of MSTW08	99
4.5	x -evolution results of F_L^g structure function up to NNLO using Taylor expansion method in comparison with the H1, ZEUS data and the the-	
	oretical prediction of CT10	100
4.6	x -evolution results of F_L^g structure function up to NNLO using Taylor expansion method in comparison with the H1, ZEUS data and the the-	
	oretical prediction of ABM11	101
4.7	x -evolution results of F_L^g structure function up to NNLO using Taylor expansion method in comparison with the H1, ZEUS data and the theoretical prediction of NNPDF2.3	102
4.8	comparison of our x -evolution results of F_L^g structure function with the results of Sarkar et al (CS) and Boroun et al (GRB)	103
5.1	t -evolution results of F_L^g structure function up to NNLO using Regge theory in comparison with the H1, ZEUS data and results of DL model.	115
5.2	x -evolution results of F_L^g structure function up to NNLO using Regge theory in comparison with the H1, ZEUS data and results of DL model.	116
5.3	x -evolution results of F_L^g structure function up to NNLO using Regge theory in comparison with the H1, ZEUS data and the theoretical pre-	
	diction of MSTW08	117

5.4	x-evolution results of F_L^g structure function up to NNLO using Regge	
	theory in comparison with the H1, ZEUS data and the theoretical pre-	
	diction of CT10	118
5.5	x -evolution results of F_L^g structure function up to NNLO using Regge	
	theory in comparison with the H1, ZEUS data and the theoretical pre-	
	diction of ABM11	119
5.6	x -evolution results of F_L^g structure function up to NNLO using Regge	
	theory in comparison with the H1, ZEUS data and the theoretical pre-	
	diction of NNPDF2.3	120
5.7	x-evolution results of R in comparison with the H1 data and the theo-	
	retical prediction of ACOT fit	121
5.8	Comparison of x-evolution results of ${\cal F}_L^g$ structure function up to NNLO	
	using Regge theory (RT) and Taylor expansion (TE) method in compar-	
	ison with the H1, ZEUS data and the of DL model	122
6.1	x -evolution results of F_L^c structure function using Taylor expansion method	
	with the input gluon distribution from DL model	136
6.2	x -evolution results of F_2^c structure function using Taylor expansion method	
	in comparison with the H1, ZEUS data	137
6.3	x-evolution results of the ratio of the charm quark structure functions	
	R^c using Taylor expansion method	138
6.4	x -evolution results of charm quark reduced cross section σ_r^c using Taylor	
	expansion method in comparison with the H1, ZEUS data	139
6.5	Comparison of our results of F_L^c at $Q^2=20,200 GeV^2$ using Taylor expan-	
	sion method with the results of colour dipole model (CDM) and Boroun	
	et al (GRB)	140

6.6	Comparison of our results of F_2^c at $Q^2=20,200 GeV^2$ using Taylor ex-	
	pansion method with the results of DL, colour dipole model (CDM) and	
	Boroun et al (GRB)	140
6.7	Results of the charm content of F_L structure function K_L^c with respect	
	to x at $Q^2=20,200 GeV^2$ using Taylor expansion method	141
6.8	x -evolution results of F_L^c structure function using Regge theory with the	
	input gluon distribution from DL model	143
6.9	x-evolution results of F_2^c structure function using Regge theory in com-	
	parison with the H1, ZEUS data	144
6.10	x -evolution results of the ratio of the charm quark structure function R^c	
	using Regge theory	145
6.11	x -evolution results of the charm quark reduced cross section σ_r^c using	
	Regge theory in comparison with the H1, ZEUS data	146
6.12	Comparison of our results of F_L^c at $Q^2=20,200 GeV^2$ using Regge theory	
	with the results of CD model and Boroun et al (GRB)	147
6.13	Comparison of our results of F_2^c at $Q^2=20,200 GeV^2$ using Regge theory	
	with the results of DL, CD model and Boroun et al (GRB)	147
6.14	Results of the charm content of F_L structure function K_L^c with respect	
	to x at $Q^2=20,200 GeV^2$ using Regge theory	148
6.15	x -evolution results of F_L^b structure function using Taylor expansion method	
	with the input gluon distribution from DL model	150
6.16	x -evolution results of \mathbb{F}_2^b structure function using Taylor expansion method	
	in comparison with the H1, ZEUS data	151
6.17	x-evolution results of the ratio of the beauty quark structure functions	
	R^b using Taylor expansion method	152
6.18	x -evolution results of the beauty quark reduced cross section σ_r^b using	
	Taylor expansion method in comparison with the H1, ZEUS data	153

6.19	Comparison of our results of F_2^b at $Q^2=200 GeV^2$ using Taylor expansion	
	method with the results of MSTW 08	154
6.20	Results of the beauty content of F_L structure function K_L^b with respect	
	to x at $Q^2=25,200 GeV^2$ using Taylor expansion method	154
6.21	x -evolution results of F_L^b structure function using Regge theory with the	
	input gluon distribution from DL model	156
6.22	x -evolution results of \mathbb{F}_2^b structure function using Regge theory in com-	
	parison with the H1, ZEUS data	157
6.23	x-evolution results of the ratio of the beauty quark structure functions	
	R^b using Regge theory	158
6.24	x -evolution results of the beauty quark reduced cross section σ_r^b using	
	Regge theory in comparison with the H1, ZEUS data	159
6.25	Comparison of our results of F_2^b at $Q^2=200 GeV^2$ using Regge theory	
	with the results of MSTW08 parameterization	160
6.26	Results of the beauty content of F_L structure function K_L^b with respect	
	to x at $Q^2=25,200 GeV^2$ using Regge theory	160
6.27	Comparison of our results of σ_r^c obtained by Taylor expansion (TE)	
	method and Regge theory (RT)	161
6.28	Comparison of our results of σ_r^b obtained by Taylor expansion (TE)	
	method and Regge theory (RT)	162
6.29	Sensitivity of our results of σ_r^b and σ_r^c with mass renormalization scale μ	
	obtained by Taylor expansion (TE) method and Regge theory (RT)	163