List of Figures

Chapter	Figure	Caption	Page No.
Chapter I			
	1.1	Change in band gap when the particle size is reduced	4
		from bulk to nano.	
	1.2	Different types of nanomaterials.	4
	1.3	Variation of density of states vs energy.	6
	1.4	Core-shells of various shapes.	8
	1.5	Band alignments in TYPE 1 and TYPE 2 core-shell	9
		structures.	
	1.6	Band alignments in different types of core-shell structure.	11
	1.7	Schematic of mechanism of photocatalysis.	15
	1.8	<i>J-V</i> curve of a photovoltaic cell.	18
Chapter II			
•	2.1	XRD patterns of (a) core Ag ₂ S nanoparticles (b) core-	39
		shell Ag ₂ S-HgS (0.1 M Hg ²⁺) nanostructure and (c) core-	
		shell Ag ₂ S-HgS (0.2 M Hg ²⁺) nanostructures.	
	2.2	TEM images (a) Ag ₂ S nanoparticles (b) Core-shell Ag ₂ S-	42
		HgS nanostructure (with 0.1 M Hg ²⁺) (c) HRTEM image	
		of core-shell Ag ₂ S-HgS nanostructure (d) Core-shell	
		Ag ₂ S-HgS nanostructure (with 0.2 M Hg ²⁺)	
	2.3	EDX spectra (a) Ag ₂ S nanoparticles (b) Core-shell Ag ₂ S-	43
		HgS nanostructure	
	2.4	FTIR spectra of core Ag ₂ S and core-shell Ag ₂ S-HgS	44
		nanostructure	
	2.5	UV-Vis absorption spectra of core Ag ₂ S and	45
	4.5	corresponding core-shell heterostructures	7,5
	2.6	Room temperature PL spectra of core Ag ₂ S	47
	4.0	Room temperature 1 L spectra of core Agyo	7/

		nanostructures and core-shell Ag ₂ S-HgS nanostructures	
		(with 0.1 M Hg $^{2+}$ and 0.2 M Hg $^{2+}$) (λ_{ex} =350 nm)	
	2.7	Tauc's Plot (a) Ag ₂ S nanoparticles (b) Core-shell Ag ₂ S-	47
		HgS nanostructure (with 0.1 M Hg ²⁺) (c) Core-shell	
		Ag ₂ S-HgS nanostructure (with 0.2 M Hg ²⁺)	
	2.8	Different localization regimes of core-shell Ag ₂ S-HgS	48
		with varying shell thickness (a) Ag ₂ S nanoparticles (shell	
		thickness=0) (b) Core-shell Ag ₂ S-HgS (0.1 M Hg ²⁺)	
		(shell thickness very small) (c) Core-shell Ag ₂ S-HgS (0.2	
		M Hg ²⁺) (shell thickness large)	
	2.9	(a) Absorbance of MB in presence of catalyst (b) %	50
		Degradation vs time and rate constant determination of	
		(c) Ag_2S (d) Ag_2S -HgS	
Chapter III			
	3.1	XRD pattern of TiO ₂ nanostructures	57
	3.2	TEM image of TiO ₂ nanoparticles	57
	3.3	3.3.1 UV-Vis absorbance spectra (inset) Urbach tail Plot	58
		3.3.2 Tauc's Plot for TiO ₂ nanoparticles	59
	3.4	PL spectra of TiO ₂ nanoparticles	59
	3.5	. XRD pattern of MgO nanoparticles	61
	3.6	(a) Low resolution TEM and (b) HRTEM image of MgO	62
	2.7	nanoparticles	<i>(</i> 2
	3.7	(a) Kubelka-Munk absorption plot and (b) Reflectance	63
		spectra of MgO	
	3.8	Photoluminescence spectra of MgO excited at (a) 206 nm.	65
		(b) PLE spectra monitored at the intense emission, $\lambda_{\rm ex}$ =	
		365 nm. Inset shows the extended spectra in the range	
		from 220-280 nm to show the excitation peaks	

3.9	Photoluminescence spectra at (a) $\lambda_{\rm ex} = 270$ nm. (b) PLE spectra monitored at the intense emission 427 nm.	65
3.10	Photoluminescence spectra at (a) $\lambda_{\rm ex}$ = 330 nm. (b) PLE	66
	spectra monitored at $\lambda_{em} = 330$ nm. Inset shows the	
	extended spectrum to display the excitation peaks	
3.11	Photoluminescence spectra of MgO annealed at 600°C and	67
	800°C and excited at (a) 206 nm (b) 270 nm and (c) 330 nm	
3.12	Plot of the intensity ratio of defect emissions as a function	69
	of annealing temperature for (a) F^+/F (b) F^+/F_2^{2+} and (c)	
	F/F_2^{2+} at 270 nm and 330 nm excitation	
3.13	XRD pattern of core-shell TiO2-MgO nanostructures with	69
	core annealed at (left) 450°C, (centre) 650°C and (right)	
	850°C.	
3.14	TEM images of TEM images of TiO2-MgO nanostructures	71
	annealed at (a) 450° C (b) 650° C and (c) 850° C	
3.15	EDX pattern of (left) ${\rm TiO_2}$ and (right) ${\rm TiO_2\text{-}MgO}$	72
3.16	FTIR spectra of both core TiO ₂ and core-shell TiO ₂ -MgO	72
	nanostructures. Extended version of the Ti-O bond (inset).	
3.17	Raman spectra of both ${\rm TiO_2}$ and TM 450	74
3.18	XPS of TiO ₂ nanoparticles (a) O1s (b) Ti 2p spectra	77
3.19	XPS of core-shell TiO ₂ -MgO nanoparticles	77
3.20	UV-vis absorbance spectra	79
3.21	Tauc's Plot for band gap calculation of (left) TM 450,	80
	(centre) TM 650 and (right) TM 850	
3.22	Urbach energy plot (a) TM 450, (b) TM 650 and (c) TM 850	80
3 23	PL spectra of the core-shell papostructures excited at 350	Q 1

	3.24	TRPL fit of (left) TiO ₂ and (right) Core-shell TiO ₂ -MgO	83
	3.25	(left) Absorbance of MB in presence of catalyst, (right) %Degradation w.r.t. irradiation time	85
Chapter IV			
	4.1	XRD pattern of core TiO ₂ along with core-shell TiO ₂ -	95
		SnO ₂ nanostructures with different shell concentrations	
	4.2	Low resolution (left) and High resolution (right) TEM	97
		image of TiO ₂ -SnO ₂ nanostructures	
	4.3	EDX spectra of core-shell TiO ₂ -SnO ₂ nanostructures	98
	4.4	Raman spectra of the core TiO ₂ and the synthesized	98
		core-shell (TS2, TS4 and TS6).	
	4.5	Eg bond vibration of core TiO ₂ and the synthesized core-	100
		shell (TS2, TS4 and TS6)	
	4.6	XPS spectra of core-shell TiO ₂ -SnO ₂ nanocrystal	101
	4.7	Absorbance spectra of core TiO2 and core-shell (TS2,	102
		TS4 and TS6) nanostructures	
	4.8	Urbach energy plot of core TiO ₂ and core-shell (TS2, TS4	104
		and TS6) nanostructures	
	4.9	Tauc's Plot for of core TiO2 and core-shell (TS2, TS4 and	104
		TS6) nanostructures	
	4.10	Comparative room temperature PL spectra of core TiO ₂	105
		and core-shell (TS2, TS4 and TS6) nanostructures,	
		excited at a wavelength of 350 nm	
	4.11	Gaussian fit of PL spectra of core TiO2 and core-shell	106
		(TS2, TS4 and TS6) nanostructures	
	4.12	Charge separation in core-shell TiO ₂ -SnO ₂	106
	4.13	TRPL spectra of (left) core TiO ₂ and (right) core-shell	108

		TiO_2 - SnO_2	
	4.14	Absorbance of MB in presence of catalyst (a) TiO ₂ , (b)	110
		TS2 and (c) TS4	
	4.15	In C _o /C _t vs irradiation time graph for determination of	110
		rate constant	
	4.16	Charge transfer schematic diagram	111
Chapter V			
	5.1	(left) XRD pattern of TiO ₂ nanoparticles and core-shell	116
		TiO ₂ -ZrO ₂ nanostructures and (right) extended version of	
		XRD of TiO ₂ -ZrO ₂ nanostructures	
	5.2	(left) HRTEM image (right) Low resolution TEM image	118
		of core-shell TiO ₂ -ZrO ₂ nanocomposites	
	5.3	EDX spectra of TiO ₂ -ZrO ₂ nanoparticles	118
	5.4	Raman spectra of TiO ₂ and core-shell TiO ₂ -ZrO ₂	118
		nanostructure	
	5.5	Lorentzian fit on Raman active mode of (left) TiO ₂ and	120
		(right) TiO ₂ -ZrO ₂	
	5.6	UV-vis absorbance spectra	121
	5.7	Urbach energy plot for (left) TiO ₂ and (right) TiO ₂ -ZrO ₂	121
		nanostructures	
	5.8	Kubelka Munk Plot for (left) TiO_2 and (right) TiO_2 - ZrO_2	122
	5.9	Schematic charge separation in TiO ₂ -ZrO ₂	123
	5.10	PL spectra of (a) core TiO ₂ , (b) TiO ₂ -ZrO ₂ core-shell	124
		nanostructure and (c) comparative plot of both core and	
		core-shell nanocomposites	
	5.11	(a) Absorbance of methylene blue in presence of catalyst	125
		(b) % degradation, rate constant determination of (c) TiO ₂	
		and (d) TiO ₂ -ZrO ₂	

	5.12	(left) XRD pattern (right) W-H Plot of CdSe-TiO ₂	127
	5.13	(left) Low resolution (right) High resolution TEM image of CdSe-TiO ₂ nanostructrures	128
	5.14	EDX spectrum of CdSe-TiO ₂ core-shell nanocomposites	128
	5.15	UV-vis absorbance spectra of core CdSe and core-shell $CdSe\text{-TiO}_2$ nanocomposites	129
	5.16	Tauc's Plot for (left) CdSe and (right) CdSe-TiO ₂	129
	5.17	Urbach energy plot for (left) CdSe and (right) CdSe-TiO ₂	130
	5.18	Transition from TYPE 1 to TYPE 2 in core-shell CdSe-TiO ₂ nanocomposites	131
	5.19	Comparative PL diagram for CdSe/TiO ₂ core-shell nanocomposite	132
	5.20	(a) Absorbance of methylene blue in presence of catalyst(b) % degradation	132
Chapter VI			
	6.1	XRD pattern of (a) TiO_2 (b) TiO_2 -MgO (c) TiO_2 -SnO ₂ and (d) TiO_2 -ZrO ₂ films	136
	6.2	UV-vis absorbance spectra of the films	137
	6.3	Band gap determination from Tauc's Plot	138
	6.4	Urbach tail plot of the core-shell structures	139
	6.5	PL spectra of the prepared films	140
	6.6	I-V Characteristic of (a) TiO ₂ (b) TiO ₂ -MgO (c) TiO ₂ -	141
		SnO ₂ and (d) TiO ₂ -ZrO ₂ core-shell films	
	6.7	Different characteristic regimes of the films	143
	6.8	Photovoltaic characterization under visible light	145