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CHAPTER-3 
 

NON-LOCAL LINEAR STABILITY ANALYSIS OF 

SELF-GRAVITATING CHARGED DUST SPHERE  
 

Abstract: Application of local stability theory in self-gravitating astrophysical plasmas is indeed 

inadequate due to their non-uniform nature confirmed mainly by the differential scale-heights of 

the gravitationally stratified constituent species in establishing gravito-thermal equilibrium. We 

formulate exact non-local linear analysis for identifying the global gravito-electrostatic modes, 

discrete oscillations and associated instabilities in interstellar charged dust molecular cloud 

(DMC) sphere with mass-radius above the critical values. The realistic effects like equilibrium 

inhomogeneities, diverse gradient forces and dust flow-convection dynamics are included. The 

dispersion relations (eigenvalues) and amplitude-variations (eigenfunctions) are Fourier-

methodologically derived, explored and analyzed. We see that the entire cloud supports spectrally 

heterogeneous mixture of the Jeans and electrostatic modes. It is shown that the lowest-order non-

rigid diffused cloud surface boundary (CSB) is the most unstable interfacial layer due to enhanced 

coupling strength of bipolar electrostatic repulsion and unipolar self-gravitational attraction. 

Three distinct and spatio-spectrally isolated classes of global eigenmodes-dispersive, 

nondispersive and hybrid types-are identified and characterized together with prolific features. 

Dispersive features are found prominent in the ultra-high k-regime; whereas, non-dispersive 

characteristics in the ultra-low k-regime. Numerical illustrations demonstrate that the grain-

charge plays destabilizing influential role for the electrostatic fluctuations, but stabilizing role for 

the self-gravitational counterparts. In contrast, the grain-mass plays stabilizing influence for the 

former, but destabilizing influence for the latter. The results can be useful to realize complex 

nonlocal astrophysical fluctuations from a new perspective of plasma-wall interaction philosophy.   

 

3.1 INTRODUCTION 

Astrophysical dusty plasmas, which are the birth-sites of stars and other galactic objects, are indeed 

inhomogeneous in nature. Their inhomogeneous and non-uniform nature is evidenced mainly by 

the differential scale-heights of gravitationally stratified constituent species in establishing gravito-

thermal equilibrium via plasma polarization (Coulomb separation, or sedimentation) in presence 
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of gravity [1-2]. An isolated isothermal gravitating dusty plasma gas or dust molecular cloud 

(DMC) in gravito-thermal equilibrium organizes itself in such a fashion that the heavier 

constituents (grains) preponderantly fill lower layers towards the central region of the total mass 

distribution, leaving the lighter species (electrons and ions) re-distributed in upper layers relative 

to the center. In the interstellar normal dusty plasma conditions [2], the grain-to-electron and grain-

to-ion scale heights may, with all the pre-defined usual notations, be respectively compared as, 

   110~~ 13 dpided TTmmHH  and    110~~ 9 dpidid TTmmHH . For a few km of 

scale-heights of the electrons and ions, the dust density scale-height may go a few parsec. It clearly 

indicates that a large-scale non-zero electrostatic potential is evolved in association with the 

gravity-induced stratification effects. Thus, gravity-induced ambipolar electrostatic space-charge 

polarization effects in the plasmas with large-scale non-zero equilibrium electric field giving large-

scale plasma flow dynamics must be considered. This, in principle, implies that the existence of 

the gravity-induced non-zero electric field requires non-local analysis of waves, instabilities and 

fluctuations in inhomogeneous astrophysical dusty cloud environments. It may, however, be noted 

that the global or non-local collective plasma wave fluctuation dynamics in the complex 

astrophysical grainy cloud environments with the unipolar gravitationally-induced bipolar 

electrostatic polarization effects needed for maintaining the cloud equilibria taken into account has 

so far not been realized completely amid the non-uniform equilibrium points.    

It may furthermore be pertinent to mention that contemplates of collective waves, 

oscillations and associated instabilities in ionized self-gravitating dusty plasmas (viz. dust 

molecular clouds, protostellar disks, interstellar and circumstellar clouds, etc.) are very essential 

due to their important role in the formation processes of stars, planets and other galactic elements 

[3-7]. The presence of inertially massive and electrically charged dust particulates make it more 

interesting to empathize the nascence mechanism of bounded astrophysical objects in the DMCs.  

The interstellar dust mostly consists of Silicates ((SiO4)4-), Graphite (C), Amorphous 

Carbon (aC), Polycyclic Aromatic Hydrocarbon (PAH) molecules, Silicon Carbide (SiC), 

Magnesium Sulfide (MgS), Icy grain mantles composed of simple molecules (e.g., H2O, NH3, 

CH3OH and CO), and organic refractory grain mantles rich in carbon and oxygen [7-9].  The grain 

morphologies are usually non-uniform in composition [7-9]. These are composed of heterogeneous 

multilayers of different constituents starting from the grain core to outer surface. The core is made 

up of silicates and carbon. The inner surface, just adjacent after the core, is formed with water and 
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ammonia at normal temperature (far below the plasma temperature); and the outer surface with 

oxygen, carbon monoxide and nitrogen [7-9].  The grain mass lies between ~ 910 - 2110  kg with 

mass density 21103~  ddd nm  kg m-3 in interstellar medium [4, 7, 9-10]. There are different 

classes of DMCs depending on their physical properties [11-13] as discussed elaborately in chapter 

1. For example, they are Globular Clouds (GCs), Dark Clouds (DCs), Giant Molecular Clouds 

(GMCs), Dense Dust Clouds (DDCs), Diffuse Dust Molecular Clouds (DDMCs),  Cirrus Clouds 

(CCs), and Supernova Remnant Clouds (SRCs), etc.  

Star formation processes are governed by complex interplay between the gravitational 

attraction due to the massive grains; and agents such as, instability in the atmosphere, 

magnetic field, radiation and thermal pressure that resist compression. The supersonic turbulence 

and thermal instability lead to transient, dense clumpy structures. Some of the clumps begin to 

collapse under the condition that the gravitational force pulling inwards exceeds the gas pressure 

pushing outwards. Once the collapse starts, the process feeds on itself and makes it denser, and so 

on. Thus, the clumps fragment into many pieces. Fragmented pieces again continue to collapse on 

its own self-gravity until the gas temperature raises enough to balance gravitational effects. As a 

consequence of gravito-thermal balancing, it gives bounded structure in the form of protostars or 

pre-stellar cores [14]. The presence of flow and inhomogeneity is integral part. For example, 

interplay between self-gravity and flow can destabilize the dusty fluid, where both the electrostatic 

and Jeans instabilities may operate simultaneously. Jeans has predicted the instabilities of self-

gravitating large gas clouds in the last century [15]. Chandrasekhar has worked on comparative 

investigation of the Jeans instability in self-gravitating fluids and plasmas; and has found that the 

hydrostatic gas pressure gradient and the Lorentz force stabilize the Jeans instability [16]. Pudritz 

has performed a local linear instability analysis of self-gravitating partially ionized magnetoplasma 

[17]. His main interesting result is that the fluctuation growth rate reduces to that of the Jeans 

instability for the large-wavelength limit with frictional modulation in the short-wavelength regime 

only. Recently, other authors have also studied local stabilities to explore the magnetic Jeans [5-6, 

18-19] and tearing instabilities for understanding the involved fragmentation processes. 

It is thus seen that, there might have been many earlier linear [5, 17, 20-22] and nonlinear 

[21, 23] stability analyses. Based on the reports, it is noted that the realistic DMC dynamics is 

indeed very complex to formulate. Equilibrium inhomogeneities and non-uniformities further 

complicate it. So, to the best of our knowledge, none has so far studied the nonlocal stability in 
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inhomogeneous and non-uniform configuration. In this chapter, we construct a theoretical 

methodological model for the same under spherical geometry.  

In astrophysical berths, the grain dynamics is mainly controlled by gravitation; while, those 

of the electrons and ions are influenced overwhelmingly by electromagnetic counterparts. The two 

forces operate on two widely distinct scales. For micron and sub-micron sized grains, these forces 

become comparable, at least in principle, within an order of magnitude [20]. Our model is specially 

focused on the particular class of the DMCs, where the dust self-gravity is balanced by the force 

arising from shielded electric field on the charged dust [24]. The principal goal is centered on that 

the mass and scale-size of the cloud: greater than the Avinash-Shukla critical mass limit (

1810~MM ASD   kg) and critical scale length ( 910~ASD LR   m) for the maximum cloud mass. We 

apply nonlocal linear perturbation analysis around the inhomogeneous equilibrium. The derived 

eigenvalue and eigen-function equations are numerically illustrated. The unique characteristics 

found here are the excitation and evolution of new types of instabilities, which source to spatio-

spectrally hybrid structures due to complex mode-mode coupling of the interplaying fluctuations.   

  

3.2 PHYSICAL MODEL 

A simplified field-free spherical self-gravitating charged DMC in astrophysical environment is 

considered in quasi-neutral hydrodynamic inhomogeneous equilibrium configuration. The plasma 

constituents are the thermal electrons, singly ionized positive ions and inertial spherical micron-

sized dust grains of identical nature. The solid matter of the massive dust grains is embedded in 

the gaseous phase of the plasma on the Jeans scale. A bulk uniform flow is presumed to exist. On 

the Jeans scales of space and time, we neglect the inertia of the electrons and ions. The dust kinetic 

pressure, which is appropriate for the cloud of dimension much larger than the plasma Debye 

radius [24], is ignored. The dust charge is not constant, but taken as function of dust population 

density. It decreases with increase in dust density, and vice versa. The equilibrium electric field is 

finite non-zero arising due to gravity-induced electrostatic polarization effects of the plasma [1-2, 

25]. The origin of such polarization lies in the mass-dependent gravitational stratification of the 

plasma constituents to establish reorganized gravito-thermal equilibrium. All other equilibrium 

characteristic features, as described by Avinash and Shukla, are retained without any loss of 

generality [24]. We consider that the total cloud mass contributed collectively by the heavier grains 

is  greater  than  the  Avinash–Shukla critical  mass-size  limiting values. The velocity convection  
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dynamics in the dust fluid is afresh included to see the real nature of the cloud modes globally.   

 

3.3 BASIC GOVERNING EQUATIONS 

The DMC model is figured as a quasi-static distribution of the multi-fluid constituent particles in 

hydrodynamic inhomogeneous equilibrium configuration. Avinash and Shukla have adopted such 

model to calculate critical mass-size limits for stable cloud structure [24], without dust velocity 

convection dynamics, governed by the following dynamical evolution equations. The electrons 

and ions with usual notations are respectively described by 

0 ee pqn  , and                                                                                          (3.1) 

0 ii pqn  .                                                                                                                        (3.2) 

We apply the hydrodynamic model approximation (low-frequency), which enables us to assume 

the phase velocity kvp   of the fluctuations in the range tdptite vvvv , ; where tev , tiv , 

and tdv  are thermal velocities of the electrons, ions and the charged grains, respectively. So, the 

electrons and ions are justifiably treated as the Boltzmannian particles (derivable from equations 

(3.1)-(3.2)). The dynamics of the dust fluid is collectively governed by 

  0



dd

d n.
t

n
v , and                                                                                                                (3.3) 

   












ddddd

d
d nq.

t
vv

v
.                                                                                    (3.4) 

The system is closed by the coupling Poisson equations of the electrostatic and self-gravitational 

potential distributions, given respectively, as follows, 

  ddei nqnne   42
, and                                                                                               (3.5)            

dG 42  .                                                                                                                             (3.6) 

Here, en , in , and dn  are unnormalized electron (with charge “ q ”, temperature “ eT ”, and mass 

“ em ”), ion (with charge “ q ”, temperature “ eT ”, and mass “ im ”), and dust (with charge “

qZq dd  ”, temperature “ dT ”, and mass “ dm ”) number densities, respectively. The notations   

and   stand for unnormalized electrostatic and self-gravitational potentials, respectively. The dust 

flow velocity is designated by dv . The electronic and ionic thermal pressures are dictated by their 

respective isothermal equations of state, eee Tnp   and iii Tnp  , with temperature-scaling 
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TTTT ied   (due to differential mass-scaling, eid mmm  ). Lastly, ddd nm  denotes 

the cloud mass density and 111067.6 G  N m2 kg-2 is the universal gravitational constant.  

 

3.4 DERIVATION OF STABILITY MASS LIMIT  

Avinash and Shukla have shown an upper limit of the total mass and scale extension of 

astrophysical dusty clouds for the stable configuration [24], as originally understood in case of the 

Chandrasekhar mass limit of compact astrophysical objects [16]. For the present DMC stability, 

we first derive its mass- and size-limits, in the light of our formalism, on the Jeans scale. This 

implies that if the mass and size are less than the Avinash-Shukla critical values, then the cloud is 

stable. In contrast, if it is greater than the critical values, the cloud becomes unstable and undergoes 

collapse self-gravitationally. The equation of force balance [24] for the charged dust fluid is, 

  dep ,                                                                                                                             (3.7)    

where, ep  is the electrostatic pressure (superscript ‘e’ for ‘electrostatic’). Now, spatially 

differentiating equation (3.7) and using equation (3.6), we get the Lane-Emden equation (LEE) on 

the self-gravitational pressure with spherical symmetry in the normalized form as follows, 
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Here,   21224 dodoDMCD nmGTnRR   is the DMC scale-size and J  is the Jeans length. Further, 

   is the radial distance normalized by the Jeans length J , EP  is the electric pressure normalized 

by the plasma thermal pressure TnP oEo  , and D  is the cloud mass density normalized by 

equilibrium cloud mass density dodDo nm .  

It is seen that 
JDR 100  m in the proposed model for 91021.4~ J  m, 1410~ 

dm  kg, 

410~doo nn , and 1~T  eV [4, 7, 09-10]. To derive the critical mass limit, the total mass [16, 24] 

of the DMC can analytically be calculated as, 

I
Gm

TR
M

Jd

D
D 2

2


 ,                                                                                                                            (3.9) 

where, the integral 



0

2drrI D
1~ , is a dimensionless number [24].  
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Now, from equation (3.9), we find that 2110~DM  kg. Avinash and Shukla have given the critical 

DMC mass limit as  1810~ASM  kg and critical length as 910~ASL  m for equilibrium (stable) state 

[24]. In our model, the DMC mass (
ASD MM  ) and scale-size (

ASD LR  ) exceed the Avinash-

Shukla critical values. Thus, by critical value estimation, the cloud model here is unstable and 

hence, interesting for global fluctuation analysis.  

A schematic diagram of the considered dust cloud model is portrayed in figure 3.1.  The 

fluctuating non-rigid surface well known to be located at 
J 5.3  [26-27] is the lowest-order cloud 

surface boundary (CSB). The terminology ‘lowest­order CSB’, means the nearest concentric 

spherical electric potential surface boundary (formed by gravito­electrostatic balancing) relative 

to the cloud center. Thus, it is seen that the concentric surface located at 
J 6  is the physical 

extension boundary of our stability, which corresponds to the unstable cloud size 
JDR 100 . For 

clarity, we re-state that 910~ASL J
11037.2  , which indicates 

J 6 ASL25 . This justifies that 

the spherical cloud extension 0 - J6   ASL , containing net mass 
ASMM 25   ASM , is a good 

choice in physical parameter window for instability investigation in the considered cloud system. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Schematic diagram of the spherical DMC considered in the analysis. Various concentric 

spherical layers are described in the text.  

 

3.5 NON-LOCAL FLUCTUATION ANALYSIS 

The normalized (by standard astrophysical parameters) form of equations (3.1)-(3.2) describing 

the   electron and ion dynamics with spherically symmetric geometry are respectively as follows, 
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Integrating equations (3.10)-(3.11) spatially, we obtain the normalized Boltzmann distributions for 

the electrons and ions, respectively, as given below, 

 expeoe NN  , and                                                                                                                (3.12) 

  expioi NN .                                                                                                                    (3.13) 

Similarly, the normalized forms of the evolution equations for dust grain dynamics in the fluid 

model approach are given below, 
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Again, the normalized closing form of the electrostatic and self-gravitational Poisson equations 

with spherical symmetry are respectively given by,  
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The independent coordinates, like distance   and time  , are normalized by the Jeans length J

and Jeans time 
1

J  scales, respectively. Both the electrostatic potential   and self-gravitational 

potential   are normalized by the same plasma thermal potential qT , so as to compare fluctuation 

levels on common equivalent basis. eN , iN , and dN  are the concentrations of the electrons, ions, 

and grains normalized by the equilibrium plasma density on  each. Moreover, dM  is the dust flow 

velocity normalized by the dust sound phase speed   21

dss mTC  . 

 

3.5.1 Electrostatic Fluctuations 

We apply non-local linear perturbation on the relevant physical parameters as shown below,  
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Here, we consider inhomogeneous equilibrium with gravity-induced polarization effects [1-2]. 

Using equation (3.18) to equations (3.12)-(3.17), we obtain linearized set of equations presented 

respectively as follows, 

         ,expN,N oeoe 11  ,                                                                                    (3.19)

         ,expN,N oioi 11  ,                                                                               (3.20)                                                                    
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As we are interested in nonlocal linear stability analysis, we apply the Fourier technique for a first-

order inhomogeneous plane wave analysis over equations (3.19)-(3.24) as inhomogeneous planar 

(radial) fluctuations [28]-a natural justified choice to describe the fields in non-uniform media. 

Before preceding further, the following points on the plane wave analysis, both as a methodical 

theory and as a strategic tool, may be worth mentioning for the sake of readers. A plane harmonic 

wave may be assumed as a limiting structure of a spherical wave from a considerably distant source 

(idealistically, induced point-source, in pure electromagnetic sense); where, the spherical wave 

front becomes almost planar. Although, realistic astrophysical clouds are known to have finite 

extension, the assumption of perturbations propagating as plane wave is valid under the condition 

that the dust cloud is unbounded, expanded infinitely and boundary effects are not directly of any 
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great immensity for the phenomena happening in the bulk plasma system [29-30]. The plane wave 

approximation under spherical symmetry is a simpler way (than other existing analytical methods) 

of concentrating on only one dimension (radial) thereby enabling us for the structure solutions in 

which the other two dimensions (azimuthal and co-latitudinal) do not enter at all. Another 

advantage in the analysis of translationally invariant systems derives from the fact that the natural 

representation of the system physical variables is in terms of plane waves with canonically 

minimum reduced number of degrees of freedom. As a consequence, this simplicity translates into 

faster computer run times with less memory requirements for exact analysis of the considered 

problem. The name “plane wave” is appropriate because the field vectors in the wave have the 

same value everywhere on each plane of constant  , for any fixed time  , such that   is typically 

greater than the size of wave-scale length. In a broader and stricter sense, a plane wave is a wave 

whose phase is the same over a plane normal to the direction of wave propagation, even if the 

strength of the wave varies within that plane. These planes propagate in the radial direction at 

constant phase velocity of the considered fluctuations. Even for non-homogeneous, but isotropic 

and slowly-varying plasma medium with trifling viscosity, such approximations indeed represent 

a good starting point to the actual solutions. Accordingly, the sinusoidal fluctuations in 

inhomogeneous equilibrium, propagating as inhomogeneous plane waves here, can be written as, 

     iki
~

ee eN,N  11 , 

     iki
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ii eN,N  11 , 

     iki
~

dd eN,N  11 ,                                                                                                       (3.25)                                                                             

     iki
~

dd eM,M  11 , 

     iki
~

e,  11
, and 

     ikie 
~

11 , . 

Here,   is the fluctuation frequency normalized to the Jeans frequency  dodJ nGm 4  and k  

is the wave vector (angular wave number) normalized to the critical Jeans wave vector 

 JJk 2 . Now, applying equation (3.25) to equations (3.19)-(3.24), we get the equations as,

        
~

oeo

~

e expNN 11  ,                                                                                                 (3.26) 
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        
~

oio

~

i expNN 11  ,                                                                                       (3.27)
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where,    dokM  is the Doppler-shifted frequency of the fluctuations.
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We solve equation (3.30) for  1dN ,    1dN ,    1

22

dN ; equation (3.31) for  1

; and use them in equations (3.28)-(3.29). After rigorous calculation and simplification with the 

assumption that        0~
~

1  ddodo MMMi   (valid for relatively massive 

stationary dust grains under cold-dust approximation), we get the nonlocal electrostatic eigen-

function equation as set out below, 
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The various coefficients involved in equation (3.32) are expressed as given below, 
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In the above equation, the term involving the lowest-order non-locality ( 00  ) is the last term, 

where all other higher-order non-local terms would have been absent in case of local stability 

analysis. In all other remaining terms, different orders of non-locality appear in the form of 

different-order  -operations. We equate the coefficient of the last term to derive the nonlocal 

dispersion relation of the fluctuations as,  
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The presence of equilibrium gradients in equation (3.40) reflects conversely that astrophysical 

plasma equilibria are indeed inhomogeneous and non-uniform in nature. Equation (3.40) gives the 

eigenvalue equation, which shows the nonlocal electrostatic fluctuations in simplified form as,  

  01

2  oE EEk,D  .                                                                                                 (3.41) 
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In case of infinite degree of spherical curvature  0 , equations (3.42)-(3.43) get modified as, 

oE , and  

1E .                                                                                                                       (3.44) 

Again, for zero-degree of spherical curvature   , equations (3.42)-(3.43) get reduced 

respectively to the forms as, 
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Now, the following special cases may be worth explaining. In the Jeans limit of the fluctuations

 0k , the coefficients of equation (3.41) get modified to the following respective forms, 
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Again, in the electrostatic limit of the fluctuations  k , equations (3.42)-(3.43) get reduced 

to the following respective forms, 

oE , and  

1E .                                                                                                                       (3.49) 

In case of homogeneous equilibrium configuration with doM , 0o ; eoN , ioN , 1doN , and 

  0 ododoioeo ,M,N,N,N  , then equation (3.41) becomes, 
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Now, using ir i   to equation (3.50) and after simplification, we get, 
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Here, it is observed from equation (3.51) that, the real part of frequency depends on the ratio of 

the Jeans-to-Debye lengths, wave vector, charge and mass of the grains. Likewise, it is seen from 

equation (3.52) that, the imaginary part of frequency depends on ratio of the Jeans-to-Debye 

lengths, charge and mass of the grains, wave vector and on the geometrical configuration as well. 

We can see that i  is a negative quantity, so the fluctuations should show damping behaviors. For 

infinite degree of curvature  0 , for a given k , one finds, rr   , and 0i . So, it is clear 

that, the damping or growth of the fluctuations depend on the cloud geometry. Again, for zero-

degree curvature   , rr   , and i . Under such geometrical configurations, the 

fluctuations show infinite damping nature. In the Jeans limit  0k , one gets 0r , and 

i . On the other hand, in the electrostatic limit  k , one finds r , and 0i . 

In this limit, one can further see that kr  , which reveals purely acoustic behavior of the 

fluctuations. Now, the ratio between imaginary-to-real frequencies ( riPE
D  , or riPE

G  ), 

which is defined as damping (or, growth) rate per period [29] depending on the nature of the mode 

evolution, reads as, 
 

















 22

1
2

k
m

q

k
D

d

d
PE 

.                                                                                                           (3.53) 

 

For a given k , equation (3.53) further reduces to 
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 1
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D .                                                                                                                          (3.54) 

So, at 0, k , one finds 
EPD ; and at k, , one sees 0

EPD . So, in case of 

homogeneous equilibrium, it is observed that the damping rate per period is infinitely large at the 
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center, in the Jeans limit. The damping rate per period is zero for infinite distance, which 

corresponds to the electrostatic limit. The phase velocity and group velocity of the fluctuations in 

homogeneous equilibrium configuration are respectively given by, 
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Equations (3.55) and (3.56) reveal that the phase velocity and group velocity are inversely 

proportional to the wave vector. For a given k ,  
EE gP VV  , which shows  that  

EPV  and 
EgV  are 

of opposite evolutionary phase. At  ,0 , we see that 
EPV  and 

EgV  remain unchanged. Again, 

at 0k , it is found that 
EPV , 

EgV . As k , we see that 
EPV ,    21

qqZV ddDeJgE
 . Thus, 

in the Jeans limit, 
EPV  and 

EgV are of infinite strength. In contrast, in the electrostatic limit, both 

are constant thereby revealing the acoustic-nature of the fluctuations. The phase dispersion and 

group dispersion [31-32] are given respectively as, 
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Equations (3.57)-(3.58) show that   3 k
EE gp  . Thus, the phase and group dispersions are 

of opposite evolutionary phase, each depending inversely upon the wave vector cubed. At, 

 ,0 ; we see that 
EP , 

Eg  remain unchanged as 
EPV  and 

EgV . Similarly, 
EP , 

Eg , at 

,0k  and 
EP , 0

Eg , at k  due to the non-dispersive nature of 
EPV  and 

EgV .      

 

3.5.2 Self-gravitational Fluctuations 

To study the self-gravitational potential fluctuations of the unstable DMC globally, we derive self-

gravitational eigen-function equation by using equations (3.25)-(3.31).  In the derivation, we solve 

equation (3.31) for  1dN ,    1dN ,    1

22

dN , equation (3.30) for  1  and use them 

http://en.wikipedia.org/wiki/Wave_propagation
http://en.wikipedia.org/wiki/Wave_propagation
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in equations (3.28)-(3.29). After rigorous calculation with the assumption of   
~

1dM

    doMi    0~  doM  (valid for relatively massive stationary cold dust grains), we 

obtain the self-gravitational eigen-function equation as shown below, 
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where, the various coefficients in equation (3.59) are, 
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.                 (3.64) 

 

Similar to the electrostatic counterpart, we equate the coefficient of the lowest-order non-locality 

term in equation (3.59) to zero to get the eigenvalue equation as follows,   
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where, 
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The coefficients of the nonlocal fluctuations given by equations (3.66)-(3.67), get modified in case 

of infinite degree of geometrical curvature  0 , as shown below, 
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Again, for zero-degree of curvature   , equations (3.66)-(3.67) become, 
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In the Jeans limit  0k , equations (3.66)-(3.67) get reduced to the following forms, 
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Similarly, in the electrostatic limit  k , equations (3.66)-(3.67) get altered to the forms, 
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For homogeneous equilibrium with 
doM , ; , , , and , 

equation (3.65) becomes, 
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Now, using ir i   in equation (3.74) and after simplification, we get 
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Thus, the real and imaginary parts of frequency depend on the ratio of the Jeans-to-Debye lengths, 

charge and mass of the grains, wave vector and geometrical configuration. For a given k , at 0

; one has rr   , i . Again, at  ; we see that rr   , 0i . This reveals that 

near the center of the cloud, self-gravitational fluctuations have infinite growing character. Similar 

to the electrostatic analysis, at 0k ; one gets ir  , . Also, at k ; one derives 

0, ir  . Now, damping (or, growth) rate per period (Carbonell et al. 2004) depending on the 

nature of the mode-evolution comes out as, 
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For a given k , the damping rate per period given by equation (3.77) becomes 
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So, when 0, k , 
GPD ; and k, , 0

GPD . Thus, in case of homogeneous 

equilibrium, it is observed that both at the center and in the large-wavelength regime, the damping 

rate per period is infinitely large. At infinite distance and in the small-wavelength regime, the 

damping rate per period is zero. The phase velocity and group velocity of the fluctuations under 

homogeneous equilibrium configuration are derived as, 
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The relationship between the phase velocity and group velocity now goes as 
GG gp VV  . Thus, for 

homogeneous equilibrium without any Jeans swindle,  
GG gP VV  , which reveals that 

GPV  and 
GgV  

propagate in opposite phase . Further, we see that, at 0k , both 
GPV , 

GgV ; and at k , 

both 
GPV , 0

GgV . This implies that, in the small-wavelength regime, no self-gravitational 

fluctuations propagate. It may be noted that 
GPV , and 

GgV  are independent of geometrical effects. 

The corresponding phase dispersion and group dispersion [31-32] are now given by, 
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From equations (3.81)-(3.82), we see that    3 k
GG gp  . Thus, 

GP , and 
Gg  are of 

opposite evolutionary phase and depend on wave vector. If 0k , we see that 
GP , 

Gg ; 

and at k , one finds that 
GP , 0

Gg , like 
GPV  and 

GgV . It is interesting to note that 
GP , 

and 
Gg  are  independent of any kind of geometrical influences.  

 

5.6 RESULTS AND DISCUSSIONS 

An evolutionary model to study the properties of global electro-gravitational modes in self-

gravitating inhomogeneous interstellar DMC with all the characterizing equilibrium parameters 

varying radially is constructed under spherical symmetry. To study excitation and evolution of the 

fluctuations globally, we numerically integrate the electrostatic eigen-function equation [Eq. 

(3.32)] with suitable initial inputs by the fourth-order Runge–Kutta method [33]. Before presenting 

the numerical illustrations, different normalization constants are estimated methodologically from 

the judicious inputs available in the literature [4, 7, 9-10] as shown in Table 3.1. 
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Table 3.1: Normalization constants with estimated typical values 

S. No      Physical property                Normalization constant                            Typical value      
  

  1            Distance                              Jeans length [ ]                                     91021.4   m 

  2            Time                                    Jeans time [ 1

J ]                                      121009.1   s 

  3            Electrostatic potential         Plasma thermal potential [ qT ]               00.1 V   

  4            Self-gravitational                Plasma thermal potential [ qT ]               00.1 V   

                potential  

  5            Population densities of       Equilibrium plasma population                710001 .  m-3    

                electron, ion and grain        density   [ ]            

  6            Electric pressure                 Plasma thermal pressure [ Tn0 ]                121047.1   N m-2                                                               

  7            Mass density                       equilibrium mass density [ 0dd nm ]           151000.1   kg m-3  

  8            Dust flow velocity               Dust sound phase speed                          31000.4   m s-1 

                                                             [ ]                                                           

 

 

Figure 3.2 shows the profile of the normalized electrostatic potential fluctuations   1

~
 

with variation in normalized distance    and in normalized wave vector  k  of the fluctuations 

[by numerical integration of equation (3.32)]. Different initial values used are   21000.1 i , 

  31000.1 
i ,   11050.9 

ieN ,   11000.9 
iiN ,   31000.1 

idN ,   31001.1 
idM , 

  51000.1 i ,   31029.1 
i ,   8

1 1000.1 
i

 ,   4

1 1000.1 
i ,   7

1 1000.1 
i , 

and   9

1 1000.1 
i . The other input parameters kept constant are  

141050.2 dm  kg and 

21000.1 dZ  [4, 7, 9-10]. The level of fluctuations is found maximum at 5.3  (on the Jeans 

scale), which is the lowest-order cloud surface boundary (CSB) [26-27]. The CSB act as an 

interfacial transition surface exhibiting bounded cloud interior plasma (CIP) dynamics on  one 

hand, and unbounded cloud exterior plasma (CEP) dynamics on the other, as reported earlier in 

like situations [26-27]. On the exterior, the fluctuations show a damped periodic oscillatory 

behavior. The oscillatory behavior of the fluctuation indicates that the electro-gravitational 

interaction is not static, but dynamic in a periodic fashion via gravito-electrostatic interplay. The 

J

0n

  21

dSS mTC 
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periodic oscillations may be due to the compression of one species and rarefaction of the other, 

and vice versa, due to the dynamically periodic coupling processes. The damping nature in the 

CEP is attributable to the decrease in the coupling strength. In the k-space, no fluctuation 

propagates up to 1k (which corresponds to J 28.6 ).  This large-wavelength region is 

dominated by the self-gravitational fluctuations, as inertial dust grains are concentrated near the 

center. So, 1k  is behaving as a critical point for propagation of the fluctuations undergoing 

quasi-linear transformation into pure gravitational form. As k increases, the fluctuations grow 

linearly with a super-growth at 53.k   (
J 79.1 ). The growth occurs in the CIP due to the combined 

effect of the self-gravity, equilibrium inhomogeneities and gravity-induced plasma polarization.  

For 53.k  , the instability decays due to the gradually decreasing charge density in the CEP. 

  

 

 

 

Figure 3.2 Profile of the normalized electrostatic potential fluctuations   1

~
 with variation in normalized 

distance    and in normalized wave vector  k  of the fluctuations. Various input and initial parameter 

values are given in the text.                                     

                                  

Figure 3.3 gives the profile of the normalized (a) real part of frequency, (b) imaginary part 

of frequency and (c) imaginary-to-real frequency ratio of the fluctuations with variation in 

normalized distance    and normalized wave vector  k . The different input initial values used 

are the same as figure 3.2. The real part (Figure 3.3(a)) is maximum at 5.3 . This reveals that 

the CSB is the most unstable interfacial zone (as seen before in Figure 3.2). It decreases from the 

center to 5.1  outwards. This is due to the fact that the global mode-spectrum is dominated by 

the Jeans modes near the center. In the CEP, the real part of frequency gets damped out due to the 
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dispersive nature of the medium. The instability decays from the center with a super-decay at 3k  

( J.  092 ), which coincides with the Jeans mode. After 3k , the instability grows linearly with 

wave vector, which is the electrostatic acoustic mode-behavior. This linear growth of the global 

instability is due to the density inhomogeneity and gravity-induced polarization effects [1-2]. 

  

 

                                           

                                     

 

 

 

                                             

                                            (a)                                                                                             (b)  

 

 

 

 

 

 

                                                                                          

                                                                                         (c) 

 

Figure 3.3 Profile of the normalized (a) real part of frequency, (b) imaginary part of frequency, and (c) 

imaginary-to-real frequency ratio of the fluctuations with variation in normalized distance    and in 

normalized wave vector  k . Different input initial values used are the same as figure 3.2.   

 

In the long-wavelength region, the global instability behaves as the usual Jeans mode; and in the 

short-wavelength region, the Jeans mode is converted into acoustic mode via gravitational 

condensation of gravitational waves. So, the instability evolves as a hybrid structure due to mode-

mode coupling of electro-gravitational fluctuations. The imaginary frequency part always shows 

growth, or damping rate of the fluctuations. It shows a three-scale behavior in the  space (Figure 
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3.3(b)). The imaginary frequency decreases from the center to 5.1 . After that, it increases 

linearly with a maximum and saturated value at 4  outwards. The instability is damped in the 

long-wavelength region with a super-decay at 4k  ( J.  571 ) and it grows linearly in the short-

wavelength region. Figure 3.3(c) shows the ratio of imaginary-to-real frequency. In the  space, 

the ratio again shows three-scale behavior with a transition from slight damping-growth rate per 

period. The growth rate per period is 1 at 5.3 . So, the linear theory is applicable for the study 

of stability of CIP and beyond the CSB the nonlinear theory has to be applied for the CEP stability. 

In the k-space, the frequency ratio grows linearly from the center and shows a super-growth at 

3k  ( J.  092 ). After the super-growth, there is a sharp damping with a super-decay at 4k  

( J.  571 ) and then, it shows a linearly growing behavior. 

 

 

 

 

                             

 

 

 

  

                                     (a)                                                                                                     (b) 

 

 

 

 

 

 

                                                                                     

                                                                                           

                                                                                           (c) 

 

Figure 3.4 Same as figure 3.3, but in the large-wavelength regime ( 0k ). 
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Figure 3.4 shows the profiles same as figure 3.3, but in the large-wavelength regime ( 0k ). All 

the profiles in the ultra-low k  limit show nondispersive nature of the fluctuations due to the Jeans 

instability, dominating in the large-wavelength regime. 
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Figure 3.5 Same as figure 3.3, but in the small-wavelength regime ( k ). 

 

Similarly, figure 3.5 shows the profiles in the small-wavelength regime ( k ). In the ultra-high 

k  limit, all the profiles show the dispersive characteristics of the fluctuations. The real part of 

frequency (Figure 3.5(a)) grows quasi-linearly with some background oscillations in the ultra-high 

k  limit, which depicts the acoustic behavior. The imaginary part displays damping oscillatory 

behavior in the small-wavelength regime (Figure 3.5(b)). The ratio of imaginary-to-real frequency  
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signifies the damping nature of the instability in the ultra-high k  limit (Figure 3.5(c)).  

 

 

 

 

                                        (a)                                                                                      (b)  

 

Figure 3.6 Profile of the normalized (a) phase velocity, and (b) group velocity of the fluctuations with 

variation in normalized distance    and in normalized wave vector  k . The different input initial values 

used are the same as figure 3.2.  

 

 

                                                (a)                                                                                    (b) 

 

Figure 3.7 Spatial profile of the real part (A, B, C, D) and imaginary part (a, b, c, d) of the   -fluctuation 

frequency with variation in (a) 
dZ  and (b) dm , correspondingly, under the same condition as figure 3.2. 

Different lines in (a) correspond to 100Zd   (blue), 102 (red), 104 (green), and 106 (black), respectively. 

Again, different lines in (b) link to 14
d 1049.2m   (blue), 141050.2   (red), 141051.2   (green), 

and 
141052.2   kg (black), respectively. 
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Figure 3.6 shows the profile constructs of the normalized (a) phase velocity and (b) group velocity 

of the fluctuations with variation in normalized distance    and in normalized wave vector  k . 

The different input initial values used are the same as figure 3.2. We see that the phase velocity 

decreases from the center up to 5.1  due to the strong self-gravitational attractive force sourced 

by the massive grains. In the  -region with 5.35.1  , the phase velocity increases linearly 

with the maximum value at 5.3 , thereby showing the most unstable nature of the CSB. In the 

CEP, the phase velocity decreases due to the small drifting of charged species from the CIP to 

CEP. In the k -space, the phase velocity decays sharply from 0k  to 5.1k . For 5.1k , it 

decays with very small gradient. Thus, the fluctuations are dispersive in nature with maximum 

dispersive behavior in the large-wavelength region ( 5.1k ) due to strong self-gravitational 

effects. The velocity of the wave envelope is found to be maximum at 5.3  due to the most 

unstable nature of the CSB. The group velocity shows nonlinear behavior in the CEP, as the growth 

rate per period exceeds unity beyond the CSB. It is seen that the group velocity shows almost 

constant but with slight damping nature in the long-wavelength region due to strong self-gravity. 

In the regime 5.41.2  k , the group velocity increases linearly with the maximum value at 

5.4k  ( J 39.1 ). The velocity of the instability is damped out in the very short-wavelength 

regime ( 5.4k ) due to very small drifting of the charged species in the CEP.  

Figure 3.7 graphically displays the spatial profile of the real part (A, B, C, D) and imaginary 

part (a, b, c, d) (rescaled by dividing with 28.1 ) of the   -fluctuation frequency with variation 

in (a) 
dZ  and (b) dm , correspondingly, under the same condition as figure 3.2. Different lines in 

(a) correspond to 100dZ  (blue), 102 (red), 104 (green), and 106 (black), respectively. Again, 

different lines in (b) link to 141049.2 dm  kg (blue), 141050.2   kg (red), 141051.2   kg 

(green), and 141052.2   kg (black), respectively. The real and imaginary parts of fluctuation 

frequency (Figure 3.7(a)) increases with increase in 
dZ  and decreases (Figure 3.7(b)) with increase 

in dm . It may be noted that as 
dZ  increases, the electrostatic repulsive force increases. Hence, the 

growth rate increases. But, when dm  increases, the self-gravitational attractive force increases, 

which may dominate the fluctuation growth rate. As a result, the growth rate decreases. Thus, grain 

charge (
dZ ) behaves as destabilizing source and grain mass ( dm ) acts as a stabilizing source of 

the fluctuations. The observed features are in agreement with those obtained by others in the past 
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[34]. From figure 3.7(a), the value of real and imaginary parts at the CSB are   ,
Er    25.2~

Ei  

each. Similarly, from figure 3.7(b), we get   ,
Er    2.2~

Ei  each at the CSB. It is found that, 

for both the cases (Figures 3.7(a)-3.7(b)), the real part shows constant value for J 5.00   and 

variation increases as frequency evolves away from J 5.0 . 

 

 

 

Figure 3.8 Profile of the normalized self-gravitational potential fluctuations   1
~  with normalized 

distance    and in normalized wave vector  k  of the fluctuations. Various input and initial parameter 

values are given in the text. 

 

Figure 3.8 gives the profile of the normalized self-gravitational potential fluctuations 

  1
~ with normalized distance    and normalized wave vector  k . Different initial values used 

here are   31000.1 i ,   41000.1 
i ,   11010.8 

ieN ,   11000.8 
iiN , 

  21000.1 
idN ,   31000.5 

idM ,   41000.1 i ,   21000.9 
i ,   2

1 1000.1 
i

 , 

  5

1 1000.1 
i ,   9

1 1000.1 
i , and   10

1 1000.1 
i . The other input parameters 

kept constant are the same as in figure 3.2. It is interesting to see that the CSB is the most unstable 

interfacial zone, as the self-gravitational fluctuation is again the maximum at 5.3  like the 

electrostatic counterparts. The electrostatic and self-gravitational fluctuations evolve with opposite 

polarities due to the electro-gravitational coupling of the electrostatic repulsive and self-

gravitational attractive effects. In the CEP, the self-gravitational fluctuations decrease due to 

decrease in dust density distribution as well as coupling between two counter-acting forces. The 
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self-gravitational fluctuations show a unique characteristic feature of almost zero-value from the 

center up to 5.0  and 50.k   in the CIP. The self-gravitational fluctuation grows linearly in 

the large-wavelength region ( 25.0  k ) with a super-growth at 2k  ( J 14.3 ). For 2k , 

the self-gravitational instability decays due to low-concentration of the massive grains in the CEP. 

Figure 3.9 exhibits the profile of the normalized (a) real part of frequency, (b) imaginary 

part of frequency, (c) imaginary part of frequency with different orientation, and (d) imaginary-to-

real frequency ratio of the fluctuations with normalized distance    and normalized wave vector 

 k . The different input initial values used are the same as in figure 3.8. The real part of frequency 

shows the maximum value at the center, and it decreases linearly with distance (Figure 3.9(a)). So, 

it is clear that near the center, the Jeans mode plays the dominating role due to the large-

accumulation of the massive grains. In the k -space, the real frequency part shows a linearly 

damping characteristic feature from the center with a super-decay at 52.k   ( J.  512 ). From 

the super-decay point, the real part increases linearly with wave vector. The long-wavelength 

region, in which frequency profile shows damping behavior, is the Jeans mode-dominated region. 

Furthermore, the short-wavelength region, in which instability grows linearly, is the electrostatic 

mode-dominated region. Thus, a unique transition from the Jeans mode to electrostatic mode is 

found in the DMC (Figure 3.9(a)). So, the instability evolves as a hybrid structure due to intrinsic 

mode-mode coupling of electro-gravitational nature. The imaginary frequency profile shows the 

maximum value at  5.3 , which re-confirms the most unstable nature of the CSB (Figure 

3.9(b)). In the k -space, the imaginary part gradually grows with a super-growth value at 73.k   

( J.  691 ). Beyond it, the instability damps out. Figure 3.9(c) shows the imaginary frequency in 

different orientation to observe the evolution patterns more clearly. Figure 3.9(d) shows the profile 

of imaginary-to-real frequency ratio with variation in   and k . In the  -space, it again shows a 

transition from growth-to-damping rate per period. The growth rate per period is 1 at 5.1 . So, 

the linear theory is applicable for 5.1 . The growth rate is the maximum at 5.3 , which again 

reveals the same on the CSB. Beyond the CSB, growth rate per period changes to damping rate 

per period. Thus, the self-gravitational fluctuations show damping behavior in the CEP due to the 

less dust concentration. In the k -space, the imaginary-to-real frequency ratio grows linearly from 

the center and shows a super-growth at 4.3k  (
J 84.1 ). So, in the long-wavelength region, the 



  

66 
 

Jeans mode plays the dominating role. Beyond the super-growth point, there is a sharp damping 

with a super-decay at 6k  ( 04.1
J ).   

  

 

 

 

 

                

 

 

                                         

                                       (a)                                                                                             (b) 

 

 

 

 

 

 

     

 

                                  

 

                                       (c)                                                                                         (d) 

 

Figure 3.9 Profile of the normalized (a) real part of frequency, (b) imaginary part of frequency, (c) 

imaginary part of frequency with different orientation, and (d) imaginary-to-real frequency ratio of the 

fluctuations with normalized distance    and in normalized wave vector  k . The different input values 

used are the same as figure 3.8. 

 

Figure 3.10 shows the same as figure 3.9, but in the large-wavelength regime ( 0k ). All 

the profiles in the ultra-low k  limit show dispersive nature. The imaginary part shows the growing 
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nature of the instability in the large-wavelength regime (Figure 3.10(b)). This observation reveals 

that that, the self-gravitational fluctuation instability, i.e., the Jeans instability grows in the large-

wavelength regime.  
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Figure 3.10 Same as figure 3.9, but in the large-wavelength regime ( 0k ). 

 

Figure 3.11 shows the profile in the small-wavelength regime ( k ) under the same 

condition as figure 3.9. In the ultra-high k  limit, the real part shows hybrid characteristics of the 

instabilities with multiple transition from the Jeans to electrostatic modes (Figure 3.11(a)). In the 

extremely high- k  limit, the instability behaves as purely acoustic-mode like the electrostatic 

counterpart. The imaginary part (Figure 3.11(b)) and imaginary-to-real frequency ratio (Figure 

3.11(c)), in the ultra-high k  limit show similar behaviors as the electrostatic ones.  
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Figure 3.11 Same as figure 3.9, but in the small-wavelength regime ( k ). 

 

Figure 3.12 graphically presents the profile of normalized (a) phase velocity and (b) group 

velocity of the fluctuations with normalized distance    and normalized wave vector  k . The 

different input initial values used are the same as figure 3.8. In the  -space, the phase velocity 

(Figure 3.12(a)) shows a linearly damping behavior from the center outwards, due to decrease in 

the dust concentration. In the k -space, the phase velocity shows resonantly sharp decay from the 

center with a super-decay at 5.1k  ( J 18.4 ). After that, it shows slow variation. This shows 

that the Jeans mode dominates in the long-wavelength region and it is highly dispersive for the 

regime 5.1k .  The group velocity profile shows that, the velocity of the Jeans mode wave 

amplitude is the maximum at the center and it linearly decreases outwards (Figure 3.12(b)). This 

signifies that the Jeans mode dominates in the CIP with the maximum value at the center. In the k
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J 18.4 ). Again, after that, it grows linearly. Therefore, the group velocity shows dispersive 

nature of the fluctuations with mode-mode coupling characteristics of the wave-amplitude towards 

shorter-wavelengths via self-gravitational condensation of larger wavelengths.  

 

 

 

 

 

    

 

 

                                    (a)                                                                                                  (b) 

 

Figure 3.12 Profile of the normalized (a) phase velocity, and (b) group velocity of the fluctuations with 

normalized distance    and in normalized wave vector  k . The different input initial values used are the 

same as figure 3.8.  
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  0.2~
Gi , respectively. Similarly, from figure 3.13(b), one gets   ,75.1~

Gr and   0.2~
Gi  

at the CSB. 
 

 

                                         (a)                                                                                     (b) 

 

Figure 3.13 Same as figure 3.7, but now for the   -fluctuations. The different input initial values used 

are the same as figure 3.8. 

 

Thus, it is confirmed that the CSB is most unstable electrostatic potential boundary, which 

is non-rigid in nature. In is also observed from figure 3.3(c), that the value of ratio of imaginary-

to-real frequency at the CSB is   1~
Eri  , and its value for the self-gravitational counterpart 

from figure 3.9(d) is   12.1~
Gri  . The ratio of both the values is    

GriEriR 

890.~ . At the CSB, from the frequency profiles, we get   
rZd

f      32171252 .~..
GrEr   

(from figures 3.7(a), 3.13(a)), and       12.1~225.2
GiEiiZd

f   (from figure 3.7(a), 

3.13(a)), for increasing grain-charge. Thus, at the CSB, the electrostatic instabilities are more 

dominant than the self-gravitational ones with increasing dZ .  Similarly, at CSB, we obtain 

  
rmd

f    
GrEr  75.12.2 25.1~  (from figures 3.7(b), 3.13(b)), and       222.f

GrErimd
   

11.~  (from figures 3.7(b), 3.13(b)), for increasing grain-mass. It implies that, at the CSB, the 

electrostatic instabilities dominate over the self-gravitational counterparts.  

 

3.7 CONCLUSIONS 
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normal mode analysis to study the excitation and evolution characteristics of the fluctuations 

globally. We derive eigenvalue and eigen-function equations for the gravito-electrostatic 

fluctuations. A numerical scheme of realistic illustration is constructed with suitable initial input 

values. Based on the investigation, the following concluding remarks may be worth mentioning. 

(1) An analytic non-local model to investigate the discrete behavior of the collective dynamics of 

global gravito-electrostatic fluctuations in spherical charged DMCs is developed. 

(2) Eigenvalue and eigen-function equations are methodologically derived by applying the 

standard inhomogeneous Fourier technique exactly on the basis of plane wave analysis. 

(3) The DMC is in unstable state, as the calculated mass ( 2110~DM  kg) and scale-length (

1110~DR m) of the DMC, are found greater than that of Avinash-Shukla critical mass limit 

( 1810~ASD MM   kg) and scale length ( 910~ASD LR   m) for astrophysical object to be in 

stable equilibrium state.   

(4) Both electrostatic and self-gravitational potential fluctuations are found to be maximum at the 

CSB existing at 101047.1~5.3  J  m with opposite polarity. This signifies that the CSB is 

the most unstable due to the strong coupling of the self-gravitational attractive and 

electrostatic repulsive effects contributed by the plasma species. 

(5) Three distinct and spatio-spectrally isolated classes of nonlocal eigenmodes-dispersive, non-

dispersive and hybrid types-are identified and characterized in detail. 

(6) Dispersive features are prominent in the ultra-high k-regime; and non-dispersive 

characteristics dominate in the ultra-low k-regime. 

(7) The ratio of electrostatic-to-self-gravitational potential fluctuations comes out as 1

11 107~~~


. This shows that, in our model, the strength of self-gravitational potential fluctuations is much 

smaller than that of the electrostatic counterpart.  

(8) The density inhomogeneity, self-gravity and non-local wave characterization give rise to 

unique type of hybrid instability due to mode-mode coupling of electro-gravitational 

fluctuations. These type of instabilities may be responsible for the formation of stars and other 

astrophysical objects [35]. 

(9) The entire DMC is a mixture of both the Jeans and electrostatic modes. Near the center, the 

Jeans mode plays the dominating role, and away from it, the electrostatic mode prevails. 
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(10) The growth rate of the   -fluctuations increases and   -fluctuations decreases with the 

increase in the electrical charge of the massive dust grains. Moreover, the growth rate shows 

reverse characteristics with the increase in mass of the massive dust grains. 

(11) Grain-charge has destabilizing influential role for the electrostatic fluctuations; but stabilizing 

role for the self-gravitational ones. Grain-mass plays stabilizing influential role for the 

electrostatic fluctuations; but destabilizing role for the self-gravitational ones. 

(12) The present investigation may be useful for understanding the propagation of electro-

gravitational waves and associated instabilities in interstellar dense DMCs and astrophysical 

plasmas, which contain a significant fraction of neutral atoms, and which are subjected to the 

self-gravitational force. The nonlocal instability evolution discussed here could be responsible 

for the fragmentation of molecular clouds into substructures, which in turn, may fail to be 

supported against the self-gravity and may collapse to form the stars in galaxies. 

(13) Lastly, our nonlocal model analysis may provide extensive inputs for further study of 

excitation and evolution of different waves and instabilities of other realistic astrophysical 

objects, associated with dust charge fluctuations, collisions, etc. Further refinements with 

inclusion of neutral particle dynamics, grain charge fluctuations and non-static rotational 

behaviors associated with the cloud are being made in our future investigations.  
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