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CHAPTER-4 
 

NEW NONLINEAR EIGENMODE PATTERNS IN 

SPHERICAL CHARGED DUST MOLECULAR 

CLOUD 
 

Abstract: A hydrodynamical model to study nonlinear self-gravitational eigenmode excitations in 

spherical charged dust molecular cloud with full convective flow-dynamics is developed. The 

spherically symmetric cloud mass is assumed to be greater than the critical mass limit required to 

exhibit collective fluctuation dynamics. The eigenmode patterns evolve as new damped oscillatory 

shock-like structures governed by a unique form of modified Korteweg-de Vries Burger (m-KdVB) 

equation with self-consistent derivative source. Their formation mechanisms, distinctive features, 

and tentative astrophysical applicability leading to prestellar cores are summarily highlighted. 

 

4.1 INTRODUCTION 

The study of various waves, oscillations, and fluctuations supported in self-gravitating dusty 

plasmas, such as in interstellar clouds, have been an important emerging area of research for years 

[1-7]. The growing interest of investigations of such challenging areas is mainly due to the roles 

played by them in the dynamics of self-gravitational collapse leading to the formation of various 

bounded equilibrium structures such as stars, stellar rings, planets, planetesimals, planetary rings, 

cometary tails, clusters, etc., in astrophysical situations [1-7]. Usually, the major constituents of 

interstellar clouds are the thermal electrons, ions, and the inertial dust grains such as silicates, 

carbon, aromatic hydrocarbons, and so on [1, 4-7]. The clouds have irregular shapes. Most of the 

larger clouds such as giant molecular clouds (GMCs) appear elongated, part of larger filamentary 

structures as discussed detail in chapter 1. It has even been suggested that the geometry of the 

interstellar clouds may be better represented by fractals [4-5]. However, generally, the shape of 

the clouds are considered as spherical for mathematical simplicity. The self-gravitational collapse 

of the massive-dust grains in such clouds by satisfying the Jeans criterion plays a crucial role in 

the formation processes of prestellar cores that eventually spawn stars [1-7]. In interstellar clouds, 

the grains acquire a non-negligible electric charge due to interstellar radiation fields ionizing the 



76 
 

background gas, resulting in plasma collision effects and some other energetic mechanisms [1, 4].  

Avinash and Shukla have recently reported about the existence of a new class of 

astrophysical objects, in which the self-gravity of the dust is balanced by the intensity originating 

from the shielded electric fields on the charged dust [8]. They show the stable equilibrium mass 

limit ( 1910~ASM  kg) for the maximum dust cloud mass, which could be supported against self-

gravitational collapse by these fields in the stationary dust configuration. The concerned mass limit 

has been shown to conform to Chandrasekhar’s mass limit for compact objects like white dwarfs 

and neutron stars [9]. Although stable and neutral on the Jeans scale, a wide spectrum of fluctuation 

eigenmodes exists in the entire cloud owing to composite-type gravito-electrostatic interaction. 

Therefore, it would be interesting and important to investigate the basic physics and characteristics 

of various nonlinear eigenmodes of the associated gravito-electrostatic waves in such a situation 

including all possible realistic agencies.  

In the present chapter, we consider Avinash-Shukla model [8] of the hydrodynamic dust 

molecular cloud (DMC), but in spherical geometry with dust flow convective dynamics included 

in full form to study the nonlinear stability of the charged DMC in the astrophysical scales of space 

and time. A distinct set of non-autonomous self-consistently coupled nonlinear dynamical 

eigenvalue equation in the defined Jeans scales of space and time configuration is accordingly 

derived in normalized form. The standard methodology of multiple scaling technique [10] around 

the defined cloud equilibrium [8] is systematically applied. We, in addition, assume that the dust 

gravitational to electrostatic force ratio  1022  dddedg qGmFF , so that the self-gravitational field 

and electric field of the grains are comparable. Besides, this ratio is too small for the electrons and 

ions; hence, the self-gravitational field effects on them will be neglected in our model. Thus, the 

self-gravitational potential fluctuation dynamics, governed by a new type of modified Korteweg-

de Vries Burger (m-KdVB) equation, is contributed collectively by relatively massive charged-

grains in the form of damped oscillatory shock-like structures. This gives some new dynamical 

aspects of star formation mechanism in the form of nonlinear eigenmodes as initial conditions.  

    

4.2 PHYSICAL MODEL 

A simplified idealistic charged DMC is considered in spherical geometry approximation in 

hydrodynamic equilibrium configuration with radial symmetry. The solid matter of the identical 

spherical dust grains is embedded in the gaseous phase of plasma. A bulk uniform flow is assumed 
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to pre-exist. Global electrical neutrality is supposed to exist over the spherical gravito-electrostatic 

enclosure containing the various plasma particles, as in Avinash-Shukla model [8].  

 

 

 

 

 

 

 

 

 

 

 

 

                                  

 

 

 

Figure 4.1 Cartoon showing a typical spherical DMC model. 

 

For our observation on the Jeans time scale, the heavier dust grains are assumed to behave as a 

hydrodynamical fluid, whereas the lighter electrons and ions, as Boltzmannian thermal particles 

[8]. Since, we are interested in low frequency eigenmodes on the Jeans scale, the inertial terms in 

the dynamics of the thermal electrons and ions are ignored. The total cloud mass contributed 

collectively by the heavier grains is greater ( ASDMC MM  ) than the Avinash–Shukla mass limit 

[8]. The velocity convection dynamics in the dust fluid, however, is afresh included in our idealized 

model of current concern to see the real nature of the cloud eigenmodes. The electric forces 

generated due to the electrostatic polarization effects (local charge imbalance) are, judiciously, 

assumed to be weak, so that only the lowest-order contributions of various nonlinear terms in our 

model are being usefully considered, neglecting the higher-order ones. Figure 4.1 pictorially shows 

our spherical DMC, where the self-gravitational force ( gmF dg  ) originating due to the inertial 

dust grains, is balanced by the electrostatic force ( EqF de  ) arising due to shielded electric fields 
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on the charged-dust in the background plasma. When ASDMC MM  , due to the force imbalance, 

the cloud will no longer be in stable equilibrium configuration [8]. Thus, in such condition, cloud 

undergoes Jeans instability and generate different types of nonlinear eigenmode patterns.   

In our model, the thermal screening species are, due to Boltzmann density distributions, in 

thermodynamic equilibrium on the slow Jeans time-scale. This assumption of thermalization of 

the thermal species is valid provided the phase velocity of fluctuations is much smaller than their 

thermal velocity, i. e., any fluctuation in the electron-ion temperature is instantly smoothened out. 

In addition, for further simplicity, complications like the effects of dispersed dust grain rotation, 

kinetic viscosity, non-thermal energy transport (wave dissipation process), and magnetic field due 

to convective circulation dynamics of plasma particles are all neglected.  

 

4.3 BASIC GOVERNING EQUATIONS 

The simplified spherical charged DMC under consideration consists of the lighter electrons and 

ions, and the heavier dust grains in presence of grain velocity convection dynamics. Avinash and 

Shukla have adopted such a model in the recent past for the investigation of stability behavior over 

a critical mass limit of the cloud as a whole [8]. We are going to apply a nonlinear perturbation 

analysis over the same model, but originally in spherically symmetric geometry with the dust fluid 

nonlinearity (velocity convection) taken into account. Accordingly, for low-frequency eigenmode 

investigation on the Jeans scale, the dynamics of the plasma thermal electrons and ions are 

governed by normalized equations with all usual notations respectively as follows, 
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The dynamics of the inertial grains in field-free fluid model approach is collectively governed by 

the following set of normalized equations enlisted below, 
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Equations (4.3)-(4.5) represent a neutral hydrodynamic equilibrium of the DMC on the Jeans scale. 

In such equilibrium, there is no electric field, and the free energy source is purely due to the self -

gravitational field of the charged-grains. Moreover, invoking the Jeans swindle [2] in self-

gravitational Poisson equation, we neglect the zeroth-order self-gravitational field, and regard the 

equilibrium initially as a ‘homogeneous’ one. In the above set of equations, space  , and time   

are normalized by the Jeans wavelength J , and Jeans time 1

J , respectively.  The Jeans 

wavelength  J  is defined as the critical length scale above which any astrophysical structure 

such as molecular cloud, interstellar dust molecular cloud, undergoes a gravitational collapse and 

becomes unstable. Similarly, the Jeans time  1
J  is the critical free-fall time scale below which 

the clouds undergo gravitational collapse. The Both the electrostatic potential  , and self-

gravitational potential   are normalized by the same plasma thermal potential qT . The notations 

eN , iN , and dN  represent the number densities of the electrons, ions, and the dust grains normalized 

by the equilibrium plasma population density 
0n  each, respectively. Dust flow velocity 

dM  is 

normalized by dust sound phase velocity  dss mTC  . Charge of the electron, ion, and the dust are 

respectively given by eq  , eq  , and qZq dd  . In addition, the thermal pressures of the lighter 

electrons and ions are governed by their isothermal equations of state eee Tnp  , and iii Tnp   with 

TTTT ied   (due to eid mmm   mass scaling), respectively. Moreover, charged-neutral 

dynamics does not arise here, so ignored in our model description.  

 

4.4 DERIVATION OF m-KdVB EQUATION 

We now apply the standard methodology of multiple scaling technique [10] over equations (4.1)-

(4.5) around the defined cloud equilibrium. The cloud mass is assumed to be greater than the 

critical mass limit required to exhibit collective fluctuation dynamics. The independent variables 

are stretched into a new space defined by the transformations    21X , and 2/3T , 

where  is a minor parameter characterizing the balanced strength of nonlinearity and dispersion, 

and   is the fluctuation phase velocity (normalized by ssC ). The dependent variables like 

densities, potentials, and velocities in equations (4.1)-(4.5) are now expanded nonlinearly (in -

powers) around the respective equilibrium values of the defined equilibrium dust cloud as follows. 
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In equation (4.6), due to the gravity-induced space-charge electric polarization effects [11], both 

the electrostatic ( 0eq ) and self-gravitational ( 0eq ) potentials should have some finite non-

zero equilibrium values in realistic astrophysical scenarios. But, these effects are neglected for 

mathematical simplicity of our physical problem of local analysis as appear in above equation. We 

now substitute equation (4.6) in equations (4.1)-(4.5). Equating the like terms in various powers 

of  from both sides of equations (4.1)-(4.5) and applying the systematic methodology of 

elimination and simplification, we obtain a nonlinear modified Korteweg-de Vries Burger (m-

KdVB) equation with a self-consistent driving linear derivative source on the lowest-order 

perturbed self-gravitational potential fluctuation 1  . The time stationary form of the m-KdVB 

equation by using the Galilean type of transformation TX  , in reduced form is as follows. 
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Various coefficients of equation (4.7) are in terms of dust grain mass  dm , flow  dM , and charge 

number  dZ . This is the mathematical construct contributed by the collective dynamics of the 

self-gravitating massive dust grains amidst the integrated interplay of diverse nonlinear 

(hydrodynamic in origin) and dispersive (self-gravitational in origin) effects in presence of internal 

dissipation (hydrodynamic in origin). This equation shows the possibility for the existence of both 

soliton-like and shock-like structures in presence of the joint action of all nonlinearity, dispersion, 

and dissipation effects of internal self-gravitationally evolving cloud origin. A soliton is a self-

reinforcing solitary wave (a wave packet pulse) that maintains its shape while it progress at a 

constant velocity.  Similarly, shock wave is defined as a type of propagating disturbance when a 

wave moves faster than the speed of sound in a liquid, gas, or plasma. 

 

4.5 RESULTS AND DISCUSSIONS  

A theoretical model is developed for the investigation of self-gravitational nonlinear eigenmodes 

of a spherically symmetric DMC in an external field-free hydrodynamic equilibrium configuration 

with dust grain velocity convective dynamics taken into account. The unique originality of the 

analysis lies in the perturbative treatment around cloud equilibrium extended over Avinash-Shukla 

model [8], applied to understand the self-gravitational collapse dynamics in terms of a critical 

cloud mass-limit. This is observed that the nonlinear self-gravitational fluctuation dynamics of the 

cloud is governed by a unique form of m-KdVB equation (4.7) with a linear driving derivative 

source, which analytically supports the possibility of existence of soliton-like and shock-like 

nonlinear eigenmodes. For actual details of the associated microphysics, the model is then 

numerically integrated as an initial value problem (by RK-IV method) with judiciously chosen 

plasma parameter values to yield the consequent numerical profiles as shown in figure 4.2.  

Figure 4.2 gives the profile of the normalized lowest-order perturbed self-gravitational (a) 

potential, (b) potential gradient, (c) potential curvature (second derivative of potential), and (d) 

phase portrait. Various lines correspond to Case (1): 
141002.1 dm  kg (blue line), Case (2): 

141007.1 dm  kg (red line), Case (3): 
141011.1 dm  kg (green line), and Case (4): 

141014.1 dm
  kg (black line), respectively. Different input initial values used are 610i

,   510
i , and   710

i . The other parameters kept constant are 100dZ  , 1 , 
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11dM , 610doN ,  and 
210  [12]. This is clear that the amplitude of the normalized lowest-

order perturbed self-gravitational potential, potential gradient, and potential curvature  increases 

with the mass of the dust grain and vice versa. The various new and distinct observations found in 

our stability analysis are summarized as follows.   

(1) We observe that, the lowest-order nonlinear self-gravitational eigenmodes propagate in the 

form of damped oscillatory shock-like structures [13] as shown in figure 4.2(a). The 

oscillations show that the gravito-electrostatic interaction is not static, but dynamic in a 

periodic fashion. The cloud consists of plasma gas and solid dust. The oscillations may be due 

to the compression of one species and rarefaction of the other, and vice versa, due to the 

dynamically periodic gravito-electrostatic coupling processes. The shock amplitude comes out 

410~ 
, which is physically 

510~ 
 J kg-1, for 20.0T eV, and 

210 [8, 12]. At 

asymptotically large distance ( 10~ , and beyond), the oscillatory fluctuation amplitudes 

gradually decrease because the self-gravity (variable) approaches external gravity (stable), and 

thereby decreasing the degree of compression and rarefaction of the cloud species. The 

oscillatory shock-like structures obtained on the Jeans length in the cloud are in qualitative 

agreement with various experimental [4, 14] and satellite observations under different 

conditions [1, 4, 15].    

(2) The damped oscillatory self-gravitational gradient profile, as presented in figure 4.2(b), shows 

the inhomogeneous nature of the gravito-electrostatic force coupling processes. The self-

gravitational intensity amplitudes decrease gradually at a distance of 10~ , and also beyond. 

Thus any external particle accreted to the solid dust matter cloud experiences a periodic force 

field of hydrodynamic periodic gravito-electrostatic interaction coupling origin.  

(3) The damped periodic behavior of the self-gravitational Poisson term shows that the mass 

distribution of the heavier solid grains in the cloud is non-uniform on the Jeans space from the 

cloud center outwards. Due to strong self-gravity, the grain population density is very small 

asymptotically at large distance outward ( 10~ , and also beyond) showing an almost zero-

fluctuation value in amplitude (Figure 4.2(c)), which may be treated as a new investigation. 

(4) The phase portrait (Figure 4.2(d)) shows open trajectories due to the damped oscillatory nature 

of the fluctuations in the self-gravitational cloud potential, thereby depicting the dissipative 

dynamics of the eigenmodes. Thus, the role of the dissipative dynamics of Avinash-Shukla 
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model [8] involving no dust flux conservation rule on the associated eigenmodes is further 

justified well. 

(5) The evolutionary spectrum of self-gravitational fluctuations due to other sensitive plasma 

parameter variations are elaborately discussed in Ref. [16]. 
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Figure 4.2 Profile of the normalized lowest-order perturbed self-gravitational (a) potential, (b) potential 

gradient, (c) potential curvature (second derivative of potential), and (d) phase portrait. Various lines 

correspond to Case (1): 14
d 1002.1m   kg (blue line), Case (2): 14

d 1007.1m   kg (red line), Case 

(3): 14
d 1011.1m   kg (green line), and Case (4): 14

d 1014.1m   
 kg (black line), respectively. 

Various input and initial parameter values are given in the text. 
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view. The damped oscillatory character in the form of gravito-electrostatic wind or precursor 

of the investigated oscillatory shock-like patterns is conjectured as due to the resonant (with 

phase-amplitude coherence) and non-resonant (without phase-amplitude coherence) coupling 

of the internal spectral components of the usual Burger shocks (wave packet model) with no 

source, and their background gravito-electrostatic fluctuations in presence of the source. Here, 

precursor refers to the emission of dispersing gravito-acoustic waves trailing behind the 

moving shock (observed from the shock reference frame). These oscillatory signatures are on 

an average qualitatively in agreement with others predictions reported elsewhere [1, 3, 13, 17]. 

 

4.5.1 Comparative Results  

Stability analyses in dusty plasma have been carried out by many inquisitive authors in past to 

understand different eigenmodes they support in different equilibrium configurations [1-8]. 

However, only a few authors have considered self-gravitating DMC [5-7, 17-19] of stellar birth 

sites for nonlinear stability analysis. It can be seen that none of them has considered the Avinash-

Shukla model [8] for investigating the nature of the nonlinear eigenmodes supported in the self-

gravitational collapse dynamics in terms of a critical cloud mass limit with dust flow convection 

dynamics, and without dust flux conservation in spherically symmetric hydrodynamic neutral 

equilibrium configuration on the Jeans scale. We carried out our investigation to understand the 

model [8] from the nonlinear stability point of view in newer perspectives on the unique nonlinear 

eigenmode characteristics. Thus, the stability analysis of current concern differs from the existing 

analyses reported in the literature [5-7, 17-19] in fundamentality as well as observation. Table 4.1 

lists in brief the main differences between our analysis and other existing analyses. 

Table 4.1: Our analysis versus existing analyses 

No      Items                             Our analysis                      Existing analyses [5-7, 17-19]                                                        

  1       Model                             Single fluid                                    Multi fluids 

  2       Geometry                 Spherical                                   Planar  

  3       Eigenmode equation     m-KdVB equation                       m-KdV [5-7, 18] and 

                                                                                                          extended KdV equation [19]  

  4       Eigenmode structures     New oscillatory shock-like           Soliton-like 

  5       Nature of solutions     Self-gravitational shocks            Density [5-7] and gravito-  

                                                                                                          electrostatic [18] solitons  
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  6       Flux conservation     Not considered                        Considered  

  7       Profile status                 Understood by gas-solid               Understood by fluid-fluid  

                                                    matter dynamic analog                 dynamic analog [5-7, 18]  

  8       Dust flow convection       Added anew (modified                Intrinsic [5-7, 18]  

           dynamics                          model from [8]) 

  9       Eigenmode stability     Unstable                                   Stable 

10       Main application     Specified as initial input               Not sharply specified 

                                                    elements for spherical star  

                                                    formation process  

11       Global neutrality     Neutral                                   Quasi-neutral 

12       Jeans swindle                 Considered                                    Considered [18], and also not  

                                                                                                          considered [5-7] 

13       Charged grain state     Fully charged                       Partially charged 

14       Appearance of linear       Yes, linear derivative source         No [5-7, 18], but the integral  

           Derivative source            (due to dust convection                  source that appears [19]  

           in evolution equation       dynamics)                                      vanishes asymptotically 
                                             

15       Dust grain flow     Relatively high                       Relatively low 

16       Eigenmode formation      Only one fluid                       At least two fluids (one cold,  

           condition                                                                                other hot) necessary for  

                                                                                                          soliton formation  

17       Gradient strength of         Shown                                   Not shown  

           eigenmode 

18       Self-gravitational             Studied                                   Not studied 

           curvature  

19       Eigenmode phase     Studied                                   Not studied  

           trajectories 

20       Self-gravitation                Fully charged massive dust           Fully and partially charged 

           contribution                      grains                                   massive dust grains 

21       Eigenmode amplitude      Increases                                   Decreases (due to above) 

           variation with grain  

           mass  
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22       Neutral-charged dust     Absent                                          Present  

           interaction 

23       Main outcome                 Oscillatory shock-like           Soliton-like structures are 

                                                    structures are supported                only supported in self-  

                                                    in self-gravitating dust cloud        gravitating dust cloud 

24      Supporting                        Partially supported by                   Well supported by various  

          experimental                     multispace satellite                        satellite-based observations  

          observations                     observations (qualitatively)            

25      Scope for future                Input elements to study           Input to study interstellar 

          applicability                      spherical star and planetary          and planetary space 

                                                    rings with various geometrical     with no curvature (plane 

                                                    curvature in realistic conditions    geometry approximation) 

                                                     

 

2.6. CONCLUSIONS 

We study the stability of a charged DMC in the presence of velocity convection dynamics and 

self-gravity on the Jeans scales of space and time. We apply the standard methodology of analytical 

multiscale scheme under defined equilibrium configuration in spherical geometry to investigate 

the nonlinear eigenmode structures supported in the cloud. The main motivation behind it is to 

examine the effect of dust convection dynamics with inhomogeneous flux on the nature of 

eigenmodes. The cloud is found to be rich in new classes of different oscillatory shock-like 

structures. They are self-gravitational in origin due to the presence of massive charged-dust grains. 

This class of eigenmodes are collectively governed by a new type of m-KdVB equation having a 

self-consistent driving linear derivative source on the lowest-order perturbed self-gravitational 

potential arising from the massive charged dust flow convection dynamics. In addition, this 

simplified contribution idealistically shows how point particle approximation (within the validity 

limit of non-relativistic Newtonian dynamics) can give rise to the propagation of different 

oscillatory shock-like structures with new and unique properties in the presence of gravito-

electrostatic coupling on the Jeans length for the first time. Such eigenmodes may be applied as 

initiation input elements in space science and modern astrophysics because of their crucial role in 

understanding self-gravitational collapse, the formation and evolution of interstellar clouds, star 

formation, galactic structure and its evolution, and so on. The obtained oscillatory shock-like 
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structures are in qualitative agreement with those of the earlier predictions in situ made by various 

spacecraft instruments, on-board multispace satellite reports, and experimental findings under 

different conditions [1, 4, 14-15]. We must admit that our investigation is quite idealized for steady 

state observations. The adopted mathematical and numerical strategies may, however, be extended 

for further exploration of the self-gravitational fluctuation dynamics with more complications such 

as collisions, different gradient forces, grain-size distribution, charge variation, and so on, taken 

into account in different astrophysical situations. Lastly, our investigation may afford different and 

wider scopes for elaborate improvement and refinements to understand the temporal eigenmode 

evolution with various equilibrium spatiotemporal inhomogenetiies. 
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