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CHAPTER-5 
 

PULSATIONAL MODE FLUCTUATIONS AND 

BASIC CONSERVATION LAWS 
 

Abstract: In this Chapter, an inertia-centric theoretical model is proposed for investigating the 

basic features of nonlinear pulsational mode stability in a planar, partially ionized dust molecular 

cloud (DMC) within the framework of the Jeans homogenization assumption. The active inertial 

roles of the thermal species are included. The grain-charge is assumed not to vary in the 

fluctuation evolution time scale. It is shown that the electrostatic and self-gravitational 

eigenmodes co-exist as solitary spectral patterns governed by a pair of Korteweg–de Vries (KdV) 

equations relevant for such clouds. In addition, all the relevant classical conserved quantities 

associated with the constructed KdV system under translational invariance are methodologically 

derived and numerically analyzed. It is demonstrated that the solitary mass, momentum and energy 

densities also evolve like solitary spectral patterns, but with different characteristic features 

discussed here, which remain conserved throughout the spatiotemporal scales of the fluctuation 

dynamics. Astrophysical and space environments relevant to the findings are briefly highlighted. 

 

5.1 INTRODUCTION 

In the interstellar medium, the gravito-electrostatic coupling of partially-ionized self-gravitating 

dust molecular cloud (DMC) is responsible for tremendous amount of energy through star 

formation processes [1-4]. The source of free energy for this gravito-electrostatic instability lies in 

the associated self-gravity of the dispersed phase of the dust grains of solid matter over the gaseous 

phase of the background plasma. Such type of instability occurs when the self-gravitational 

collapsing force exceeds the collective repulsive forces of the cloud, and gives rise to different 

types of nonlinear eigenmodes [1-5]. These nonlinear eigenmodes ultimately produce the initial 

conditions for diverse stellar, planetary, and galactic structure formations [1-8].   

It may be seen that, there have been many earlier waves, oscillations, and stability analyses 

on various grainy plasma systems in diverse space and astrophysical situations as reported by 

different researchers [1-9]. It has also been found that when the coupling between the neutral fluid 

and the plasma is considered, a new short wavelength electromagnetic mode (Jeans-type) is excited 
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in the self-gravitating magnetoplasma [7]. It has been suggested that such new instabilities could 

be responsible for the fragmentation of the cloud into sub-structures collapsing to form the stars 

and other astrophysical objects [7-8]. But, nobody has so far addressed the fluctuation eigenmodes 

in presence of the weak but finite inertial effects of the plasma thermal species. Even in presence 

of the massive grains, the lowest-order inertia of the thermal species has been found to possess a 

unique quality of destabilizing the normal plasma mode in uniform flow region [9]. Besides, the 

conservative nature of the gravito-electrostatic nonlinear fluctuations in diverse astrophysical 

situations is also yet to be well understood. 

In this chapter, we develop a systematic methodology to demonstrate a full existence of 

new nonlinear eigenmode features of gravito-electrostatic significance in an infinite self-

gravitating inhomogeneous cloud (Cartesian 1-D geometry) with all the possible realistic 

collisional effects [1-4, 10-11] taken into account in hydrodynamic equilibrium configuration. In 

addition, this includes the lowest-order inertial correction [9, 12] of the thermal species. Applying 

a standard multiscale analysis over the defined cloud equilibrium, it is shown that the electrostatic 

and self-gravitational eigenmodes evolve as diverse solitary spectral patterns governed by a pair 

of gravito-electrostatically coupled Korteweg–de Vries (KdV) type equations. A full numerical 

shape-analysis of the fluctuations with multi-parameter variation of judicious plasma conditions is 

also carried out to study the internal microphysics of the spectral patterns. Moreover, the KdV 

system is well-known as a conservative integrable model possessing an infinite string of 

conservation laws [13-14]. So, motivated by the conservative features of the fluctuations, we, 

analytically derive different basic conservative forms of the pulsational KdV dynamics. The 

evolutionary patterns of all the associated relevant conserved quantities are numerically analyzed. 

Interestingly, we find a unique property that the dynamical evolution of the mass density, 

momentum density, and energy density of the lowest-order gravito-electrostatic potential 

fluctuations retain the shape of soliton-like patterns in all the cases. 

 

5.2 PHYSICAL MODEL      

A simplified astrophysical situation of a self-gravitating DMC within the framework of planar (1-

D) geometry approximation in hydrodynamic equilibrium on the Jeans scale is considered. Such a 

geometrical model may justifiably have a spherical symmetry, but in the radial (1-D) direction 

only. The global quasi-neutrality in the presence of convective nonlinearity and neutral-charged 
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grain collisional dynamics is taken into account. It could be visualized as a static distribution of 

the multi-fluid consisting of the electrons, ions, neutral gas, and identical dust grains with partial 

ionization. The thermal electrons and ions are assumed to have weak inertia, and the massive grains 

are fully inertial in nature. The considered dust grains get negatively charged (for tite vv  ) 

through various attachment phenomena due to the plasma environment amid statistically random 

collision processes with the thermal species [3-4, 10-11]. The grain charging mechanism is a 

dynamic process in which the background electrons and ions are collected spontaneously. We 

consider a steady-state configuration of the identical charged grains, which means that the charge 

does not vary during the fluctuation evolution of interest [3-4, 10-11]. In fact, such self-gravitating 

plasmas are inhomogeneous in nature [3, 10-11, 15]. However, for simplification, our model is 

methodologically developed based on the Jeans assumption of self-gravitating uniform 

homogenous plasma [10, 15]. Thus, the zeroth-order self-gravitational field is neglected, and the 

equilibrium is treated initially as ‘homogeneous’, thereby validating local analysis. 

 

  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.1 Schematic diagram showing a partially ionized DMC model. 

 

In normal DMCs, magnetic field is G1~  [10], around which the charged grains, in principle, 

perform gyration [1]. For eqd 100~ , and 1310~ 
dm  kg [1, 4], the gyro-period of the grains is 

610~cd  years, which is too slow to influence the grainy dynamics considerably. The effects of 
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the magnetic field on the grains are experienced through plasma particles, which are usually well 

coupled to the field. So, the effect of the magnetic field is ignored, and an unmagnetized cloud 

configuration [1] is considered. The drag effects and other force field effects are also neglected for 

the time being. For simplicity, we ignore complications like dust-charge fluctuation, grain size-

distribution, rotation, viscosity, spatiotemporal inhomogeneities, etc. 

Figure 5.1 pictorially shows the morphology of a partially ionized DMC. The efficacious 

inertial mass of the cloud is collectively contributed by the heavier grains, and negligibly by the 

inertia-corrected thermal species, but it is valid within the limit of Newtonian point-mass 

approximation. An assumed wide-range spectrum in the grain-mass ( 219 1010~  dm  kg) physically 

allows a suitable parameter regime, where, the monopolar self-gravitational ( gF ) and bipolar 

electrostatic forces ( eF ) may become approximately comparable. Thus, if the grain charge-to-mass 

ratio is such that  10~22
dd qGm , the joint interplayed action of the two opposing forces in 

establishing gravito-electrostatic equilibrium may play an important role in the formation 

processes of equilibrium stellar structures. It may further be worth mentioning that the adopted 

model setup sustains the nonlinearity (wave steepening agency) due to fluidity, the dispersion 

(wave spreading agency) due to self-gravitational interaction within the planar geometry, and the 

dissipation (wave damping agency) because of collective collisional dynamics of intrinsic cloud 

origin [11]. The strength of the electric forces developed from space-charge polarization effects 

(local charge imbalance) are considered to be too weak to excite higher order contributions of 

various nonlinear terms, thereby validating our underlying assumption of weak nonlinearity. 

 

5.3 MATHEMATICAL FORMULATION 

We are interested to investigate the nonlinear electro-gravitational stability of the pulsational mode 

dynamics in presence of the inertia-corrected thermal electrons and ions, and their basic 

conservation laws. So, the lowest-order inertia-corrected normalized densities with all 

conventional notations described later [9, 12] for the electrons and ions  can be written as follows, 

   
















 21

2

1 2 expM
m

m
expN eo

i

e
e , and                                                                    (5.1) 

   
















 21

2

1 2 expM
m

m
expN io

d

i
i .                                                                         (5.2) 



93 

 

Thus, the equations (5.1)-(5.2) contains the lowest-order inertial characteristics through the 

presence of inertial correction factor ie mm  and di mm  (asymptotic electron-to-ion and ion-to-

dust mass ratios), respectively. The normalized equations governing the dynamics of the neutral 

and charged dust within the framework of the Jeans homogenization assumption [1, 10, 15] are  
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Here, the label  dcdns ,  characterizes the neutral and charged grain species. For dns  , one 

has 0 , and 0f . Similarly, for dcs  , we have eqd , and  dndccn MMFf  . The 

spatial distributions of the normalized electrostatic potential ( ), and self-gravitational potential 

( ) are described by the combining Poisson equations thereby closing the model as given below, 
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All the astrophysical self-gravitating clouds are inhomogeneous in nature. But, analytically dealing 

with an inhomogeneous equilibrium configuration is too complicated. So, to make it simpler, we 

use dnodcodo nnn    in equation (5.6), which models the Jeans swindle [10, 15] of the equilibrium 

unipolar gravitational force field. It provides a formal justification that the self-gravitational 

potential is sourced only by density fluctuations of the infinite uniform homogeneous medium. 

Usually, the Jeans assumption for self-gravitating homogeneous medium is not so realistic, but for 

simplicity of analytical calculation, it allows us to treat the complicated inhomogeneous plasma 

dynamics as ‘homogeneous’ one [10, 15].  All the notations used above are generic and usual. The 

parameters  dnM ,  dcM ,   , and    represent the normalized neutral dust flow velocity, 

charged dust flow velocity, electrostatic and self-gravitational potentials, respectively. The 

velocities are normalized by the dust sound phase speed  SSC , and the potentials are normalized 

by the cloud thermal potential  eTp
. The independent variables like space   , and time    are 

normalized by the Jeans length  J , and Jeans time  1
J  scales, respectively. Moreover, eN , 
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,iN dnN , and dcN  are the population densities of the electrons, ions, neutral, and charged grains 

normalized by their respective equilibrium densities eon , ion ,
 dnon ,

 
and dcon , respectively. 

Furthermore, cnF  is the charged-neutral grain collision frequency normalized by the Jeans 

frequency J . The notations em , im , and dm  denote the mass of the electrons, ions, and the dust 

grains with temperature eT , iT , and dT ; equilibrium flow eoM , ioM , dcoM ; and charge e , e  

and dq ; respectively, where pied TTTT   (in eV). 

We apply a standard methodology of multiscale analysis [16] over the equations (5.1)-(5.6) 

around the zeroth-order homogeneous configuration in a new stretched space defined by the 

transformations    21 /X , and 23 /T   [16], where  is a minor parameter 

characterizing the balanced strength of nonlinearity and dispersion, and   is the phase velocity 

(normalized by ssC ) of the fluctuations. The dependent variables like densities, potentials, and 

velocities in equations (5.1)-(5.6) are now expanded nonlinearly (in -powers) around the 

respective equilibrium values of the defined equilibrium dust cloud as follows, 
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In our model, the gravity-induced electric polarization effects are neglected for mathematical 

simplicity as discussed elaborately in chapter 4. We use equation (5.7) over equations (5.1)-(5.6) 

and after order-by-order analyses (in -powers) with systematic rigorous calculations; we finally 

obtain electrostatic and self-gravitational Korteweg de–Vries (KdV) equations to study the gravito-

electrostatic fluctuations of the cloud.  Accordingly, the electrostatic fluctuations are governed by, 
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which is the electrostatic KdV equation with coefficients 
121

  , and 
132

  , where, 
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The self-gravitational fluctuations are governed by, 
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which is self-gravitational KdV equation with coefficients 
121   , and 

132   , such that, 
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We are interested in the basic features of the steady-state structures of the fluctuation dynamics. 

So, equations (5.8) and (5.13) are transformed into ordinary differential equations (ODEs) by the 

Galilean co-moving transformation TX  , and given by 
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Equations (5.18)-(5.19) together constitute a unique steady-state pair KdV equations in a new 

space coordinatized by  , which show the fluctuations supported in the partially-ionized DMC. 



96 

 

5.4. CONSERVATION LAWS 

The KdV type nonlinear systems are well-known to possess an infinite string of conserved 

quantities due to its property of complete integrability [13-14]. Many authors in the past have 

worked on the conservation laws of the KdV type equations to derive the explicit form of the 

associated conserved densities and corresponding flux-forms. They have shown that autonomous 

evolution equations with translation invariance have three physically significant basic conserved 

quantities, such as mass, momentum, and energy [13-14]. So, we are motivated to see the evolution 

nature of the conserved quantities of the cloud by applying the same strategy. Accordingly, we 

derive the basic conserved quantities of our gravito-electrostatic KdV dynamics as follows. 

 

5.4.1 Conservative forms of Electrostatic KdV Dynamics 

The electrostatic KdV equation (5.8) can be written in a conservative form [13] as follows. 
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Equations (5.21) and (5.22) give conserved mass density of electrostatic soliton and associated 

mass flux governed by the dynamical evolution of the system, respectively [13]. Equation (5.8) is 

multiplied by 
1  (with rank 1) [13], and associated corresponding conservative form is written as,  
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Equation (5.24) gives the conserved momentum density and equation (5.25) gives associated 

momentum flux of the electrostatic KdV solitary structure. Again, equation (5.8) is multiplied by 

2

1  (with rank 2) [13] and associated conservative form is presented as, 
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Thus, equation (5.27) gives the conserved energy density and equation (5.28) provides the 

associated energy flux of the electrostatic KdV equation [13]. Similarly, we get the higher-order 

conserved quantities and conserved flux of the electrostatic KdV soliton respectively as follows,  
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      (5.32) 

and so forth. Thus, by repeating the above procedure, it is possible to get an infinitely large number 

of conserved quantities associated with the electrostatic KdV soliton.  

 

5.3.2 Conservative forms of Self-gravitational KdV Dynamics                                

The self-gravitational KdV equation (5.13) can also be written in a conservative form [13] as 
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where,  
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Equation (5.34) gives the conserved mass density and equation (5.35) offers the associated mass 

flux of the self-gravitational KdV equation. As in case of electrostatic fluctuations, here equation 

(5.13) is multiplied by 
1  (with rank 1) [13] and associated conservative form is written as, 
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It is clear that equation (5.37) gives the conserved momentum density and equation (5.38) gives 

the associated corresponding momentum flux of the self-gravitational KdV equation [13]. Again, 

equation (5.13) is multiplied by 2

1  (with rank 2) and associated conservative form is written as, 
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Equation (5.40) gives the conserved energy density and equation (5.41) shows the associated 

energy flux of the self-gravitational KdV soliton. Similarly, applying the above procedure 

repeatedly, one gets the next higher-order conserved quantities as follows.   

2

2

1

2

1

2

2

2

1
12

4

114
5

9
3

4

1





























XX
Pg






 ,                                                                        (5.42) 



99 

 

;
5

18
3

5

24

5

9
6

2

9

5

1

4

1
4

2

1
2

1

3
2

2

1
22

12
2

2

2

1
2

1
2
2

2

3

1
3

1

3
2

3

1
3

1
1

2
2

2

12
1212

1
2

3
121

5
1

2
14

XXXXX

XXXXX
Qg



















































































































  (5.43) 
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and so on. Consequently, by repeating the above procedure, it is possible to get an infinitely large 

number of conservation laws associated with the dynamics of the self-gravitational KdV solitary 

spectral patterns supported in the considered cloud. 

 

5.5 RESULTS AND DISCUSSIONS 

A simplified inertia-based theoretical model is proposed to analyze the pulsational mode 

fluctuations in a 1-D inhomogeneous partially ionized DMC with conservative flow dynamics and 

neutral-charged dust collisional effects on the Jeans scales of space and time. The associated basic 

conservation laws are also investigated in detail. Analytical, graphical, and numerical techniques 

are applied for the investigation. But for simplification due to complicated large-scale dynamics, 

our model is methodologically developed, based on the Jeans homogenization assumption (Jeans 

swindle) of self-gravitating uniform homogenous plasma [10, 15]. Based on a time-stationary 

framework, we successfully depict a rich variety of detailed fluctuations, wave-like activities, and 

their parametric evolution methodologically as discussed in detail below. 

 

5.5.1 Electrostatic Fluctuations 

It is seen that electrostatic fluctuation dynamics of the self-gravitating DMC is collectively 

governed by electrostatic KdV equation (eq. (5.8)). To display the exact excitation patterns and 

their basic features, we numerically analyze equation (5.8) by the fourth-order Runge–Kutta (RK-
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IV) method in judicious plasma conditions [1]. The obtained numerical profiles are shown in figure 

5.2. Moreover, figure 5.3 shows their relevant conserved quantities graphically. Figure 5.2 shows 

the spatial profiles of the normalized lowest-order perturbed electrostatic (a) potential, (b) field, 

(c) potential curvature, and (d) phase portrait. Various lines correspond to Case (1): 

12107412  .md  
kg (blue line), Case (2): 12107542  .md  kg (red line), Case (3): 

12107682  .md  kg (green line), and Case (4): 12107812  .md  kg (black line), respectively. 

Different input sensitive initial values used in the simulation are   610418.1 i , 

  51000.1 
i , and   31040.4 

i . The other parameters kept fixed in our scheme are 

21000.1 eoM , 31000.1 ioM , 67.0dnoM , 31000.1 dcoM , 21000.1 dZ , 

610506  .neo  m-3, 
810039  .nio  m-3,  and 

410512  .ndno  m-3. Here, the lowest-order perturbed 

electrostatic potential (Figure 5.2(a)) undergoes a new type of dynamic transition from solition-

chain to a single flat compressive soliton pattern (extended) with slight increase in dust grain mass. 

In the HII region with 1pT  eV, 210 , and 
810093  .J  m [1, 4] the average strength of the 

electrostatic potential fluctuations is 
3

1 10~ , which is physically  eTpphys 1  ~
510

 V. 

The corresponding field fluctuations (Figure 5.2(b)) are hybrid periodic waves composed of both 

soliton (compressive) and antisoliton (rarefactive) counterparts in accordance with the basic law 

of conservative dynamics  11 eE . The real strength of the electric field fluctuations is 

 Jepephys eETE 1 ~ 1410233 .  V m-1. The curvature profile (Figure 5.2(c)) shows that the degree 

of deviation from quasi-neutrality mapped over the cloud equilibrium is irregular, which is 

contributed by soliton-trains of varying amplitudes. The real magnitude of the potential curvature 

is    2
1 Jpphysxx eT   ~

2510041 .  V m-2. This is a very small quantity signifying that 

the global quasi-neutrality is not affected appreciably due to the inertia-based perturbation 

treatment amidst considered weak nonlinearities. The phase portrait (Figure 5.2(d)) gives a 

parametric representation of the geometrical trajectories for the global behavior of local fluctuation 

dynamics in the phase plane. This reveals a conservative nature as the trajectories evolve as closed-

form structures. For increasing dm , the trajectories overlap over one another at the potential value 

corresponding to that near the cloud center. Therefore, it is pertinent to add that the central portion 

of the cloud surrounds the most stable fixed point. The trajectories in the phase portraits start to 
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get slightly separated from one another as the perturbed potential increases in magnitude from the 

center outwards. This reveals that the cloud gets gradually more unstable at spatial points away 

from the cloud center with an increase in dm . 

 

 

                                         
                                        (a)                                                                                     (b) 

 

 

                      

                                                     (c)                                                                                     (d) 
 

 

Figure 5.2 Profile of the normalized lowest-order perturbed electrostatic (a) potential, (b) field, (c) 

potential curvature, and (d) phase portrait. Various lines correspond to Case (1): 12
d 10741.2m   

kg (blue line), Case (2): 12
d 10754.2m   kg (red line), Case (3): 12

d 10768.2m   kg (green line), 

and Case (4): 12
d 10781.2m   kg (black line), respectively. Various input and initial parameter 

values are given in the text. 
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Figure 5.3 shows the evolutionary patterns of the first five conserved quantities of electrostatic 

KdV dynamics under the same condition as figure 5.2. Different lines correspond to Case (1): 1eP  

(blue line), Case (2): 2eP  (red line, rescaled by dividing with 31000.2  ), Case (3): 3eP  (green line, 

rescaled by dividing with 31020.2  ), Case (4): 4eP  (black line, rescaled by dividing with 

61014.7  ), and Case (5): 5eP  (pink line, rescaled by dividing with 81050.2  ). The first conserved 

quantity, as usual mass density (blue line) of the KdV dynamics [13], evolves as soliton-like 

structure with physical value 5

11 10 ephye P~P  V. Again, the second conserved quantity, i.e., 

momentum density (red line) of the KdV dynamics also evolves as a two-tail soliton-like pattern 

with amplitude 6

2 10~Pe . Similarly, the third conserved quantity, i.e., energy density (green line) 

also appears as a soliton-like pattern with amplitude 6

3 10~Pe . The other higher-order conserved 

quantities are of great significance in applied mathematics only. They are physically soliton-type 

in patterns, as analyzed by many authors in past too [13-14]. Here too, the higher-order conserved 

quantities appear with some fluctuations and distortions due to the re-organization of internal 

convective flow dynamics of the massive grains and background acoustic spectral components 

tending to establish a new dynamical equilibrium subject to weakly nonlinear perturbation. 
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5.5.2 Self-gravitational Fluctuations 

Similar to the electrostatic fluctuations, the nonlinear self-gravitational oscillation dynamics of the 

planar DMC too is collectively governed by KdV equation (eq. (5.13)) on the lowest-order 

perturbed self-gravitational potential. The equation is integrated numerically as before to examine 

the detailed features of the excitation patterns and their conservative dynamics in some realistic 

cloud conditions [1]. The numerical profiles thus obtained are presented in figures 5.4-5.5. 

Figure 5.4 shows the spatial profile structures of the normalized lowest-order perturbed 

self-gravitational (a) potential, (b) field, (c) potential curvature, and (d) phase portrait. Various 

lines correspond to Case (1): 91030.4 dm  kg (blue line), Case (2): 810791  .md
 kg (red line), 

Case (3): 810153  .md
 kg (green line), and Case (4): 810504  .md  kg (black line), 

respectively. Different input initial values used here are   810001  .i ,   710001  .
i , and 

  610908  .
i . The other sensitive parameters kept fixed are 310001  .eoM , 410001  .ioM , 

100.M dno  , 310001  .M dco
, 100dZ , 710506  .neo

 m-3, 910101  .nio
, 410502  .ndno

 m-3, and 

00.1 . It shows that the fluctuations evolve as soliton-chain-like and soliton pattern (hump-

like) of different characteristics (Figure 5.4(a)). The amplitude of the pattern increases with an 

increase in dm , and vice versa. A unique transition from a soliton-chain to a single soliton structure 

(with two tails) is found to take place. This, in fact, goes well in accordance with the Newtonian 

gravitational law, revealing that the self-gravitational potential increases with the grain mass 

within the point mass approximation, and vice versa. In the HII region with 1~pT  eV, 210 , 

and 810093  .J  m [1, 4] the strength of the self-gravitational potential fluctuations is 

 eTpphys 1  ~ 710 J C-1. It is again seen that the self-gravitational field fluctuations of the 

cloud associated with the compressive soliton patterns is a nonlinear periodic wave composed of 

both compressive and rarefactive solitary counterparts (Figure 5.4(b)) with real strength 

 Jgpgphys eETE 1 ~ 1610233 .  J C-1 m-1. This is as per the basic law of the conservative self-

gravitational KdV dynamics  11 gE , such that the curvatures (Figure 5.4(c)) with physical 

strength    2
1 Jpphysxx eT   ~

2710041 .  J C-1 m-2 get self-consistently reorganized in a 

like dynamical fashion. So, the nature of the phase portrait turns into bigger sizes, but are always 

closed in shape (Figure 5.4(d)). The phase portrait again reveals that the central portion of the 



104 

 

cloud surrounds the most stable fixed point and the stability of the cloud gradually decreases at 

spatial points away from the cloud center. 
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Figure 5.4 Profile of the normalized lowest-order perturbed self-gravitational (a) potential, (b) field, 

(c) potential curvature, and (d) phase portrait. Various lines correspond to Case (1): 9
d 1030.4m   

kg (blue line), Case (2): 8
d 1079.1m   kg (red line), Case (3): 8

d 1015.3m   kg (green line), 

and Case (4): 8
d 1050.4m   kg (black line), respectively. Various numerical input and initial 

parameter values are given in the text. 

 

Figure 5.5 gives the profile of the first five conserved quantities of self-gravitational KdV 
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line), Case (2): 2gP  (red line, rescaled by dividing with 51000.4  ), Case (3): 3gP  (green line, 

rescaled by dividing with 210004 . ), Case (4): 
4gP  (black line, rescaled by dividing with 21000.5  ), 

and Case (5): 5gP  (pink line, rescaled by dividing with 51010.1  ). The first conserved quantity, 

i.e., mass density (blue line) [13] of the self-gravitational KdV dynamics soliton evolves as two 

tail soliton-like structure with physical value 7
11 10 ~P~P gphyg  J C-1. Again the second conserved 

quantity, i.e., momentum density of the self-gravitational KdV dynamics evolves as soliton-like 

pattern with amplitude 9
2 10~Pg . Similarly, the third conserved quantity, i.e., energy density also 

appears as a soliton-like pattern with amplitude 3
3 10~Pg . The other higher-order conserved 

quantities are physically the derivative forms of the lowest-order ones, as analyzed by many 

authors elsewhere in past [13-14]. The higher-order conserved quantities appear with some 

background fluctuations and destabilizations due to the re-organization of internal convective flow 

dynamics and acoustic winds of the plasma constituents, thereby tending to achieve a new 

dynamical equilibrium amid weak perturbation. 

 

 

 

 

 

 

 

 

 

Figure 5.5 Profile of the first five conserved quantities of self-gravitational KdV dynamics under the 

same condition as figure 5.4. Various lines correspond to Case (1): 1gP  (blue line), Case (2): 
2gP  (red 

line), Case (3): 
3gP  (green line), Case (4): 

4gP  (black line), and Case (5): 
5gP  (pink line). 
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equations. Coexcitation of some solitary patterns are found as due basically to the intermittent 

interplay between the self-gravitational dispersion (due to massive grains) and hydrodynamic 

nonlinearity (due to hydrodynamicity). Although the excitation mechanisms are similar, the 

obtained spectral classes of the eigenmodes have some distinctive features between them in terms 

of response characteristics. The ratio between electrostatic-to-self-gravitational fluctuations is 

obtained as     210~
physxxphysxxgphysephysphysphys EE   . Thus, the electrostatic 

fluctuations are more dominant (due to all charged particles) than the corresponding self-

gravitational counterparts (due to all massive particles) in the DMC. Besides, the ratio of first 

conserved quantity of electrostatic and self-gravitational KdV dynamics is  2
11 10~phygphye PP .    

A quantitative glimpse on the various nonlinear electrostatic (Figures 5.2-5.3) and self-

gravitational (Figures 5.4-5.5) eigenmode structures along with their relative conserved quantities, 

exhibiting some distinctive features are presented in Table 5.1. 

Table 5.1: Electrostatic and self-gravitational fluctuations 

 

 No.            Items                    Electrostatic                                   Self-gravitational  

 

1     Initial assumption           Quasi-neutrality                            Jeans mass-neutrality 

2     Source                             All Coulombic particles               All Newtonian particles 

3     Origin of dispersion        Quasi-neutrality deviancy            Self-gravity 

4     Origin of nonlinearity     Hydrodynamic convection           Same 

5     Evolution equation          Electrostatic KdV                         Self-gravitational KdV 

6     Eigenmode structure       Compressive soliton-chain           Double-tail soliton (hump) 

                                            and flattened soliton patterns        and soliton-chain patterns 

7  Eigenmode amplitude     Small (
510~ 

 V)                           Smaller (
710~ 

J C-1)  

8  Field amplitude               Small (~ 1410233 .  V m-1)          Smaller (~ 1610233 .  J C-1 m-1) 

9  Geometrical curvature    Low ( 251004.1~   V m-2)           Lower ( 271004.1~   J C-1  m-2) 

10  Functional form                 em h  2
11 sec               gm h  2

11 sec  

11  Effect of increasing dm  Amplitude of fluctuations             Amplitude of fluctuations            

                                         increases (slowly)                         increases (rapidly) 

12  Effect of increasing dq   Amplitude decreases (very slow)  Amplitude increases (fast)          

 (Plots in Ref. [17]) 
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13  Effect of increasing     Amplitude rises, and shows a        Amplitude decreases and no 

(Plots in Ref. [17])          shape transition (soliton-chain     structural transition is noticed 

                                       to soliton)    

14  Effect of increasing ion  Amplitude slightly increases,        Amplitude falls (fast), and  

(Plots in Ref. [17])          and results in a transition from      results in a transition from single 

                                       soliton-chain to extended soliton   soliton (two-tail, hump-like) to  

                                                                                              soliton-chain 

15  Effect of increasing eon  Amplitude of fluctuation               Both amplitude and width 

 (Plots in Ref. [17])          remains the same, but width         decreases very slowly  

                                   rises (compacton) 

16 Normal field shape          Hybrid multi-peakon of soliton     Similar (but, with no multi- 

                                   (compressive) and antisoliton       peakon characteristics) 

                                   (rarefactive) 

17 Usual curvature shape     Amalgam of compressive and       Similar (with valley-like soliton  

                                   rarefactive structures                     and soliton-train) 

18 Normal shape transition  Soliton-chain to flat soliton,          Soliton to soliton-chain, and  

                                                and vice versa                                vice versa   

19 Phase portraits                 Closed and the center is the           Same (conservative) 

                                         most stable fixed point  

20 Shape of conserved         Flat soliton-like pattern                 Two-tail soliton-like pattern 

        soliton mass density                         

21 Shape of conserved         Two-tail soliton-like pattern          Soliton-like pattern 

soliton momentum 

density 

22 Shape of conserved         Soliton-like pattern                        Soliton-like pattern 

soliton energy 

density 

23 Validity limit                 Weak nonlinearity (< 3rd order)      Same, but for nonrelativistic 

                                 and nonrelativistic point-charge     point-mass estimate 

                                       assumption 
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5.6 CONCLUSION 

In this chapter, an inertia-based theoretical model is developed to study the gravito-electrostatic 

pulsational mode stability in a planar self-gravitaying DMC on astrophysical scale. The basis of 

the adopted model is the Jeans assumption of self-gravitating homogeneous uniform medium 

paving the way for local analytical simplification. The active inertial role of the cloud thermal 

species and weak frictional coupling are included. The model supports the excitation, existence 

and evolution of the nonlinear gravito-electrostatic eigenmodes in the form of diverse solitary 

spectral patterns. The observed wide-range spectrum of the eigenmodes include flattened soliton, 

extended soliton, and soliton-chain altogether collectively known as soliton-patterns. Their 

dynamic structures are governed by a pair KdV equation in modified form developed by applying 

a standard multiscale analysis. This is observed that the electrostatic eigenmodes have greater 

strengths as compared with those of the self-gravitational ones ( 210~phyphy  ). The 

corresponding unipolar self-gravitational contribution is not so strong because of small inertial 

masses of the constituents unless and until the long-rang force-ratio condition

 10~22
ddeg qGmFF   is fulfilled to form gravito-electrostatically confined equilibrium diverse 

astrophysical structures [1]. The closed form of phase portraits reveal that the intrinsic 

conservative dynamics involved in the KdV system is well-satisfied even in the presence of the 

lowest-order inertial correction of thermal species and weak friction. 

The analysis of the primary conserved quantities for both electrostatic and self-

gravitational KdV dynamics together with their constructed shapes is also presented in this chapter. 

Different conservative forms of the gravito-electrostatic fluctuations are analytically derived to 

show the basic conserved densities and associated fluxes pictorially. The evolution patterns of the 

conserved mass density, momentum density, and energy density are elaborately discussed. They 

retain the average shape of solitary structures, but in a slightly distorted form for their higher ranks. 

It is interesting to note that the pulsational mode fluctuations in our inhomogeneous cloud 

configuration dynamically evolve in such a way that all these derived explicit forms of 

conservative properties remain conserved throughout their propagation on the astrophysical scales 

of space and time. However, the next higher-order conserved densities show some fluctuations in 

their shapes because of background acoustic spectral winds. The underlying basis of nonlinear 

coupling of the diverse spectral components may put a platform for further investigation with great 
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significance in applied mathematics [13-14]. The detailed analyses of the analytical and numerical 

findings due to sensitive multi-parameter variations are elaborately discussed in the Ref. [17-18]. 

The solitary spectral patterns analyzed in our inertia-centric cloud model have astrophysical 

importance too. They are in partial and qualitative correspondence with the predictions on 

astrophysical nonlinear waves made by various spacecraft instrumentations, on-board multispace 

satellite reports, and experimental findings [3, 6, 19]. Examples of such clouds are Lynds 204 

Complex, Barnard 68, and so forth. The methodological analysis may also be extensively applied 

to study the observed data on the dynamics of jets and associated bow shocks on the galactic scales 

as observed in certain galaxies like M51, NGC 1068, NGC 5258, Circinus, Mrk 673, and so forth. 

Our investigation may afford different and wider scopes for elaborate improvement and 

refinements to understand the temporal eigenmode evolution with various equilibrium spatio-

temporal inhomogeneities. For a realistic and creative study, our model needs a number of 

refinements. It must include grain rotations, magnetic field, dust charge fluctuations, viscosity, 

grain-size distribution, diffusion, etc. [1-7, 10-11]. Although simplified, we hope that the obtained 

results may be applied as vibrant elements to perceive some realistic space, stellar, and 

astrophysical plasma environments, and their associated wave kinetics having non-trivial roles in 

diverse bounded structure formation mechanisms. 
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