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CHAPTER-6 
 

GLOBAL PULSATIONAL MODE FLUCTUATIONS 

IN INHOMOGENEOUS DUST MOLECULAR 

CLOUD WITH DUST-CHARGE VARIATION 
 

Abstract: A new evolutionary analytic model for investigating the nonlinear gravito-electrostatic 

waves in a self-gravitating inhomogeneous planar collisional dust molecular cloud (DMC) on the 

Jeans scales of space and time is constructed. It includes dust-charge variation and weak but finite 

inertia of the thermal electrons and ions on the stability time scale. All the equilibrium gradients 

and inhomogeneities arising from the dynamics of the plasma constituents are considered. Thus, 

any conventional homogenization assumption, like the Jeans swindle, for mathematical 

simplification is avoided to depict the actual scenario. By standard inhomogeneous multiple 

scaling techniques, it is methodologically shown that the fluctuations are collectively governed by 

a unique gravito-electrostatically coupled pair of driven Korteweg-de Vries (d-KdV) equations 

with new gradient-driven variable coefficients and self-consistent linear driving sources. A 

numerical analysis portrays the co-existing eigenmode excitations as oscillatory shock- and 

soliton-like structures. In addition, depending on the explicit regions of the varied plasma 

parameter space and inhomogeneities, a new shape-transition from soliton to shock and vice-versa 

is noticed. The exact results obtained can rigorously be applied to explain diverse multispace 

satellite observations and predictions made by others in space and astrophysical environments. 
 

6.1 INTRODUCTION 

The presence of the dust grains in the space and astrophysical environments have attracted a great 

deal of attention due to their ubiquitous nature. They are not uniformly distributed in the interstellar 

media, rather they are accumulated in the molecular clouds [1-3]. Various physical properties of 

the dust grains in the interstellar clouds are elaborately discussed in chapter 1. The propagation of 

various waves and instabilities in such astrophysical dust molecular clouds (DMCs) have received 

much attention because of their vital role in understanding various fundamental processes in the 

formation progressions of stars, asteroid zones, planetary rings, and other galactic objects [1-4]. 
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The dust grains of the interstellar media get electrically charged due to various competing 

phenomena assisted by the electron and ion capture in background plasma environments [1-3]. 

The grains also lose charges by processes like secondary emission, photo-emission of electrons, 

and so forth. So, the grain charge eZq dd   indeed may fluctuate from e1  and 0 in cold (dark) 

cloud at 30T  K, and eqd 100  in the HII region at 410~T  K [1-5]. Thus, the grain-charge behaves 

as a dynamical variable owing mainly due to the attachment of the electrons and ions to the grain-

surface randomly. It has been found that the presence of the grains with fluctuating charge in 

astrophysical environments not only modifies existing plasma wave spectrum [3, 5-8], but also 

give rise to different low-frequency waves and oscillations, both with [3, 5-6] and without [7-8] 

self-gravity. The modification of the wave spectra occurs due to the reduction in number density 

of the plasma thermal species; and due to subsequent introduction of new time scales. The 

existence of such modified eigenmodes in diverse situations has been studied theoretically [5-8] 

as well as experimentally [9]. To name a few, Rao et al. have first theoretically predicted the 

existence of low-frequency nonlinear eigenmodes in unmagnetized dust-electron-ion plasma, 

where, the charged grains provide the inertia; and the pressure of the inertialess electrons and ions 

provides the corresponding restoring force triggering longitudinal plasma sound modes [10]. 

The presence of the massive grains in the interstellar DMC, between and around comets 

and other astrophysical objects, has been known for long time from remote astronomical and 

satellite observations [1-4, 9]. As the massive grains are present in astrophysical plasmas, the 

gravitational effects become significant. For plasmas with medium-sized electrically charged 

grains, both the self-gravitational and electrostatic repulsive effects balance each other [5, 11]. So, 

in interstellar DMC, there are gravito-electrostatic coupling processes responsible for the 

development of any bounded structure of the Jeans-scale size. When the self-gravitational 

interaction with relative streaming between plasma and the dust component is included, the Jeans-

type instabilities are naturally excited. As a result, different nonlinear eigenmodes in the form of 

shock, solitons, vortices, etc., evolve, which help in explaining the basic physics of stars, planets, 

and other galactic structure formation-evolution processes [3-4, 11-12].  

There are different models to analyze the propagation of various low-frequency 

eigenmodes in diverse plasma environments. Most of the investigations have predicted that the 

dynamical behavior of the eigenmodes is described by the Korteweg–de Vries (KdV) equation as 

long as the plasma equilibrium is homogeneous [7, 11]. Recently, Mandal et al. have studied the 
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nonlinear propagation of low-frequency shock waves in three-component unmagnetized dusty 

plasma consisting of nonextensive electrons, Maxwellian ions, and arbitrarily charged mobile dust 

grains in relevance to space and laboratory plasmas [13]. They have found that the presence of q-

nonextensive electrons and ions can change the nonlinear behavior of shock wave [13]. In reality, 

due to the equilibrium density gradients and fluctuations, DMCs are also highly inhomogeneous; 

and equilibrium plasma variables evolve with both space and time [1-4, 12, 14]. But, so far is seen, 

little work has been carried out to study the full nonlinear eigenmodes in such realistic 

spatiotemporally inhomogeneous configurations [14-15]. However, nonlinear gravito-electrostatic 

disturbances in self-gravitating inhomogeneous collisional astrophysical plasma with the weakly 

inertial thermal species are yet to be understood. Although weak but finite in presence of the 

massive dust grains, the thermal species might have some dominant roles to affect the excitation 

and evolution of the normal modes in wide-spatially extended systems in different realistic 

situations too as proposed in laboratory scale observations [16] as well.  

The work of this chapter is motivated by developing the curiosity of understanding the 

evolutionary dynamics of eigenmode structures excitable in a planar (1-D) self-gravitating 

inhomogeneous cloud including all the realistic agencies in an external field-free quasi-neutral 

configuration on the Jeans scale. The key stimulus is to characterize the eigenmodes in presence 

of the thermal inertia of the cloud, dust-charge fluctuation, various collisional effects, and all the 

spatiotemporally evolving equilibrium plasma parameters. We adopt a standard methodology of 

inhomogeneous multiple scaling techniques [17] around a justifiable inhomogeneous gravito-

electrostatic equilibrium over the basic derived cloud structure equations. It is found that both the 

nonlinear electrostatic and self-gravitational fluctuations dynamically evolve like a gravito-

electrostatically coupled driven Korteweg-de Vries (d-KdV) equations with self-consistent linear 

sources. A detailed numerical analysis as initial value problems by the fourth-order Runge-Kutta 

method (stationary) and finite-difference method (spatiotemporal) under some judicious plasma 

multi-parameter variation is carried out for their micro-dynamics characterization. The fluctuation 

structures in the astrophysical charge-varying collisional grainy plasma appear mainly in the 

unique form of oscillatory shocks and solitary spectral patterns [6, 8-9, 12, 14-15], which are 

subsequently shown to undergo some newer transitions in between the two distinct classes of the 

spectral patterns in realistic parameter regime. Lastly, this chapter concentrates to discuss the main 

significance of such eigenmode structures lying in the diverse areas of cloud physics, space 
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science, and modern astrophysics because of their crucial role played in understanding self-

gravitational collapse, formation-evolution of interstellar structure, star formation, and galactic 

composition and its evolution, etc., as widely explained elsewhere too [12, 15, 18-20]. 

 

6.2 PHYSICAL MODEL 

A four-component simplified planar self-gravitating DMC is considered under quasi-neutral 

hydrodynamic inhomogeneous equilibrium configuration. On the astrophysical scales, the plasma 

bipolar thermal constituents are the thermal electrons, and singly ionized positive ions; and the 

inertial spherical micron-sized neutral (nonpolar) dust grains, and negatively charged dust grains.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Cartoon showing inhomogeneous, partially-charged DMC adopted in our investigation without 

any Jeans swindle included. The charging of the grains due to electron, ion bombardments, ultraviolet 

radiation and photoelectric emission mechanisms is highlighted. 

 

The assumed planar (1-D) geometry may be equivalent to a spherical symmetry (with infinitely 

large radius of curvature), wherein, the fluctuations propagate in radial direction only. The dust 

flow convections, collisional effects, grain-charge fluctuations, and equilibrium gradients of 

relevant cloud parameters are all taken into account in presence of the lowest-order inertial 

correction of the thermal species. Since, the model equilibrium is inhomogeneous in nature, so it 

avoids the Jeans swindle approximation [21-22]. The dynamics of the heavier neutral grains is 

merely governed by the Newtonian self-gravitational forces, and that of the charged species is 
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controlled by the effective combination of the Columbic electrostatic and Newtonian gravitational 

forces. The self-gravitational and electrostatic forces may become commensurable for the grains 

with high charge-to-mass ratio. A bulk uniform flow is assumed to pre-exist in the hydrodynamic 

inhomogeneous equilibrium. Figure 6.1 shows the cartoon of a partially-ionized, inhomogeneous, 

self-gravitating DMC with dust-charge fluctuations.  

This may be pertinent to add further that the equilibrium is inhomogeneous due to diverse 

spatiotemporal gradients of all the relevant dependent plasma parameters with high-frequency (~1 

MHz) dust-charge fluctuation. The strength of the electric forces developed due to space-charge 

polarization effects (local charge imbalance) are taken to be too weak to excite higher order 

contributions of various harmonics on the Jeans scale, thereby validating our underlying 

assumption of weak nonlinearity. The existence of a micro-Gauss (
610~ 
 G) magnetic field in 

interstellar inhomogeneous DMC is well known [21]. The electrically charged grain will gyrate 

around the magnetic field. Here, for the grains of 910~ 

dm  kg and eqd 100~ , the gyration period 

is estimated as 
1010~  years. This period is as large as the age of our Galaxy (

1010~  years). 

Therefore, we may neglect the effect of magnetic field on the constituents. For further simplicity, 

we ignore the presence of dust-rotation, viscosity, circulation, dust-size distribution, etc. 

 

6.3 BASIC GOVERNING EQUATIONS 

The inhomogeneous hydrodynamic equilibrium of the proposed model is visualized as a quasi-

static distribution of the multi-fluid constituent particles having both the Newtonian and 

Coulombic properties. We apply the lowest-order inertial correction [16] of the thermal species in 

the nonlinear gravito-electrostatic eigenmode analysis of the collisional inhomogeneous DMC.  

This is incorporated through the modified Boltzmann distributions on the Jeans scale. A standard 

normalization procedure [5] of the relevant astrophysical parameters is adopted. The modified 

Boltzmann distributions considering weak but finite inertia of the thermal electrons and the ions in 

normalized form are directly presented as,  
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Here, edcF , and idcF  are the normalized electron-charged dust and ion-charged dust collision 

frequencies, respectively. Also, e , and i  denote average electron transit-scale-length and ion 

transit-scale-length, respectively. It is clearly seen that the presence of the mass-ratios in the above 

expressions describe the active inertial roles of the thermal species in the relevant response scales. 

If we consider de mm , 0di mm  for the inertialess electrons and the ions in equations (6.1)-

(6.2), they reduce back to the normal inertialess Boltzmann distributions [3, 5]. The main concern 

here is to examine the effects of these equations in our model fluctuation dynamics. Now, the 

normalized set of equations governing our model are enlisted as, 
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Equations (6.3)-(6.4) governs the dynamics of the electrons ( es  , 1 ), and ions ( is  , 1 ), 

respectively. Since, we are interested in weakly nonlinear low-frequency fluctuations, we neglect 

the force-balance inertial term in equation (6.4) as described elsewhere [5]. It is well-known that 

if the phase speed of the fluctuations is much smaller than the thermal speed of the electrons and 

ions in a dusty plasma configuration, the dynamics of both the thermal electrons and ions is 

governed by the Boltzmann population density distribution [23]. In our present analysis,

1710~em~ e  (in unnormalized form) for the electrons and 1410~em~ i (in 

unnormalized form) for the ions, which are quite small [5]. So, the effect of self-gravity [5] on 

them is neglected, as clearly seen from equation (6.4). The notation  , and   represents the 

unnormalized electrostatic and self-gravitational potential, respectively. The dynamics of the 

neutral and charged grains are similarly described by, 
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Here, for nh   (neutral dust), one has 0 , and  dcdnncn MMFf  . Similarly, for ch   (charge 

dust), we have doq , and  dndccnc MMFf  . The spatial distributions of the electrostatic 
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potential  , and self-gravitational potential   in presence of the weak but finite thermal inertia 

taken into account are defined by combining electro-gravitational Poisson equations as, 
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where, doddno nmen1 , dnodco nn2 , dnodeeo nmmn3 , and dnodiio nmmn4 . Here, a 

natural question may arise in the mind of readers. The self-gravitational effects are ignored in the 

momentum equation (equation (6.4)) of both the thermal electrons and ions with required 

quantitative justifications, relative to the electrostatic influences. But, in isolation, the weak but 

finite inertia is assumed to contribute to the net self-gravitational potential distribution (equation 

(6.8)), although it is much smaller in comparison with that by the grains. Thus, we introduce a 

weak but finite self-gravitational effect in the dynamics of the electrons and ions in our model on 

the basis of the calculated relative strength of the gravito-electrostatic coupling of the thermal 

species in isolation.  We consider inhomogeneous material distribution of the self-gravitational 

infinitely large DMC with the inhomogeneous equilibrium itself spatiotemporally evolving. So, it 

avoids the Jeans swindle by which the inhomogeneous self-gravitating equilibrium is initially 

considered as ‘homogeneous’ for mathematical simplicity [21-22]. Lastly, the charge dynamic 

equation for the charge-fluctuated grain dynamics is given by, 
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In the above normalized set of equations, the notations em , im , dnm  and dcm  ( ddcdn mmm ~ ) 

are mass of each electron, ion, neutral and charged dust grains with temperature ie TT ~  pT

ddcdn TTT  ~ , respectively. The equilibrium dust density is dnodcodo nnn  . The independent 

coordinates like position X  and time T are normalized by the Jeans length J  and Jeans time 

1
J  scales, respectively. The parameters eM , iM , dnM , and dcM  represent the flow velocities 

of the electrons, ions, neutral grains and charged grains normalized by the dust sound phase speed 

SSC  each. Moreover, eN , iN , dnN , and dcN  are the population densities of the electrons, ions, 
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neutral grains and charged grains normalized by their equilibrium densities eon , ion , dnon , and 

dcon , respectively. Both the electrostatic potential   and self-gravitational potential   are 

normalized by the same electron thermal potential eTP  
 so as to compare their fluctuation levels 

on a common equivalent reference. The grain charge dQ  is normalized by the equilibrium grain 

charge doq . Lastly, the symbols edcF , edF , idcF , idF , ncF , and cnF   are the collision frequencies 

of the electrons and charged dust grains; electrons and dust grains; ions and charged dust grains; 

ions and dust grains; neutral and charged dust grains; and finally, charged and neutral dust grains; 

respectively, each normalized by the Jeans frequency J . 

 

6.4. DERIVATION OF NONLINEAR EQUATIONS 

We apply a standard methodology of inhomogeneous multiple scaling techniques [14, 17] over the 

coupled set of equations (6.1)-(6.9). The dependent physical variables describing the coupled 

system are expanded nonlinearly around the equilibrium (in -powers) as follows, 
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The independent variables with all usual notations are stretched into a new space defined by the 

transformations [17] as  TX   21 , and X23 , where o 1 , and o  is the phase 

velocity of the fluctuations (normalized by SSC ), and  is a minor parameter characterizing the 

strength of nonlinearity and dispersion. We substitute equation (6.10) in equations (6.1)-(6.9) for 

order-by-order analyses and derived the coupled set of nonlinear equations governing the gravito-

electrostatic fluctuations of the inhomogeneous DMC. 

 

6.4.1 Derivation of Electrostatic d-KdV Equation 

To study the electrostatic fluctuation dynamics of the inhomogeneous DMC, we derived 

electrostatic d-KdV equation (in terms of 
1 ) by applying the systematic methodology of 
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elimination and simplification after the order-by-order analyses of the equations (6.1)-(6.9). The 

derived d-KdV equation is expressed as, 
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Here,  514 AASeo    acts as a self-consistent linear source in the evolution of the fluctuation 

dynamics due to various equilibrium inhomogeneities. The involved coefficients are 121 A , 

132 A , 143 A , 154 A  and 165 A , where, 
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6.4.2 Derivation of Self-gravitational d-KdV Equation 

To study the self-gravitational eigenmodes, we derive d-KdV equation (in terms of 1 )  by using 
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6.4.3 Stationary Evolution Equations 

We look for possible time-stationary structures of the gravito-electrostatic fluctuations. So, we 

assume that all the variables in equations (6.11)-(6.19) depend only on a single space coordinate 

   (commoving frame). Thus, equations (6.11) and (6.19) in stationary form are, 
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Both the equations are self-consistently coupled amid gravito-electrostatic coupling through the 

presence of the coefficients 4A , 5A  (for electrostatic) and 4B , 5B  (for self-gravitational), which 

are driven by inhomogeneous equilibrium gradients in both space and time simultaneously.  

 

6.5 RESULTS AND DISCUSSIONS 

It is analytically shown that the lowest-order gravito-electrostatic eigenmode evolutions are 

expressible by a unique pair of d-KdV equations obtained by inhomogeneous multiscale analyses. 

They are simulated numerically as initial value problems in a time-stationary configuration by the 

RK-IV method [24]. The time-dependent salient features of their evolutionary dynamics are also 

analyzed by finite-difference method [24]. The observed numerical results are presented in two 

subsections: one for the electrostatic, and the other for the self-gravitational fluctuations. 

 

6.5.1 Electrostatic Fluctuations 

The electrostatic fluctuations of the cloud is collectively governed by the d-KdV equation (6.11). 

It contains a self-consistent linear driving source term arising due to the weak but finite inertial 

effect, inhomogeneity, collision, equilibrium flow of thermal species, dust grains and equilibrium 
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charged-dust distribution. To get the internal microphysics of the fluctuations, the d-KdV equation 

is integrated spatiotemporally by numerical techniques. The time-stationary results are shown in 

figure 6.2 and time-dependent results are displayed in figure 6.3.  

            Figure 6.2 portrays spatial profile of the normalized lowest-order perturbed (a) electrostatic 

potential showing a unique dynamical transition from soliton to oscillatory shock-like structure, 

(b) electric field, (c) potential curvature, and (d) phase portrait due to multi-parameter variation on 

the Jeans scale-length. Various lines correspond to Case (1): 91000.7 dm  kg, 110005  .ndco  

m-3, 31000.1 eon  m-3, and 31000.7 ion  m-3 (blue line), Case (2): 91030.6 dm  kg, 

110337  .ndco
 m-3, 210606  .neo

 m-3, and 310507  .nio
 m-3 (red line), Case (3): 

910605  .md
 kg, 110669  .ndco

 m-3, 210303  .neo
 m-3, and 310008  .nio

 m-3 (green line), 

and Case (4): 910904  .md  kg, 210201  .ndco
 m-3, 21000.1 eon  m-3, and 31050.8 ion  m-3 

(black line), respectively.  Different input initial values used   00.1
ieoN ,   11000.1 

ieoM , 

  31000.1 
io ,   71000.1 

io 
 ,   00.1

iioN ,   21000.4 
iioM ,   00.1

idcoN ,   21000.3 
idcoM , 

  21000.3 
idnoM ,   61000.1 

io ,   81000.1 
io 

 ,   001.Q
ido  ,   001.N

idno  , 

  5

1 10209  .
i

 ,   4

1 10011  .
i

 ,   3

1 10014  .
i

 . Different parameters kept fixed are 

110001  .ndno
 m-3, 210001  . , 210101  .Fedc

, 210001  .Fidc
, 2103431  .Fed

, 2100432  .Fid

, 210001  .Fcn
 and eqdo 100  [1-5]. The dust-charge fluctuation time scale is taken as, cf

  1
dtqdq dd odo Iq~ ~ 610  [25] for all the graphs. Since, we are interested in the fluctuation 

dynamics on the astrophysical scale, we take Je  3 , and 
Ji .  51 , where, 1210651  .J  m. 

Here, J  is calculated for average interstellar mass density, 2810 ~nm ddd  kg m-3, and plasma 

temperature, 1~T p
 eV [1-5]. This unique transition in the potential profile (Figure 6.2(a)) is 

collectively due to the combined effect of decreasing dm  and eon ; and increasing dcon  and ion . 

The basic physics behind this transition is that increasing number density of the charged dust grains 

and ions increases the electrostatic repulsion between the Coulombic (charged) particles. But, the 

self-gravitational attraction decreases due to the decreasing grain mass. Thus, there is an 

unbalanced electro-gravitational periodic variation, which results in these types of transition of 
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eigenmodes. The damping nature of the wave amplitude increases as the oscillatory shock-like 

fluctuations propagate   apart from the center ( J 5 ) of the cloud mass. 

 

 

 

                                      

 

 

 

 

                                              (a)                                                                                          (b) 

                                                                                                             

                                                   

 

                                                (c)                                                                                            (d)   

                                         

Figure 6.2 Spatial profile of the normalized lowest-order perturbed (a) electrostatic potential showing a 

unique dynamical transition from soliton to oscillatory shock-like structure, (b) electric field, (c) potential 

curvature, and (d) phase portrait due to multi-parameter variation. Various lines correspond to Case (1): 

9
d 1000.7m   kg, 1

dco 1000.5n   m-3, 3
eo 1000.1n   m-3, and 3

io 1000.7n   m-3 (blue line), 

Case (2): 9
d 1030.6m   kg, 1

dco 1033.7n   m-3, 2
eo 1060.6n   m-3, and 3

io 1050.7n   m-3 

(red line), Case (3): 9
d 1060.5m   kg, 1

dco 1066.9n   m-3, 2
eo 1030.3n   m-3, and 

3
io 1000.8n   m-3 (green line), and Case (4): 9

d 1090.4m   kg, 2
dco 1020.1n   m-3, 

2
eo 1000.1n   m-3, and 3

io 1050.8n   m-3 (black line), respectively. Various input and initial 

parameter values are presented in the text. 
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This may be due to decrease of the electro-gravitational coupling process. The physical strength 

of the potential fluctuation for normalized value 1~  is estimated as   2

1 10 ~eT~ pphys   V 

in the HII region with 
210  [1-5]. Figure 6.2(b) graphically shows the field fluctuation with a 

transition from a mixture of compressive and rarefective soliton-like eigenmode to a chain-mixture 

of compressive and rarefective solitons. The real strength of the field fluctuation is ~physE

 JeP eET 1  141027.2~   V m-1. Figure 6.2(c) gives the corresponding fluctuations in the 

plasma quasi-neutrality. It is seen that with the increasing dcon  and ion ; and decreasing eon , the 

strength of total charge is highly increased, which gives highly fluctuating quasi-neutrality. The 

lowest-order electrostatic potential curvature strength of the inhomogeneous DMC is calculated as 

  ~
physxx    262

1 1049.4~  Jp eT   V m-2. The corresponding phase portraits (Figure 

6.2(d)) show the geometrical trajectories with a transition from weakly conservative to non-

conservative nature of the dynamics. It reveals that the system becomes highly non-conservative 

with the increasing dcon , and ion . The evolutionary profiles of the fluctuations supported in the 

cloud due to other sensitive plasma parameter variations are discussed in detail in Ref. [26].  

           For 3-D spatiotemporal analysis, equation (6.11) is simulated by finite-difference method. 

Figure 6.3(a) depicts the surface-profile of the normalized perturbed potential under the same 

condition as figure 6.2, but with   001.0
idcoM ,   01.0

idoQ , and  
i1
   1021sec2.3 2 h

. The boundary conditions applied here are (i) all the densities and dust-charge at infinity are 

asymptotically zero, (ii) all the velocities at the center of the cloud are zero, and (iii) all the 

potentials at the center and asymptotically at infinity are zero. Figure 6.3(b), similarly, shows the 

profile of normalized potential growing as oscillatory shock-like structure with   
i1

 2sec5.2 h

   203.01021   . Different input initial values used here are same as figure 6.2 but with 

  110001  .M
ieo

,   310001  .
io ,   710001  .

io 
 ,   210001  .M

iio
,   310009  .M

idco
,   31000.7 

io 
 , 

  10

1 10109  .
i

 ,   6

1 10001  .
i

 ,   4

1 10201  .
i

 . Different parameters kept fixed are 

310204  .nio
 m-3, 110003  .ndco

 m-3, 210801  . , 210791  .Fed
, and 210152  .Fid

 [1-5]. 

The strength of amplitude of the time-dependent surface plots evolving as soliton and shock-like  

structures is same as that of the time-independent profile (Figure 6.2(a)), which is 210~ 
phys  V.  
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                                         (a)                                                                                            (b) 

 

Figure 6.3 Spatiotemporal profile of the normalized lowest-order perturbed electrostatic potential evolving 

as (a) soliton-like structure, and (b) shock-like structure under the same condition as figure 6.2. The 

boundary conditions and input initial values are presented in the text. 

               

6.5.2 Self-gravitational Fluctuations 

It is shown that the Jeans mode fluctuation dynamics is governed by the d-KdV equation on the 

lowest-order perturbed self-gravitational potential  1  with a self-consistent linear source 

(equation (6.19)). The dynamics is contributed jointly by all the species having inertial mass. To 

obtain the detailed features, the system is simulated numerically as before. The resulting profiles 

are presented in figures 6.4-6.5. Figure 6.4 displays profile of the lowest-order perturbed self-

gravitational (a) potential showing a unique transition from soliton to oscillatory shock-like 

eigenmode structure (blue, red, and green lines are rescaled by dividing with 21050.2  , 

21052.7   and 11078.2  , respectively), (b) field (blue, red, and green lines are rescaled by 

multiplying with 2105.0  , 21018.0   and 80.4 , respectively), (c) potential curvature (blue, red, 

and green lines are rescaled by multiplying with 21066.1  , 11007.7  , and 11026.1  , 

respectively), and (d) phase portrait (blue, red and green lines are rescaled by multiplying with 

09.4 , 68.2 , and 61.1 , respectively) due to cloud multi-parameter variation. Various lines link to 

Case (1): 310008  .nio  m-3, 110402  .ndco
 m-3, 110304  .ndno

 m-3, 310951  .Fed
, and 

310471  .Fid
 (blue line), Case (2): 310577  .nio  m-3, 110432  .ndco  m-3, 

110364  .ndno
 m-3, 31092341  .Fed

, and 3104131  .Fid
 (red line), Case (3): 
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310147  .nio  m-3, 110462  .ndco  m-3, 110434  .ndno
 m-3, 31089681  .Fed

, and 

31035681  .Fid
 (green line); and Case (4): 310716  .nio  m-3, 110502  .ndco

 m-3, 

110504  .ndno  m-3, 310871  .Fed
, and 310301  .Fid

 (black line), respectively. Different 

input initial values used   001.N
ieo  ,   210001  .M

ieo
,   310001  .

io , 

  710001  .
io 

 ,   001.N
ieo  ,   210011  .M

iio
,   001.N

idco  ,   410004  .M
idco

, 

  410001  .M
idno

,   610002  .
io ,   1010003  .

io 
  ,   001.Q

ido  ,   001.N
idno  , 

  5

1 10002  .
i

 ,   10

1 10004  .
i

 ,   6

1 10001  .
i

 . Different parameters kept 

fixed are 910007  .md
 kg, 310001  .neo

 m-3, 310008  .nio
m-3, 110402  .ndco

 m-3, 

110304  .ndno
 m-3, 005. , 2100110  .Fedc

, 210001  .Fidc
, 310951  .Fed

,

310471  .Fid
, 210001  .Fcn

 and eqdo  96  [1-5]. The unique transition from soliton to 

damped oscillatory shock-like eigenmode occurs due to collective effects resulting from increasing 

don ; and decreasing ion , edF , and idF . The numerically found solitary structures arise due to the 

inhomogeneous balancing between nonlinear wave-breaking (due to fluidity) and linear dispersive 

effect (due to the self-gravity), where the wave-damping dissipative forces (due to the dust-charge 

fluctuation and collisions) are relatively weak. But, the shock-like eigenmodes develop due to the 

balance between nonlinearity and the combined influence of dispersive and dissipative forces.  

When the equilibrium Newtonian particle density increases, the dispersive effect becomes more 

dominant over the weak dissipative effect due to decreasing ion , edF , and idF . Thus, damped 

oscillatory shock-like eigenmodes with higher amplitudes results. The strength of the self-

gravitational fluctuations is  3

1 10~ , which is equivalent to   5

1 10 ~eT~ pphys   V.  The 

corresponding field and curvature profiles are shown in figures 6.4(b)-6.4(c) with respective 

strength   15

1 10201  .~eET~E Jgpgphys   V m-1 and  
physxx    302

1 1067.3~~  Jp eT    

V m-2. The phase trajectories (Figure 6.4(d)) show a transition from nearly conservative system to 

highly non-conservative one due basically to the transition of closed-form to open oscillatory 

curved nature with rest of the features as discussed above. The self-gravitational fluctuation 

spectral patterns supported in the inhomogeneous DMC due to other sensitive plasma parameter 

variations under different realistic astrophysical conditions are elaborately discussed in Ref. [26]. 
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                                              (a)                                                                                        (b) 

                                                                  

                                         

                                       (c)                                                                                          (d) 

 

Figure 6.4 Spatial profile of the normalized lowest-order perturbed self-gravitational (a) potential showing 

a unique characteristic transition from soliton to oscillatory shock-like eigenmode structure, (b) field, (c) 

potential curvature, and (d) phase portrait due to cloud multi-parameter variation. Various lines 

correspond to Case (1): 3
io 1000.8n   m-3, 1

dco 1040.2n   m-3, 1
dno 1030.4n   m-3, 

3
ed 1095.1F  , and 3

id 1047.1F   (blue line), Case (2): 3
io 1057.7n   m-3, 1

dco 1043.2n   m-3, 

1
dno 1036.4n   m-3, 3

ed 109234.1F  , and 3
id 10413.1F   (red line), Case (3): 3

io 1014.7n   m-3, 

1
dco 1046.2n   m-3, 1

dno 1043.4n   m-3, 3
ed 108968.1F  , and 3

id 103568.1F   (green line), and 

Case (4): 3
io 1071.6n   m-3, 1

dco 1050.2n   m-3, 1
dno 1050.4n   m-3, 3

ed 1087.1F  , and 

3
id 1030.1F   (black line), respectively. Various input and initial parameter values are given in the text. 
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To understand the spatiotemporal evolution of the fluctuations, equation (6.19) is numerically 

simulated by finite difference method as before. The 3-D surface plots thus obtained are shown in 

figure 6.5. Figure 6.5(a) depicts the profile of the self-gravitational potential as soliton-like 

structure under the same condition as figure 6.4, but with   01.0
idoQ , and  

i1

  5.921sec106.1 23   h . The choice of the initial inputs in all the cases is based on the fact that 

the steady-state evolution is now known, but the temporal evolution of which is yet to be known. 

The magnitude of this profile is same as that of the time-stationary ones (Figure 6.4(a)). Figure 

6.5(b) shows the spatiotemporal growth profile of the potential shock-like structure with 

     


07010212
1 .hsec

i
 . Different input initial values used here are same as figure 6.4, but 

with   410001  .
io 

 ,   310011  .M
iio

,     410005  .M
idno

,   810001  .
io ,   910001  .

io 
  , 

  8

1 10201  .
i

 ,   15

1 10004  .
i

 , and   10

1 10101  .
i

 . Different parameters kept fixed are 

910001  .md
 kg, 110703  .ndno

 m-3, 210101  .Fedc
,  210051  .Fed

, 210042  .Fid
,  and 

eqdo 132  [1-5]. The strength of amplitude of the time-dependent surface plots evolving as shock-

like structure is   2
1 10~~  eTpphys   V.  

     

 

  

                               

                                   

 

 

 
 

                                        

                                       

 

                                      (a)                                                                                             (b) 

 

Figure 6.5 Spatiotemporal profile of the normalized lowest-order perturbed electrostatic potential evolving 

as (a) soliton-like structure, and (b) shock-like structure under the same condition as figure 6.4. The 

boundary conditions and input initial values are presented in the text. 
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6.6 CONCLUSIONS 

A simplified theoretical model to describe the properties of gravito-electrostatic fluctuation 

dynamics in an inhomogeneous, collisional, partially-ionized, self-gravitating cloud is proposed. 

All the possible realistic dynamical agencies of astrophysical scenario are taken into account. The 

lowest-order inertial correction of the thermal species is afresh included in the analysis. Unlike 

others in the past, a full spatiotemporal picture of the evolutionary equilibrium inhomogeneities is 

included in this model within the framework of planar geometry approximation. This is the unique 

originality of this articulation amidst all the realistic possible factors encountered by the different 

constituent species in hydrodynamic equilibrium configuration simultaneously. Standard non-

local treatment is applied to derive a unique pair of self-gravitationally coupled d-KdV equations 

having self-consistent linear sources. By numerical analysis, it is inferred that both solitary and 

shock-like structures are supported in the cloud. A comprehensive spatiotemporal shape-analysis 

supports that such eigenmode structures indeed trigger the initial conditions in the formation 

processes of self-gravitationally bounded structures like stars and other planetary objects, which 

is in good agreement with others works. The main conclusive remarks are of astrophysical 

significance and the implication which may be proposed from the presented analysis are as follows. 

(1) The lowest-order nonlinear gravito-electrostatic fluctuations of a planar inhomogeneous DMC 

amidst spatiotemporally inhomogeneous diverse equilibrium gradients are governed by a 

unique pair of coupled d-KdV equations.  

(2) The electrostatic and self-gravitational potential fluctuations co-evolve as new soliton and 

damped oscillatory shock-like eigenmodes. Their structures are in good correspondence with 

the experimentally detected shocks and solitons in collision-dominated plasmas [3, 9], 

multispace satellite observations like Freja, Viking, etc. [3, 18-20], and earlier theoretical 

findings even based on local analyses by others [8, 10-11, 15].  

(3) The eigenmode structures are contributed by the collective gravito-electrostatic dynamics of 

the inertial species and thermal species with weak but finite inertia amidst an integrated 

interplay of diverse nonlinear (hydrodynamic in origin), linear dispersive (deviation from 

quasi-neutrality and self-gravitational in origin through large-scale dynamics) and weakly 

dissipative (collisional and inhomogeneity in origin) effects.  

(4) The effect of dust-charge variation on the propagation of gravito-electrostatic waves is of 

scientific importance for space and astrophysical contexts. The condensation of the grains due 
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to the propagation of the gravito-electrostatic shocks and solitons enhance the gravitational 

interaction, which is a feasible process for star formation through self-gravitational collapse 

mechanism as mentioned elsewhere [4, 12, 20-21]. 

(5) The explicit regions in the plasma parameter space are successfully found where unique shape-

transitions from shock to soliton and vice versa exist in the multi-species molecular cloud. The 

corresponding fluctuations in field, curvature, scale-length and parametric trajectories are also 

elaborately analyzed. Our results on wave amplitude structures give theoretical supports to the 

earlier predictions in situ made by various spacecraft instrumentations, on-board multispace 

satellite reports, and experimental findings [3-4, 9, 18-19]. Examples of such clouds rich in 

like spectral patterns are Lynds 204 Complex, Barnard 68, and so forth. The methodological 

analysis may also be extensively applied to study the observed data on the dynamics of jets 

and associated bow shocks on the galactic scales as observed in certain galaxies like M51, 

NGC 1068, NGC 5258, Circinus, Mrk 673, and so forth [4, 19]. 

(6) The geometrical trajectories of the Columbic particles show that the system undergoes 

transition from weakly conservative to highly non-conservative one for the combined effect of 

decreasing dust-mass, equilibrium ion density and increasing electron and charged dust 

density. In contrast, the parametric trajectories depicting the geometric patterns of the 

Newtonian particles depict the self-gravitational dynamics transiting from conservative to 

highly non-conservative one for the combined effect of increasing dust densities and 

decreasing ion density, electron-dust and ion-dust collision frequencies in the cloud. 

(7) It is equivalently found by comparing the electrostatic and self-gravitational fluctuations 

 31 1010 ~phyphy   that the electrostatic fluctuations are more dominant than the self-

gravitational counterparts. Moreover, the inhomogeneous equilibrium admits dominant self-

gravitational effects for   1~22
dd qGm  like in the HII region leading to bounded structure creation. 

(8) This work puts a strong demonstration on the stability analyses of self-gravitating non-uniform 

medium without applying the Jeans homogenization assumption. It establishes that 

consideration of diverse equilibrium inhomogeneities gives a realistic picture of the fluctuation 

patterns, where the Jeans swindle application may be avoided.  

(9) Our pulsational mode stability analysis based on the grainy Coulomb collisions in presence of 

grain-charge fluctuations, gravito-electrostatic equilibrium inhomogeneities and weak but 

finite inertia of the plasma thermal species may give rise to a new acceleration mechanism 
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called charge-fluctuation-induced acceleration (in hydrodynamic approach), or Fermi 

acceleration (in magnetohydrodynamic formalism) in astrophysical plasma and space 

environments [20]. This novel mechanism is likely to affect the rate of grain flow, coagulation 

and scattering of the population density of small grains (radius~ m10.0 ). As per the law of 

conservation of energy, the new energy sources for this kind of acceleration mechanism comes 

from the various irreversible plasma processes (triggered by the interaction of the electron-ion 

currents) occurring on the grain surfaces in the background plasma configuration. In presence 

of strong convective nonlinearity, the grain charge fluctuation via the grain-grain Coulombic 

interaction may result in higher-order accelerations applied to understand the dynamical 

evolution of the smallest grains to a regime beyond the Brownian motion [20]. 

(10) Finally, our study may broadly be useful as basic elements in investigating the basic features 

of the self-gravitational collapse, formation and evolution of stars, galactic structures and other 

cluster-like astrophysical objects in different practical regimes of interstellar space and plasma 

environments. The presented results may furthermore be helpful in understanding diverse 

astrophysical shocks with different characteristics, their effects in dissipating flow-energy, in 

heating astrophysical matter, in accelerating particles to high presumably cosmic-ray energies 

as mentioned above, and also in generating detectable electromagnetic radiation from radio to 

X-rays. This is because it is initially the dynamics of nonlinear disturbances, collective waves 

and oscillations in dusty clouds in interstellar medium which ultimately governs the dynamical 

formation mechanism of their gravito-electrostatically bounded structures ultimately in space 

and astrophysical situations.  
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