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CHAPTER-8 
 

ATYPICAL NONLINEAR WAVES IN A SELF-

GRAVITATING COLLISIONAL DUSTY PLASMA 

WITH ACTIVE ION-INERTIA  
 

Abstract: We present an atypical theoretical model to study gravito-electrostatic mode-

fluctuations in self-gravitating inhomogeneous interstellar dust molecular cloud (DMC) on the 

astrophysical fluid scales of space and time. The main focus is centered around investigating the 

influence of self-consistent dynamic ion-inertial effects on the stability behavior. Methodological 

application of standard multiple scaling techniques reduces the basic plasma structure equations 

into a unique pair of the decoupled Korteweg-de Vries (KdV) system governing the weakly 

nonlinear fluctuations. In contrast, the fully nonlinear counterparts are shown to evolve as a new 

gravito-electrostatically coupled pair of the Sagdeev energy-integral equations. Numerical shape-

analysis shows the excitation of two distinct eigenmode classes, electrostatic compressive solitons 

and self-gravitational rarefactive solitons, with singular parametric features portrayed in detail. 

The graphical setup reflects some new plasma conditions in realistic interstellar parameter 

window previously remaining unexplored. It is seen that the inertial ions play a destabilizing 

influential role leading to enhanced fluctuations towards establishing a new reorganized gravito-

electrostatic equilibrium setup. A substantially good qualitative correspondence, but with minor 

quantitative modifications due to the considered ion-inertial correction, is found to exist in 

comparison with those by the earlier inertialess ion-theories and multispace satellite-based 

observations. The main implications relevant to space and astrophysical contexts are summarily 

highlighted together with concise future directions emphasized. 

 

8.1 INTRODUCTION  

Plasmas and the dust are two main ingredients of the universe. The interplay between both has 

opened up a new and fascinating research domain of astrophysical plasmas. The study of such 

astrophysical dusty plasma consisting of the micron-sized dust grains has attained more interest 

because of its vital role in understanding different collective processes such as mode modifications, 
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evolutions, excitations of new nonlinear eigenmodes, and coherent structures like solitons, shock, 

vortices, etc. [1-4]. A soliton is a self-reinforcing solitary wave (a wave packet pulse) that 

maintains its shape while it progress at a constant velocity.  Similarly, shock wave is defined as a 

type of propagating disturbance when a wave moves faster than the speed of sound in a liquid, gas, 

or plasma. The dust grains are immersed in ambient plasmas and radiative environments, and 

become electrically charged by various processes; the most simple one being capture of the 

electrons and ions from the background plasma. The other charging mechanism of the dust grains 

in space are secondary electron emission, photoelectric effect, and so forth [1-2]. So, the 

fluctuating dust-charge behaves as a new dynamical variable. The dust response time scale is small 

( 310~ 
dr  s), whereas the dust-charging time is very small ( 810~ 

ch s) in normal plasma conditions 

[5-6]. Thus, the effect of the dust motion is too slow to neutralize the electron-ion currents [5-7]. 

In such situations, the grain-charge may justifiably be considered to be static, at least in principle, 

in the characteristic time-scale of low-frequency waves like in the present investigation. 

It is well established that the charged grains have significant impact in the mechanisms 

involving excitation, evolution, and propagation of low frequency nonlinear eigenmodes in the 

interplanetary space, interstellar medium, circumstellar space, interstellar dust molecular clouds 

(DMCs), comets, planetary rings, Earth’s environments, and so on [1-2, 8-9]. The existence of 

such modified eigenmodes spanning from laboratory-to-galactic scales have widely been studied 

theoretically [1, 5, 10-11] as well as experimentally [12-13]. The existence of massive partially 

ionized dust grains in the DMCs indeed develops significant self-gravitational effects on the Jeans 

scale. Moreover, the coupling of the self-gravitational attraction (Newtonian) developed by the 

grain-mass and the electrostatic repulsion (Coulombic) sourced by the grain-charge with partial 

ionization leads to the pulsational mode instability [14-15]. The gravito-electrostatic interplay, 

after being stabilized by counter-force-balancing, leads to the formation of bounded large-scale 

structures (~Jeans-scale) attributed to self-gravitational condensation. Thus, different sorts of 

nonlinear eigenmodes resulting out of such instabilities play a substantial role in understanding 

the basic physics of formation-evolution processes of stars and other galactic structures [1-3]. The 

presence of the dust with wide-range mass spectrum and subsequent excitation of different 

nonlinear eigenmodes in space and astrophysical environments have also been confirmed by 

remote satellite-based (like Viking, Freja, Polar, FAST, etc.) observations [16-19]. 

Notwithstanding, it may be noted that theoretical formalisms for meticulously interpreting such 



152 
 

observations on the nonlinear wave signatures are yet to be well formulated. To be more specific, 

nonlinear gravito-electrostatic disturbances in self-gravitating collisional plasmas with the 

effective ion-inertia taken into account are yet to be explored.  

The plasmas in space and astrophysical environments are well-known to consist of 

numerous massive ionic components contributing to various wave-instability phenomena [20]. 

The ion-inertia, although weak but finite in comparison with the massive grains ( di mm

815 1010  ~ ), might have some dominant interesting influences on the excitation processes and 

associated evolutionary dynamics of the normal modes in wide-spatially extended systems [9, 20-

23]. Thus, it is questionable to treat the heavy ions as the Boltzmanian particles in the analyses as 

usual tradition. Keeping this top importance in mind, many authors have carried out linear stability 

analyses of collisionless (and collisional) dusty plasmas with the ion-inertial effects via non-static 

ion response included [9, 21-22]. The ionic gravity plays in quantitative enhancement of the self-

gravitational cloud collapse only, an outcome of greater time-scale needed to incorporate the ion 

dynamic response in the electrostatic field-field coupling of the positive ions and negatively 

charged grains. In contrast, in case of positively charged grains, the gravitating ions develop strong 

electrostatic field fluctuations, which result in slowing down the collapse. In nonlinear regimes, 

weakly and strongly nonlinear analyses of two [24] and three [20] component dusty plasmas with 

the ion-inertia considered have also been reported in past. In presence of the non-isothermal 

electrons and inertial ions with the charge-fluctuating immobile grains, dust ion-acoustic soliton-

shock transitions have also been recently reported [25]. But, to the best of our knowledge, nowhere, 

collisional, strong nonlinearities and self-gravitational effects with the dynamic ion-inertial 

response are jointly accounted for on the Jeans scales of space and time.  

The work in this chapter is thus motivated by the developing curiosity for understanding 

the evolutionary dynamics of weakly and strongly nonlinear eigenmode structures excitable in a 

planar one-dimensional (1-D) self-gravitating DMC including all the significant agencies in a 

hydrodynamic inhomogeneous equilibrium configuration. Both the ionic and dust fluids are 

assumed to be polytropic in nature with polytropic indices, 1 di  , which correspond to 

isothermal states. The key stimulus is on the inclusion of the effective ion-inertia and various 

collisional effects in the evolution of low-frequency gravito-electrostatic eigenmodes by 

multiscale analysis [26] and the Sagdeev pseudo-potential approaches [27] jointly. It is found that 

the weakly and strongly nonlinear fluctuations dynamically evolve like a decoupled pair of 
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Korteweg-de Vries (KdV) and a coupled pair of energy-integral equations, respectively. A detailed 

numerical analysis as initial value problems by the fourth-order Runge-Kutta method (RK-IV, 

stationary) and the Finite-Difference method (FD, spatiotemporal) under some judicious plasma 

multi-parameter variation, previously remaining unexplored, is carried out. The fluctuation 

structures appear mainly in the form of compressive and rarefactive solitary spectral patterns. We 

briefly discuss their main applicability in diverse areas like cloud physics, space science and 

modern astrophysics in understanding self-gravitational collapse, formation and evolution of 

interstellar structure, star formation, and galactic evolution, etc.  

 

8.2 PHYSICAL MODEL 

We consider a simplified multifluid model of unmagnetized, collisional, self-gravitating, 

inhomogeneous DMC in global quasi-neutral hydrodynamic equilibrium configuration with the 

dynamic ion-inertial response taken into account on the astrophysical fluid scales of space and 

time. It consists of the warm gas-phase electrons, the gravitating positive ions and the negatively 

charged massive dust grains of identical characteristics as shown in figure 8.1. The inertialess 

electrons are assumed to acquit as the thermal species, described by the Boltzmann distribution 

law. The cold gravitating ions and the dust grain microspheres behave as isothermal inertial fluids 

(polytropic indices, 1 di  ). All the effects dependent on the ion-inertia are retained in the ion 

dynamics to see its self-consistent influence on the grainy cloud fluctuations. The dust grains are 

negatively charged because of the unequal electron-ion fluxes to the grain surface due to higher 

electron thermal speed [1-3, 15]. For simplicity, we consider static dust-charge under the 

approximation that the dust charging time-scale is much smaller than the characteristic time scale 

of low-frequency wave kinetics under study [21].  

The self-gravitating plasmas are indeed inhomogeneous in nature [2, 8-9]. However, for 

simplification, our model is methodologically developed based on the Jeans assumption of self-

gravitating uniform homogeneous plasma [28-29]. Thus, the zero-order self-gravitational field is 

neglected, and the equilibrium is treated initially as ‘homogeneous’ on the zeroth-order, thereby 

validating nonlinear local analysis. The efficacious inertial mass of the cloud is collectively 

contributed by the cold gravitating grains and cold gravitating ions such that tdtite v,vkv 

, where tev
 
is the electron thermal speed; k  is the phase velocity of the linear fluctuations, the 

nonlinear counterparts of which are now studied; and tdti v,v  are the thermal speeds of the ions and 
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grains, respectively [9, 20-22]. The adopted simplification ignores the effect of magnetic field on 

the constituents, differential rotation, viscosity, circulation, dust-charge dynamics, dust-size 

distribution, etc. The neutral fluid dynamics coupling the background plasma via self-gravitational 

field is also neglected. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1 Cartoon showing our considered DMC model. 

 

It may be pertinent to add that an assumed wide-range spectrum in the grain-mass ( ~md

2110 -

kg910 ) physically allows a suitable parameter regime, where, the monopolar self-gravitational 

and bipolar electrostatic forces may become approximately comparable. Thus, if the grain charge-

to-mass ratio is such that  1022 ~qGm dd , the joint interplayed action of the two opposing forces 

in establishing gravito-electrostatic equilibrium may play an important role in facilitating the 

formation processes of large-scale equilibrium structures of bounded astrophysical objects via self-

gravitational condensation. 

  

8.3 MATHEMATICAL ANALYSES 

The considered self-gravitating one-dimensional (1-D) dusty plasma consists of the inertialess 

Boltzmann electrons, gravitating inertial ions and gravitating inertial dust grains with full 

ionization. The macroscopic state of such an astrophysical situation can be described by a closed 

conservative set of the Boltzmann distribution, normal continuity, collisional momentum, and 

coupling electro-gravitational Poisson equations with all the conventional notations on the required 

astrophysical scales of space and time [11, 14-15, 21].  
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8.3.1 Governing Equations 

We assume that the phase speed of the fluctuations is much smaller than the electron thermal speed, 

so the electron volumetric population density in normalized form is represented by the Boltzmann 

distribution law set out as follows,  

 expeN .                                                                                                                                  (8.1) 

For the ion and grain inertial fluids, a polytropic law of the form, s
sss nkp


  , is adopted for the 

fluid pressure, where s  (with is   for the ions, and ds   for the dust grains) is the polytropic 

index of the sth species [1, 30-31] and sk  is a constant of proportionality. In normalized form, the 

law becomes s
ss NP


 . Here, the pressure is normalized by the corresponding equilibrium 

thermal pressure ( ssoso Tnp  ) and density, by the equilibrium density ( son ). So, the dynamics of 

the ionic and dust fluids in normalized form are given by, 
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Here, for is  , one has   ii , and  diidi MMFf  . Similarly, for ds  , we have 

 eqdd   , 1d , and  iddid MMFf  . The term  id mm  is the grain-to-ion mass ratio; 

and eT , iT  , dT  are the temperatures (in eV) of the electrons ( eqe  ),  ions ( eqi  ), and grains 

( eZq dd  ), such that die T,TT  , respectively. The gravitational inertial force is considered in 

the ion dynamics to include the full ion-inertial effects. In past, researchers have considered non-

isothermal conditions for the inertial fluids in cold plasma system [1, 30, 32]. In their nonlinear 

evolutionary model, Verheest et al. have studied the propagation of electrostatic dust acoustic 

waves in a uniform gravitating dusty plasma by treating all the constituent species polytropically 

alike [1, 30]. But, for simplicity now, we here assume both the fluids as isothermal ones with 

polytropic index of unity ( 1s ). Thus, equation (8.3) for the isothermal fluids becomes, 
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The spatial distributions of the normalized electrostatic potential    and the self-gravitational 
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potential    are described by the combining Poisson equations thereby closing the model as, 
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Here, ion , and don  model the Jeans swindle [28-29] of the equilibrium unipolar gravitational force 

field, whereby the self-gravitating inhomogeneous equilibrium is considered as ‘homogeneous’ on 

the zeroth-order. The parameter  sM
 
represents the flow velocity normalized by the dust sound 

phase speed  SSC . Electrostatic potential    is normalized by the electron thermal potential 

 eTe , and self-gravitational potential    is normalized by self-evolving dust acoustic 

potential  2

SSC . It is clear from equation (8.6) that    originates from the inertial force effects 

jointly contributed by both the cold inertial ions and the cold inertial grains. The independent 

variables, like position   , and time   , are normalized by the Jeans length  J , and Jeans time 

 1

J  scales, respectively. Moreover, eN , and sN
 
are the normalized electron, ion ( is  ), and 

grain ( ds  ) densities, normalized by their respective equilibrium values ,eon
 ion , and don . In 

addition, idF , and diF  are the ion-dust and dust-ion collision frequencies normalized by the 

effective Jeans frequency  JdJiJ

22   , where 04 iiJi nmG  , and Jd 04 dd nmG  

are the equilibrium Jeans frequencies due to the gravitating ions and grains, with 

1110674086  .G  m3 kg-1 s-2 as universal gravitational constant. 

 

8.3.2 Application of Multi-scale Analysis 

Before application, here a brief comment is made. The multiscale technique is used to those 

physical systems, where physical quantities are different on order of magnitude, but are in no way 

arbitrary [33]. The technique finds approximate solution of a nonlinear complex problem in 

presence of weak nonlinearity by breaking it in to solvable equilibrium (linear) and perturbation 

(nonlinear) parts. Application of this technique is fully justifiable in the long evolution time-scale 

of many weakly nonlinear phenomena, where small modification in the equilibrium can yield large 

variations in dynamics [33]. We apply this standard methodology [26] over the basic coupled 
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governing equations in order to study the nonlinear dynamics of low-frequency gravito-

electrostatic fluctuations. First, we consider the stretched space and time variables, namely, 

   2/1X , and 2/3T , where   is the phase velocity (normalized by SSC ) of the 

fluctuations; and  is a minor order-parameter characterizing the balanced strength of nonlinearity 

and dispersion [26]. The dependent relevant physical parameters in equations (8.1)-(8.2) and (8.4)-

(8.6) are expanded nonlinearly (in various -powers) around the considered homogeneous 

equilibrium in perturbational form as follows, 
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It may be noted that gravity-induced space-charge polarization effects may contribute to some 

finite non-zero values in case of both gravito-electrostatic potentials [34]. But, such gravito-

electrostatic polarization effects are neglected here. We now use equation (8.7) in equations (8.1)-

(8.2) and (8.4)-(8.6) for order-by-order analyses in accordance with the traditional procedure [26]. 

Equating the like terms in various powers of  from both sides of equations (8.1)-(8.2) and (8.4)-

(8.6), and applying systematic elimination and substitution procedure, we get the following KdV 

equation describing the weakly nonlinear electrostatic fluctuations (in terms of 1 ) on the Jeans 

scales of space and time, expressed as, 
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It is seen analytically from equations (8.9)-(8.10) that both the electrostatic convective coefficient 

1A   representing nonlinear wave-steepening effect and electrostatic dispersive coefficient  2A  

depicting linear dispersive influence are sensitively dependent on diverse plasma parameters. The 

analytic constructs of the KdV coefficients are nonlinear and complicated functions of  eon , ion , 

don , dZ ,  , ei TT  and so forth. It may, however, be an interesting query of readers to know their 

evolutionary patterns governing the wave propagation dynamics. Thus, the behavior of 1A  and 2A  

under the same plasma condition, as discussed in figure 8.2, is described as follows. 

(1)  For 31043.2 eon  m-3, 
31053.2   m-3, 

31063.2   m-3, we obtain 85.41 A , 05.5 , 25.5  and 

1
2 1012.6 A , 

11088.5  , 
11065.5  ; respectively. Thus, as eon  increases, the nonlinear effect 

( 1A ) increases and dispersive effect ( 2A ) decreases; and vice versa. 

(2) For 31000.1 ion  m-3, 
31050.1   m-3, 

31000.2   m-3, one has 85.41 A , 23.3 , 42.2  and 

1
2 10120.6 A , 

110128.6  , 
110130.6  ; respectively. It shows that, when ion  increases, 1A  

decreases and 2A  increases; and vice versa. 

(3) For 11000.5 don  m-3, 11000.6   m-3, 11000.7   m-3, one gets 85.41 A  and 1
2 1012.6 A , 

11034.7  , 11057.8  ; respectively. Thus, as don  increases, 1A  remains the same and 2A  increases; 

and vice versa. 

(4) Further, it is found that there is no sensitive dependence of 1A  and 2A  on dZ . 

(5) For 141040.6  , 141050.6  , 141060.6  , one has 85.41 A  and 1
2 1012.6 A , 11023.6  , 11035.6 

; respectively. Thus, as   increases, 1A  remains the same and 2A  increases; and vice versa. 

(6) Lastly, for 31000.1 ei TT , 
31000.5  , 

21000.1  , one gets 85.41 A , 83.4 , 80.4  and 

1
2 1012.6 A , 

11006.6  , 
11099.5  ; respectively. Thus, as ei TT  increases, both 1A   and 2A  

decreases; and vice versa.  

Likewise, by applying the same method of elimination and substitution, one gets the 

following KdV equation for the weakly nonlinear self-gravitational fluctuations (in terms of 1 ) 

on the Jeans scales of space and time, 
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Analytically, again as in the case of electrostatic counterparts, it is evident from equations (8.12)-

(8.13) that both the self-gravitational convective coefficient 1B  and self-gravitational dispersive 

coefficient 2B  sensitively depend on diverse plasma parameters. The evolution of 1B  and 2B  in 

the same plasma condition, as in figure 8.4, is highlighted as in the following. 

(1)  For 31050.2 eon  m-3, 
31060.2   m-3, 

31070.2   m-3, we obtain 3
1 1020.3 B , 

31030.3  , 
31040.3   and 52.22 B , 42.2 , 33.2 ; respectively. Thus, as eon  increases, 1B  

increases and 2B  decreases in magnitude; and vice versa. 

(2) For 31000.1 ion  m-3, 
31050.1   m-3, 

31000.2   m-3, one has 
3

1 1020.3 B , 
31010.2  , 

31060.1   and 52.22 B , 78.3 , 04.5 ; respectively. Thus, as ion  increases, 1B  decreases 

and 2B  increases in magnitude; and vice versa. 

(3) For 100dZ , 105, 110, one gets 
3

1 1020.3 B , 
31000.3  , 

31090.2   and 52.22 B , 

64.2 , 77.2 ; respectively. Thus, as dZ  increases, 1B  decreases and 2B  increases in magnitude; 

and vice versa. 

(4) Lastly, there is no sensitive dependence of 1B  and 2B  on don ,  , ei TT  and ed TT . 

To see the time-stationary dynamics of the weakly nonlinear gravito-electrostatic 

eigenmodes, equations (8.8) and (8.11) are transformed into ordinary differential equations by the 

Galilean co-moving frame transformation, TX  . Thus, equations (8.8) and (8.11) in 

stationary form are respectively given by, 
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Clearly, equations (8.14) and (8.15) together constitute a unique steady-state pair of decoupled 

KdV equations paving the way for solitary pattern existence in the new spatial coordinate system 

(defined by  ). It may be noted that there is no self-consistent source, or sink in the KdV system, 

unlike previously reported results on the nonlinear evolution of electrostatic dust acoustic waves 

in a uniform gravitating dusty plasma configuration with all the constituents politropically treated 

alike [1, 30]. In the latter case, the dust acoustic mode evolution has been found to be governed by 

the extended KdV equation having a self-consistent nonlocal linear integral sink term arising due 

to the self-gravitational force field acting on the gravitating massive dust grains. The steady-state 

analytical solution of equation (8.8), obtained by applying the technique of approximate analytical 

integration, as used by other authors as well in past [35], can explicitly be written as, 

 
m11  

2hsec











ES

 ,                                                                                                           (8.16) 

where,    11 3 A
m

 11018.6   is the amplitude of the electrostatic soliton with average width 

56.14 2  AES . The value of convective coefficient 85.41 A  and dispersive coefficient 

1
2 1012.6 A  are analytically obtained by using the same plasma parameter values as in figure 

8.2. The analytically calculated solitary wave amplitude  
m1  exactly matches with that obtained 

by exact numerical integration (Figure 8.2(a)). 

 Again, similar to the electrostatic counterparts, the approximate analytical solution of 

equation (8.11) can be written as, 

 
m11  

2hsec











GS


,                                                                                                              (8.17) 

where,    11 3 B
m


31037.9   is the amplitude of the self-gravitational soliton with average 

width 17.34 2  BGS . The value of convective coefficient 
3

1 1020.3 B  and dispersive 

coefficient 52.22 B  are analytically obtained by using the same plasma parameter values as used 

in figure 8.4. The analytically (with approximation of asymptotic behavior) calculated solitary 
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wave amplitude  
m1  shows minor deviation from that obtained by numerical (with no 

approximation, exact) analysis (Figure 8.4(a)). This shows that there is always some deviation in 

fluctuation patterns because of the approximate analytical integration in contrast with the exact 

numerical integration producing the results as shown in figure 8.4(a).   

 

8.3.3 Application of the Sagdeev pseudo-potential Method 

In this section, we study the properties of strongly nonlinear (arbitrary amplitude) gravito-

electrostatic waves by applying the Sagdeev pseudo-potential approach [27]. Here, we introduce 

a Galilean frame,  =   , where   is the reference frame velocity (normalized by SSC ), to 

obtain the time-stationary form of the governing equations. Applying the appropriate boundary 

conditions, like 0dM , 1iN , 0 , and 0  at   in the stationary frame, 

equations (8.2) and (8.4)-(8.6) are transformed as, 
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Now, using eN , iN  and dN  from equations (8.1), (8.18)-(8.19) in equations (8.5) and (8.6), one gets, 
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where, 
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Here,  ioii   , and d =  dod  
 
are defined as the average transit scale-lengths of the 

ions and the grains, which, typically, are ~ J  (Jeans wavelength).  

In the electrostatic case, multiplying both sides of equation (8.20) by    and 

integrating once under the appropriate boundary conditions, like 0  and 0   at 

  for localized disturbance, we obtain the energy integral [20, 27, 32, 36] as follows, 

 

  0,
2

1
2


















EV ,                                                                                                            (8.22) 

 

which describes the energy conservation principle of the electrostatic fluctuation dynamics 

subjected to the Sagdeev pseudo-potential ),( EV  given by 
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The approximate analytical solution of equation (8.23) in explicit can be obtained by direct 

integration with inserted integration constant EK  as shown below, 
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It is clearly seen that the mathematical construct of equation (8.24) is highly complicated and 

nonlinear in nature. So, derivation of analytical (approximate) solutions is skipped here in order 

for having numerical (exact) results presented later. Differentiating equation (8.23) successively 

with respect to  , one gets 
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We now carry out prerequisite analytical tests to check the conditions for the existence of solitary 

structures and their qualitative properties governed by equation (8.22). It is found that equations 

(8.23), (8.25)-(8.27) under cold plasma condition, 0~es TT  [36], satisfies the following extreme 

conditions meant for the existence of compressive soliton-like patterns [20, 27, 32, 36] as follows,  
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  0, EV , at ,max   and 

  0, EV  .0for max                                                      

In equation (8.28), it is seen that   033   ,VE  at 0 , 0 , which is the condition 

for existence of compressive solitonic structures [32]. So, the analytical examination shows the 

evolutionary possibility for compressive solitary patterns.  

For the self-gravitational counterparts, we multiply equation (8.21) by    and integrate 

once with appropriate boundary conditions, like 0  and 0   at   for localized 

disturbance. Thus, the self-gravitational energy integral equation is obtained as follows, 
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which depicts the energy conservation law of the self-gravitational fluctuation dynamics subjected 

to the self-gravitational Sagdeev pseudo-potential ),( GV  described as, 
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Now, the approximate analytical solution of equation (8.30) can also be derived by direct 

integration with integration constant GK  as in the following, 
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As in the case of electrostatic formalism, here too, the mathematical structure of equation (8.31) is 

highly complicated and nonlinear in shape, which is therefore skipped here in order for obtaining 

exact numerical solutions presented later. Now, differentiating equation (8.29) successively with 

respect to  , one gets 
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It is analytically verified that equations (8.30), (8.32)-(8.34) satisfy the following conditions 

predicting the dynamical evolution of possible self-gravitational rarefactive soliton-like patterns 

[20, 27, 32, 36] as follows, 
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  0, GV , at ,max   and 

  0, GV  .0for max   

 

In equation (8.35), it is found that   0, 33  GV  at 0 , 0 , which is the condition 

for existence of rarefactive solitonic structures [32]. As in the electrostatic fluctuations, the 

analytical inspection of existential conditions for the self-gravitational fluctuations shows the 

growth possibility for rarefactive soliton-like structures. 

 It may be seen that the conditions for existence of compressive soliton-like structures are  

  ,0, 33  EV    0, 33  GV  at 0 , 0 , whereas, for rarefactive soliton-like 

patterns, the same are   ,0, 33  EV   0, 33  GV  [32]. For exact 

characterization of the wave spectrum with these basic inputs kept in mind, equations (8.22) and 

(8.29) numerically integrated by the RK-IV method as discussed in the next section. 

 

8.4 RESULTS AND DISCUSSIONS 

An evolutionary sound calculation scheme to explore the properties of both weakly and strongly 

nonlinear gravito-electrostatic fluctuation dynamics supported in unmagnetized, inhomogeneous, 

collisional DMC of infinite extension is proposed. It self-consistently considers the frictional 

dynamics of the ions and grains in presence of the non-static ion-inertial response effects. It is 

analytically shown that weakly nonlinear gravito-electrostatic eigenmode evolutions are 

expressible by a unique pair of decoupled KdV equations (equations (8.8) and (8.11)) obtained by 

multiscale analyses. On the other hand, the fully nonlinear complements are governed by an 

idiosyncratic pair of coupled energy integral equations (equations (8.22) and (8.29)) derived by 

implementing the Sagdeev pseudo-potential methodology. The governing equations for both the 

distinctive classes (weakly and strongly nonlinear) of fluctuations are integrated numerically as 

initial value problems in a time-stationary configuration (RK-IV) followed by spatiotemporal 
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analysis (FD) as already mentioned above. The numerical results are presented in two subsections, 

one for the weakly nonlinear and the other for strongly nonlinear fluctuations, as follows. 

 

8.4.1 Weakly Nonlinear Fluctuations 

The obtained profiles on the weak fluctuations (both spatial and spatiotemporal) with a suitable 

wide-range choice of judicious plasma-parameters values are discussed below. 

Figure 8.2 presents the spatial profile of the normalized lowest-order perturbed electrostatic 

(a) potential, (b) field, (c) potential curvature, and (d) phase portrait. Various lines now correspond 

to Case (1): 310001  .nio  m
-3 (blue line), Case (2): 310101  .nio  m

-3 (red line), Case (3): 

310201  .nio  m-3 (green line), and Case (4): 
310301  .nio  m-3 (black line), respectively. 

Different input initial values used are   310001  .i ,   410001  .
i , and   210501  .

i

. The other parameters kept fixed are 100dZ , 310432  .neo  m-3, 121007.1 dm  kg, 

110005  .ndo  m-3 and 00.1  [1-2, 5, 15, 21, 36]. The potential fluctuations (Figure 8.2(a)) 

show compressive soliton-like eigenmodes, which are in qualitatively good correspondence with 

those as obtained by others in different situations [11, 16-19, 24]. It is observed that when ion  

increases, the amplitude of corresponding potential fluctuations also increases with increment in 

the ion-inertial effect. Physically, it may happen for the following collective processes: (i) Due to 

the ion-inertial effects, increasing ion  creates more deviation from the quasi-neutrality condition 

by weakening the ion-electron-dust sticking mechanism. Thus, the electrostatic repulsive pressure 

among the charged particles increases against the self-gravitational attractive pressure, thereby 

contributing to the amplitude-growth. (ii) In presence of the dynamic ion-inertial response, 

increasing ion  contributes to the increased self-gravitational field effects, thereby enhancing the 

strength of gravity-induced space-charge polarization [34] resulting in increasing the electrostatic 

fluctuation amplitude. The electric field (Figure 8.2(b)) and curvature (Figure 8.2(c)) profiles 

evolve as a mixture of rarefactive and compressive soliton; and bell-shaped soliton-like structures, 

respectively. Lastly, Figure 8.2(d) shows the phase portrait in the phase space defined by 1  and 

 1 , which gives a parametric representation of the geometrical trajectories for the global behavior 

of the local fluctuations. It shows that with increase in ion , the stability of the cloud is highly 

disturbed as we go away from the center. This is because of the fact that the trajectories of the 
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phase portraits get separated from one another as the perturbed potential increases from the center 

outwards. The evolutionary profiles of the weakly nonlinear electrostatic fluctuations due to other 

sensitive plasma parameter variations (such as dm , don , and eon ) are shown and discussed  

elaborately in Ref. [37]. 

 

 

                                           (a)                                                                                               (b) 

 

  

                                       (c)                                                                                            (d) 

 

Figure 8.2 Spatial profile of the normalized lowest-order perturbed electrostatic (a) potential, (b) field, (c) 

potential curvature, and (d) phase portrait. Various lines correspond to Case (1): 3
io 1000.1n   

m-3 (blue 

line), Case (2): 3
io 1010.1n   

m-3 (red line), Case (3): 3
io 1020.1n   

m-3 (green line), and Case (4): ion  

310301 .  
m-3 (black line), respectively. Various input and initial parameter values are shown in the text. 

 

For the spatiotemporal evolution, equation (8.8) is integrated by the FD under suitable 

boundary conditions as discussed above. Figure 8.3 depicts the perturbed potential evolving in the 
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astrophysical space and time under the same conditions as figure 8.2, but now with the numerically 

fitted initial value,     10sec66.0 4.1

1  xh
ix

 . The boundary conditions applied here are: (i) 

densities and dust-charge at infinity are asymptotically zero, (ii) velocities at the cloud center are 

zero, and (iii) potentials at the center and asymptotically at infinity are zero. The snapshot of figure 

8.3 is same in magnitude and structure as in figure 8.2. It reflects the basic normal feature of 

solitary structures as temporally stable ones. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8.3 Spatiotemporal profile of the normalized lowest-order perturbed electrostatic potential under 

the same condition as figure 8.2. The boundary conditions and input initial values are presented in the text.  

The physical strength of the potential fluctuations (Figure 8.2(a)) for average normalized 

value 
1

1 1025.6~   is estimated as,   3

1 10~~  eTephys   V, in the HII region with 
210  and 

410eT  K [1-2, 5, 15, 21, 36].  The fluctuation wave amplitude is maximum at J 5 . The field 

fluctuations (Figure 8.2(b)) evolve with amplitudes having average normalized value 1104~  , 

which is  physically calculated as,   11

1 1000.4~~  JePphys eETE   V m-1. The curvature profile 

(Figure 8.2(c)) exhibits bell-shaped solitary eigenmodes. The degree of deviation from the cloud 

quasi-neutrality is not uniform in presence of the gravitating ions; it shows noticeable variation for 

JJ .  573   with maximum at 
81055  ~J  m. The average curvature fluctuation 

strength is calculated as,     192

1 10002  .~eT~ Jpphysxx    
V m-2, which is very small (~0). 
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This signifies that the cloud quasi-neutrality is not affected appreciably due to the considered 

weakly nonlinear (<3rd order) perturbation.  

Let us now describe the self-gravitational fluctuation dynamics governed by the KdV 

equation, equation (8.11). The dynamics is contributed jointly by the inertial dust grains and 

inertial ions. To obtain the detailed features, the system is integrated numerically as before. The 

resulting profiles are descriptively presented in figures 8.4-8.5 as the following.  

 

 

                                          (a)                                                                                         (b) 

 

 

                                     

 

 

 

 

                                           

                                           (c)                                                                                            (d) 

 

Figure 8.4 Spatial profile of the normalized lowest-order perturbed self-gravitational (a) potential, (b) 

field, (c) potential curvature, and (d) phase portrait. Various lines correspond to Case (1): 

3
io 1000.1n   

m-3 (blue line), Case (2): 3
io 1003.1n   

m-3 (red line), Case (3): 3
io 1006.1n   

m-3 

(green line), and Case (4): 3
io 1009.1n   

m-3 (black line), respectively. Various input and initial 

parameter values are given in the text. 
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Figure 8.4 graphically shows spatial profiles of the normalized lowest-order perturbed self-

gravitational (a) potential, (b) field, (c) potential curvature, and (d) phase portrait. Various lines 

correspond to Case (1): 310001  .nio  m
-3 (blue line), Case (2): 310031  .nio  m

-3 (red line), 

Case (3): 310061  .nio  m-3 (green line), and Case (4): 310091  .nio  m-3 (black line), 

respectively. Different input initial values used are   410001  .i ,   310001  .
i , and 

  210003  .
i . The other parameters kept fixed are 100dZ , 060. , 310502  .neo  

m-3, 110001  .ndo  m-3 and 1210071  .md  kg. The potential fluctuations evolve as bell-shaped 

soliton-like structures (Figure 8.4(a)), the amplitude of which increases with increase in ion . As 

ion  increases, the self-gravitational effects increase in presence of the gravitating ions. As a 

consequence, the self-gravitational fluctuation increases. It provides strong evidence in support of 

the fact that the consideration of ion-inertia has effective contribution in the propagation and 

excitation of nonlinear eigenmodes. The corresponding field (Figure 8.4(b)) and curvature (Figure 

8.4(c)) fluctuations evolve as mixtures of rarefactive and compressive soliton-like; and 

compressive soliton-like structures, respectively. The phase portrait (Figure 8.4(d)) gives the 

geometrical trajectories of the inertial species in the phase plane of 1  and 1 . The trajectories 

show closed structures revealing that the DMC fluctuations form a conservative system. The 

evolutionary profiles of the weakly nonlinear self-gravitational fluctuations due to other sensitive 

plasma parameter variations (such as 
dZ , and eon ) are elaborately discussed in Ref. [37]. 

To obtain the 3-D spatiotemporal profiles, equation (8.11) is integrated as before. The self-

gravitational fluctuation is shown in figure 8.5. The conditions are the same as figure 8.4, but with 

a numerically fitted initial potential value,     10sec14.0 4.1

1  xh
ix

 . The magnitude and 

structure of this profile sketch is the same as those of the time-stationary ones (Figure 8.4). 

The physical strength of the potential fluctuations for average normalized value 

1
1 106.1~   is estimated as,   11

1

2 1024.2~~   SSphys C  J kg-1, in the HII region with 210  

and 
72 1041 .~CSS  J kg-1 [1-2, 5, 15, 21, 36]. The fluctuations for all the conditions found to be 

maximum at 81055  ~J  m. The field fluctuations (Figure 8.4(b)) evolve as mixtures of 

rarefactive and compressive soliton-like spectral patterns with average amplitude, 
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  192

1 10007  .~CE~E JSSggphys   J kg-1 m-1. The curvatures (Figure 8.4(c)) exhibit compressive 

solitary anatomical structures having average strength found as,   ~
physxx  2

J
2
SS1C   

281020.4~ 
 
J kg-1 m-2, which is very small (~0) owing to weak nonlinearly (<3rd order) taken 

into account. Thus, the cloud inertial mass-neutrality, although the active ion-inertial dynamics is 

taken into account, is not appreciably affected in the weak disturbance analysis.  

 

 

 

 

 

 

 

 

 

Figure 8.5 Spatiotemporal profile of the normalized lowest-order perturbed self-gravitational potential 

under the same condition as figure 8.4. The boundary conditions and input values are presented in the text.  

 

            In comparison, we see that the strength of the self-gravitational fluctuations is weaker than 

the electrostatic counterparts ( 8.311  ). The phase portraits of both the Coulombic (Figure 

8.2(d)) and Newtonian (Figure 8.4(d)) species reveal a conservative dynamical system, since the 

trajectories evolve as closed-form structures. For increasing (decreasing) different plasma 

parameters, the trajectories overlap over one another at the potential value corresponding to that 

near the cloud center. Therefore, it is pertinent to add that the central portion of the cloud surrounds 

the most stable fixed point. The trajectories in the phase portraits start to get slightly separated 

from one another as the perturbed potential increases (decreases) in magnitude from the center of 

the cloud outwards. The dusty cloud thus gets gradually more unstable at spatial points away from 

the center of the cloud.  

 

8.4.2 Strongly Nonlinear Fluctuations 

To study the dynamical characteristics of the strongly nonlinear (arbitrary amplitude) gravito-

electrostatic fluctuations, we numerically solve electrostatic (8.22) and self-gravitational equation 
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(8.29), as already highlighted in the text. It is, as already examined analytically too, seen that both 

the distinct families of the Sagdeev potential profiles graphically support the evolutionary criterion 

for solitary eigenmode patterns. It is noticeable that the corresponding physical potentials for 

electrostatic and self-gravitational fluctuations evolve as compressive and rarefactive soliton-like 

structures, respectively. The detailed characteristic features of the numerical results are, in an 

elaborate way, discussed as follows.  

 

 

 

 

 

 

                                         (a)                                                                                        (b) 

Figure 8.6 Spatial profile of the normalized electrostatic (a) Sagdeev potential, and (b) physical potential. 

Various lines correspond to Case (1): 12
d 1000.4m   

kg (blue line), Case (2): 12
d 1030.4m   kg 

(red line), Case (3): 12
d 1060.4m   kg (green line), and Case (4): 12

d 1090.4m   
kg (black line), 

respectively. Various  input and initial parameter values are presented in the text. 

 

Figure 8.6 graphically portrays the electro-dynamical evolution of the normalized 

electrostatic (a) Sagdeev potential, and (b) physical potential. Various lines now stand for Case 

(1): 1210004  .md  kg (blue line), Case (2): 1210304  .md  kg (red line), Case (3): 

1210604  .md  kg (green line), and Case (4): 1210904  .md  kg (black line), respectively. 

The other parameters kept fixed are 100dZ , 710007  .nio  m-3, 210005  .ndo  m-3, 

71000.1 eon  m-3, 410001  .Fid  and 00.1 . The Sagdeev potential (Figure 8.6(a)) shows 

solitary eigenmodes, which satisfies all the analytical conditions pre-tested for the existence of 

solitary solutions. The physical potential (Figure 8.6(b)) evolves as compressive soliton-like 

structures corresponding to the Sagdeev potential (Figure 8.6(a)). In both the Sagdeev and physical 

potentials, the amplitude of the eigenmodes decreases with increasing dm . The basic physical 
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insight underlying this is that with the increase in dm , the self-gravitational effect of the cloud 

increases, which dominates the wave amplitude of the electrostatic fluctuations counterpart. It is 

interesting to note that for 1013 1010   dm  kg, the compressional solitary structures are 

supported in our cloud model. The detail of other numerical evolutionary profiles by varying eon , 

and don
 
are shown in Ref. [37].  

In parallel way, figure 8.7 presents evolutionary profiles of the self-gravitational (a) 

Sagdeev potential, and (b) physical potential. Various lines now take after Case (1): 

410006  .nio  m
-3 (blue line), Case (2): 410306  .nio  m

-3 (red line), Case (3): 41060.6 ion  

m-3 (green line), and Case (4): 
41090.6 ion  m

-3 (black line), respectively. The other parameters 

kept fixed are 110dZ , 110001  .ndo  m-3 1210004  .md  kg, 410001  .Fid  and 001.

. Here, as already confirmed analytically before, it is found that the Sagdeev potential (Figure 

8.7(a)) satisfies the requisite criterion, thereby allowing the real potential to evolve rarefactive 

solitary waves (Figure 8.7(b)) for 64 1010  ion m-3. The basic mechanism is the same as in figure 

8.4. It is also seen that the solitary amplitude increases with increasing don  in the range 

31 1010 

don
 
m-3 (figure in Ref. [37]). The amplitude-growth is attributable to the ion-inertial 

effects and the dust-inertial effects within the classical limit of the Newtonian dynamics. 

  

 

 

 

 

 

  

                                         (a)                                                                                                   (b) 
 

 

Figure 8.7 Spatial profile of the normalized self-gravitational (a) Sagdeev potential and (b) physical 

potential. Various lines correspond to Case (1): 4
io 1000.6n   m-3 (blue line), Case (2): 4

io 1030.6n 

m-3 (red line), Case (3): 4
io 1060.6n   

m-3 (green line), and Case (4): 4
io 1090.6n   

m-3 (black line), 

respectively. Various input and initial parameter values are presented in the text. 
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The physical strength of the strongly nonlinear electrostatic potential for the average normalized 

potential 00.2~N  is calculated as, 00.2~p V, in the HII region with 410~Te K [1-2, 5, 15, 

21, 36]. Similarly, the physical value of self-gravitational potential is figured as, 91012.1~ p  

J kg-1, for the average normalized potential, 11000.8~ N . Thus, in the considered nonlinear 

regimes and in the typical plasma parameter domains, the electrostatic repulsive potential 

overcomes the self-gravitational attractive counterpart in both the cases of weak nonlinearity (

8.311  ) and strong nonlinearity ( 5.2NN  ).This implies that enhanced self-gravity 

effects by very massive dense grains are required for equilibrium bounded structure formation via 

gravito-electrostatic interplay mechanism. This lacuna might be due to the neutral fluid dynamics 

frictionally coupled with the collapsing plasma mass via self-gravity missed in our analysis. 

In comparison, the stability analysis presented here, with the effective ion-inertial 

contribution accounted in totality, differs from the existing weakly [11, 23, 30, 38-40] and strongly 

[20, 41] nonlinear analyses in fundamentality as well as in observation. The main differences in 

the light of the available reports are summarily presented in Table 8.1 as follows.  

Table 8.1: Comparison between our model and existing model analyses 

 

No Items Our analysis Existing analyses 

1 Type of plasma Cold dusty plasma with 

the inertial ions in 

presence of self-gravity (

eid TTT , ) 

Cold plasma with only thermal 

ions, excluding inertial ions 

 peid TTTT 
 
[11, 23, 30, 38-40] 

2 Dynamic ion-inertial 

response effects           

Included   Not included [1, 30, 40]  

3 Collisions between 

the ions and dust  

Considered Neglected [11, 23, 30, 38-40] 

4 Equation of state Polytropic (special case 

of the inertial ions and 

grains considered) 

Polytropic state of all the plasma 

constituent species [1, 30]                                                                                                         
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5 Self-gravity 

perturbative 

correction 

First order (lowest-order) Second order (higher-order) [1, 30]                                                                                                         

6 Normalization and 

scale-invariance 

schemes 

Standard astrophysical 

normalization procedure 

done on the Jeans scales 

of space and time 

Not done [11, 23, 30, 38-40] 

7 Jeans swindle Applied Neglected for considered entire 

uniformity [11, 23, 30, 38-40] 

8 Eigenmode equation 

(weak nonlinearity) 

Paired decoupled KdV 

equations 

Paired Coupled KdV [11, 23],                                   

Extended KdV [30] , decoupled  

KdV [38], KdV [40] equations 

9 Existence of self-

consistent source or 

sink  

No source or sink in the 

decoupled KdV system 

due to non-static 

response of the 

gravitating ions 

Nonlocal linear integral sink in the 

extended KdV equation, due to the 

gravitating dust amid the plasma  

constituents polytropically treated 

alike [1, 30]                                                                                                       

10 Eigenmode structures 

(weak nonlinearity)     

Solitary spectral 

patterns, electrostatic 

compressive and self-

gravitational rarefactive 

solitons               

Soliton-like modes [11, 23, 30, 38], 

Extended solitons and soliton- 

chains [40],  oscillatory-like [39] 

eigenmodes                                                                                         

11 Interpretational 

scheme  

By graphical and 

numerical analyses 

Numerical analyses not done [11, 

23, 30, 38]  

12 Exact mode-patterns Both electrostatic and 

self-gravitational 

fluctuations are studied 

by analytical tests, 

followed by numerical 

analyses 

Electrostatic and self-gravitational 

fluctuations are not studied by 

numerical analyses [11, 23, 30, 38] 
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13 Nature of eigenmodes Low-frequency gravito-

electrostatic eigenmodes 

on the Jeansian scales 

Dust-acoustic eigenmodes [11, 30, 

39], Ion-acoustic eigenmode [23, 

38] 

14 Deviation from quasi-

neutrality 

(electrostatic) and 

mass-neutrality 

(gravitational) 

Very small for weakly 

nonlinear perturbation 

Not analyzed [11, 23, 30, 38-40] 

15 Geometrical dynamics 

of the plasma species 

Phase trajectories of both 

the Columbic and 

Newtonian particles are 

well studied 

Not studied [11, 23, 30, 38-40] 

16 Ratio of eigenmode 

amplitudes  

8.311  , for weakly 

nonlinear modes; and  

5.2 , for fully 

nonlinear modes (both in 

normalized form) 

Not shown [11, 23, 30, 38-40] 

17 Spatiotemporal (3-D) 

eigenmode patterns to 

confirm temporal 

stability 

Shown for both 

electrostatic and self-

gravitational fluctuations 

Not shown [11, 23, 30, 38-40] 

18 Effect on amplitude 

for increasing dm , ion

, eon , don  and dZ  

Shown for both the 

electrostatic and self-

gravitational fluctuations 

(in both weakly and 

strongly nonlinear cases) 

Not shown for any of the cases [11, 

23, 30, 38-40] 

19 Effect of dust-charge 

fluctuations 

Soliton-like nonlinear 

eigenmodes exist 

without dust-charge 

fluctuations 

Solitary eigenmodes exist if dust-

charge fluctuation is neglected 

from the KdV equation derived 

originally with dust-charge 

fluctuations [23] 
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20 Contribution of the 

ion-inertia 

Specifically shown in 

both the weakly and 

strongly nonlinear 

fluctuations (in minor 

quantitative 

enhancement only) 

Not shown [11, 23, 30, 38-40] 

21 Energy-integral 

equations (Sagdeev 

pseudo-potential 

approach) 

Derived for both the 

electrostatic and self-

gravitational cases with 

effective ion-inertia 

Yet to be studied for self-

gravitational case [20, 41]  

22 Strongly nonlinear 

eigenmodes 

Solitary eigenmodes Shock-like eigenmodes [41] 

23 Ratio of the electro-

gravitational Sagdeev 

potentials 

    ,, GE VV
 

1102  

Not shown [41] 

 

 

8.5 CONCLUSIONS 

In conclusion, we propose an atypical hydrodynamic model to study the properties of both the 

weakly and strongly nonlinear wave dynamics of gravito-electrostatically coupled collisional, 

unmagnetized dusty plasma of infinite extension. It treats the gravitating massive dust grains with 

negligible partial ionization and the gravitating ions as inertial fluids, but the thermal electrons as 

the inertialess Boltzmann-distributed species amid all the significant collisional effects retained on 

the astrophysical hydrodynamic scales of space and time.  

The main aim is successfully focused upon investigating the influence of self-consistent 

dynamic ion-inertial effects on the stability behavior of the grainy cloud, in both the regimes of 

perturbation, weak and strong. Procedural application of standard multiple scaling techniques 

reduces the basic plasma structure equations into a unique pair of the decoupled Korteweg-de Vries 

(KdV) system, with no source or sink due to the static dust-charge considered, governing the 

weakly nonlinear gravito-electrostatic fluctuations. In contrast, the fully nonlinear counterparts are 

strategically shown to dynamically evolve as a new gravito-electrostatically coupled pair of the 

Sagdeev energy-integral equations. Numerical shape-analyses predict the excitation of two distinct 
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eigenmode classes, electrostatic compressive solitons and self-gravitational rarefactive solitons, 

with singular parametric features in the framework of interstellar wide-range parameter regimes 

portrayed in detail. A detailed comparison on the consistency of our results in the light of previous 

works is presented. The main possible conclusive remarks, are briefly highlighted as follows. 

(1) We study the weakly and strongly nonlinear classes of gravito-electrostatic fluctuation modes 

in unmagnetized, collisional, self-gravitating DMC for the first time with the active ion-inertial 

correction taken into account on the relevant scales of space and time.  

(2) The weakly nonlinear gravito-electrostatic fluctuations are governed by a pair of gravito-

electrostatically decoupled KdV equations (equations (8.8), (8.11)) obtained by multiscale 

analysis within the framework of the point-charge (Coulombic) and point-mass (Newtonian) 

approximations. 

(3) In contrast with the above, the strongly nonlinear gravito-electrostatic fluctuations are ruled by 

a unique pair of gravito-electrostatically coupled energy-integral equations (equations (8.22), 

(8.29)) obtained by the Sagdeev pseudo-potential approach under well justified set of sensible 

boundary conditions. 

(4) In both the formalisms, the electrostatic and self-gravitational potential fluctuations co-evolve 

as compressive  0  and rarefactive  0  solitary eigenmode spectral-patterns (Figures 

8.2-8.7) in dynamical response to the background collective plasma wave oscillations, 

respectively. Their scale-invariant structural signatures are found to be in good correspondence 

with the experimentally detected solitary waves in collision-dominated plasmas [12-13]. The 

multi-space satellite-based observations, like Freja, Viking, FAST, etc., [1, 16-19] and earlier 

theoretical investigations by others [1,11, 24,  30, 32, 36] as well do support our findings.  

(5) The gravito-electrostatic eigenmode-amplitude is noticed to possess a direct sensitive 

correlation with different plasma parameters of interstellar worth. It is interesting to note that 

the equilibrium density of the inertial ions play a destabilizing influential role leading to 

enhanced self-gravitational effects by reorganizing the fluctuation amplitudes towards 

establishing a new gravito-electrostatic equilibrium setup (e. g., Figures 8.2, 8.4, 8.7). This 

implies that the considered ion-inertial dynamics, even if the neutral dust dynamics is totally 

ignored for idealization of calculation, can significantly modify the dynamics of nonlinear 

wave propagations of gravito-electrostatic origin in an extended dusty cloud.  
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(6) The existential criterion for the gravito-electrostatic solitary eigenmodes, as investigated in our 

non-fluctuating dust-charge model, goes well with the earlier predictions on the gravitating 

dust-affected solitary wave reality [23]. 

(7) In parametric sense, plasma-parameter windows for the existence of the solitary structures for 

a wide-range of the grain-mass distribution ( 1013 1010   dm  kg), the equilibrium dust-

population density ( 31 1010 

don m-3) and the equilibrium gravitating ion-population density 

( 64 1010  ion m-3) are explored [37]. 

(8) The analytical, numerical and graphical analyses show and confirm that, in the adopted 

interstellar parameter space, the electrostatic fluctuations dominate over the self-gravitational 

counterparts. Accordingly, for developing an exact gravito-electrostatically balanced structure, 

the grain-mass should be so small as to make its charge-to-mass ratio remain large. This, in 

turn, causes the Coulombic and the Newtonian forces get comparable leading to equilibrium 

structure, which goes quite well with the previous reports by others [1, 11, 30]. 

(9) The phase portraits of both the Coulombic and Newtonian dynamics reveal a conservative 

nature of the fluctuations, as the trajectories throughout evolve as closed-form structures. For 

different plasma parameter-variations, the geometrical trajectories overlap over one another at 

the potential value corresponding to that near the cloud center. Therefore, it is pertinent to add 

that the central constituent of the cloud surrounds the most stable fixed point. The phase 

trajectories start to get slightly separated (alienated) from one another as the potential increases 

(decreases) in magnitude from the center outwards. This reveals that the cloud gets gradually 

more unstable at spatial points away from the cloud center.  

(10) Lastly, the fluctuation spectral patterns, as presented here, exist in a number of explored clouds, 

which have been testified by various spacecraft instrumentations, on-board multi-space 

satellite reports and experimental findings [3; and references therein). Important examples of 

dusty clouds supporting such wave spectra are Lynds 204 Complex, Barnard 68, and so forth. 

We must finally admit that ignoring the neutral fluid dynamics, frictionally coupled with the 

collapsing plasma cloud via gravitational force field, is not so physically realistic in understanding 

the formation processes of stars and other bounded Jeansian structures. That is why, in both the 

formalisms of weak-strong nonlinearities as presented here, the electrostatic fluctuation strength 

exceeds the self-gravitational complements in strength ( 8.311  , 5.2 ), as already 
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discussed before. However, in spite of such simplifications and limitations, our model analyses 

could be used to demonstrate a clear theoretical picture about the gravito-electrostatic fluctuation 

spectral patterns prevailing in rarer interstellar cloudy media, where, the effects of excluded neutral 

particle dynamics may be insignificant. In consequence, further necessary refinements are to be 

incorporated in our explorative analyses, which are left out now for new themes of future studies. 
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