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APPENDIX-A 
 

NONLINEAR PULSATIONAL EIGENMODES OF A 

COLLISIONAL DUST MOLECULAR CLOUD  
 
A theoretical evolutionary model leading to the excitations of nonlinear pulsational eigenmodes in 

a planar (1-D) collisional dust molecular cloud (DMC) with fluctuating charge on the astrophysical 

scale is constructed. It is a self-gravitating multi-fluid model consisting of the Boltzmann 

distributed warm electrons and ions, and the inertial cold dust grains with partial ionization. The 

grain-charge behaves as a dynamical variable owing mainly to the attachment of the electrons and 

ions to the grain-surfaces randomly. The adopted technique is centered around a mathematical 

model based on new solitary spectral patterns within the hydrodynamic framework. The collective 

electrostatic and self-gravitational fluctuation dynamics are governed by driven Korteweg-de 

Vries (d-KdV) and Korteweg-de Vries (KdV) equations obtained by a standard multiscale analysis, 

respectively. The sensitive dependence of the eigenmode amplitudes on diverse relevant plasma 

parameters is discussed. The findings are relevant to space and astrophysical environments. 

The nonlinear electrostatic fluctuations of the collisional DMC is governed by the 

following d-KdV equation in a reduced form resulting from the perturbative treatment over the 

closed set of the basic plasma structure equations, expressed with all the usual notations as, 
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Thus, the electrostatic eigenmodes are collectively governed by equation (A1) having a self-

consistent nonlinear source term arising due to collisional grain-charge fluctuation dynamics. The 

effect of grain mass appears in 1B , and so, the third term in equation (A1) represents the grain 

inertial outcome on the fluctuation dynamics.  

Similarly, the self-gravitational fluctuations is governed by the KdV equation given as, 

0
3

1

3

2
1

12
1 















X
B

X
A

T





,                                                                                                    (A3) 



188 
 

where, 
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The effect of grain mass appears in 2A , and consequently, the first term in equation (A3) represents 

the grain inertial effect on the associated fluctuation dynamics. Here, `1  and 1  are the 

normalized lowest-order perturbed electrostatic and self-gravitational potentials, respectively. 

Moreover, 0en , 0in , 0dnn , and 0dcn  are the equilibrium population densities of the electrons, ions, 

neutral grains, and charged grains, respectively. The equilibrium dust density is dnodcodo nnn   

and dust grain mass is dm . Further,   and G respectively are the fluctuation phase velocity 

(normalized by ssC ) and universal gravitational constant.  

The exact evolutionary pictures of the gravito-electrostatic fluctuations, the KdV-family 

structures as displayed in figure A1, are obtained by numerical integration of equations (A1) and 

(A3) as an initial value problem under judiciously chosen astrophysical conditions. The details of 

the complete fluctuation patterns are presented in Ref. [1].  
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Figure A1 Profile of the normalized lowest-order perturbed (a) electrostatic and (b) self-gravitational 

potentials. The details of the input and initial values are discussed in Ref. [1]. 
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APPENDIX-B 
 

NEW OSCILLATORY FLUCTUATION PATTERNS 

IN SOLAR PLASMA 
 

A simplified theoretical model is constructed to explore new stationary states of the nonlinear self-

gravitational fluctuation dynamics of the solar plasma with the zero-inertia electrons against 

weakly nonlinear perturbation. It is based on the Jeans homogenization assumption. The joint 

action of space-charge polarization, sheath-formation, and bi-layer plasma-boundary interaction 

through gravito-electrostatic interplay in a spherically symmetric geometry is considered. 

Applying a standard multiscale technique, a unique form of the extended Korteweg-de Vries 

Burger (e-KdVB) equation with a new self-consistent linear sink is methodologically derived. The 

origin of the unique sink lies in the spherically symmetric inhomogeneous self-gravitational 

fluctuations contributed by the massive ions. A numerical shape-analysis with multi-parameter 

variation depicts the co-existence of two distinct classes of new eigenmode excitations. The 

numerical illustrations show that the fluctuations evolve as oscillatory soliton-like and oscillatory 

shock-like patterns in judicious plasma conditions under the adiabatic electronic response. Their 

oscillations, arising due to resonant and non-resonant coupling phenomena with the background 

spectral components, get gradually damped out due to the presence of the sink. This study allows 

us to conjecture that the model supports self-gravitational solitary (shock) waves having tails 

(fronts) composed of a sequence of slightly overlapping solitons with smoothly varying 

characteristic parameters. Our results are in agreement with earlier theoretical model predictions, 

on-board multispace satellite data and spacecraft observations. 

The nonlinear self-gravitational potential fluctuations ( 1 ) of the ionized solar plasma 

within the gravito-electrostatic sheath (GES) model framework is governed by the e-KdVB 

equation in reduced normalized form (by standard astrophysical parameters) after systematic 

perturbative analysis over the basic closed GES model structure equations as given below, 
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where, 
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Here,   T 1  and 
T  is the ratio of ion-to-electron temperatures (in eV).  The notations 0M , 

T , and   represent the normalized equilibrium ion flow Mach number, normalized time 

coordinate and the phase speed of the fluctuations, respectively.  In addition, De  and J  represent 

the plasma Debye length and Jeans length scales, respectively. 

To see the exact picture of the self-gravitational solar plasma fluctuations, equation (B1) is 

numerically solved (by RK-IV method) as an initial value problem under judiciously chosen 

plasma conditions to yield figure B1. The details are displayed in Ref. [1]. 

  

    

 

 

 

 

 

 

     (a)                                                                                           (b)   

  

Figure B1 Spatial profile of the normalized lowest-order perturbed self-gravitational (a) potential and (b) 

phase portrait. The details of the input and initial values are discussed in Ref. [1]. 
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