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CHAPTER-2 

 

ELECTROMAGNETIC CHARACTERIZATION OF 

A DUST MOLECULAR CLOUD  
 

Abstract: We study equilibrium electromagnetic properties of a spherically symmetric charged 

dust molecular cloud (DMC) structure with the help of a new technique based on the modified 

Lane-Emden equation (m-LEE) of polytropic configuration. First, we methodologically derive the 

m-LEE under the framework of exact gravito-electrostatic pressure balancing condition. The weak 

but finite efficacious inertial roles of the thermal species (electrons and ions) on the lowest-order 

are taken into account. Then, a detailed characterization of the lowest-order Cloud Surface 

Boundary (CSB) and associated significant parameters on the Jeans scale is numerically obtained 

and presented. The multi-order extremization of the m-LEE solutions specify the CSB existence at 

a radial point 1210588 .  m relative to the cloud center. It is shown that the CSB gets biased 

negatively due to the interplay of plasma-boundary wall interaction (global) and plasma sheath-

sheath coupling (local) processes. It acts as an interfacial transition layer coupling the bounded 

and unbounded scale-dynamics of the cloud. The geometrical patterns of the bi-scale plasma 

coupling are elaborately analyzed. Diversified application of our technique to neutron stars, other 

observed DMCs and double layers is shown together with future scopes.  

 

2.1 INTRODUCTION 

The dust molecular clouds (DMCs) in the interstellar media are cold, dark, and giant condensed 

states of the dust and molecular gases giving birth to protostars. The formation of stars and other 

astrophysical objects within the molecular clouds are complex natural consequences of their low 

temperatures and high densities, since the gravitational force acting to collapse the cloud may 

exceed the internal pressures, turbulence, magnetic field and radiation that are acting outward to 

prevent the collapse. There is observed evidence that the large, star-forming clouds are confined 

to a large degree by their own gravity (like stars, planets, and galaxies) rather than by external 

pressures [1-2]. In such self-gravitating clouds, the turbulent velocity field coupled with the 

thermal instability generates dense structures, some of which are isolated and clumpy, while many 
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other density structures are contiguous, filament-like. The clumps that satisfy the Jeans criterion, 

fragment further to form smaller prestellar cores that eventually spawn stars [1-2]. Ambipolar 

diffusion, the process by which ions drift along magnetic field lines, becomes important in a self-

gravitating prestellar core only when it has sufficiently collapsed as to raise its gas temperature 

whence, molecules rupture to release ions.  

As a consequence of gravity-induced electrostatic polarization effect [3-4], large-scale 

ambipolar non-zero electric field is developed due to gravitational stratification of the ionized 

constituents, which in turn is responsible for many electromagnetic phenomena sustaining on the 

new-born stars and their atmospheres like electromagnetic waves, inductive effects, reconnections, 

and so forth [5-6]. In stellar objects, electromagnetic states, their properties and associated field-

induced effects have been discussed by many authors with Electrical Stellar Models (ESMs) in 

past [6-7].  The separation of electrical charge inside a star within the ESM framework has been 

understood by modelling the star as a ball of hot ionized gas (spherical plasma ball) under the light 

of basic ionization and diffusion processes. Such dynamic processes allow the stellar structure to 

acquire a net electrical negative charge  CQs
1010~   on the surface [6]. Later, however, it has 

been hypothesized that all gravitationally bounded structures possess net positive charge; whereas, 

in contrast, expanding intergalactic medium between clusters acquires compensating negative 

charge at the cost of the expelled electrons [3]. This implies that, as if all astronomical objects like 

stars, galaxies and clusters of galaxies consist of positively charged clouds embedded in an 

intergalactic sea of negative charge. In the relativistic regime, unstable polytropic high-compact 

stellar objects like neutron stars can have a huge amount of charge  CQs
2010~   under global 

force-balancing condition [7]. The origin mechanism and maintenance of the high electric field in 

such astrophysical situations still remains an open problem to be well understood. 

The description of stellar structure in both force- and mass-balanced conditions under 

temperature-independent configurations is usually made by polytropic model defined by the Lane-

Emden equation (LEE) of state [9-10]. There indeed exist various exact solutions for diverse 

equilibrium configurations describable by the LEE and its various other mathematical constructs 

[10]. The earlier investigations have ignored the plasma-boundary-wall interaction, gravito-

electrostatic coupling processes, and collective electrodynamic response scales of the plasma 

constituents. A full procedural description of the electromagnetic anatomy of the DMCs has been 

an unavoidable challenge for last few decades from various astrophysical perspectives. In addition, 
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the inertial effect of the thermal species on such cloud electrodynamics is still unknown. Therefore, 

there has been a great need for a long period of time for devising a simple self-consistent technique 

for investigating the electromagnetic cloud properties of basic interest as a function of collective 

gravitational weight and electrical charge interaction in presence of active inertial roles of the 

thermal species. This might systematically be explained on a single potential variable of the cloud, 

its multi-order derivatives and their extreme behavior. In this chapter, motivated by the importance 

of basic electromagnetic cloud characterization and its expansion, we propose a simple strategy 

independent of any polytropic index. The lowest-order inertia-corrected thermal species [11] with 

all the possible thermal effects, gravito-electrostatic coupling, and plasma-boundary-wall 

interaction processes are taken into account in a spherically symmetric geometry. We build up a 

modified LEE (m-LEE) scheme (after the self-gravitational Poisson formalism) coupling both the 

electromagnetic [6] and hydrostatic [9, 12-13] behaviors within an integrated gravito-electrostatic 

framework [12-13]. The model makes a precise examination whether efficacious inertial 

contribution of the thermal species affects the existence of the Cloud Surface Boundary (CSB), at 

least, on the lowest-order, by the balanced gravito-electrostatic interaction, which has earlier been 

found to be located at a radial point 50.3  on the Jeans scale in like situations [14]. Efforts are 

put to see also the detailed electromagnetic aspects on the entire cloud scale, taking care of both 

force balancing (electromagnetic) and charge balancing (electrostatic) in the fluid form governed 

by continuity equation (hydrostatic). The different multi-order derivative constructs of the m-LEE 

on the normalized electrostatic pressure considering weak but finite thermal inertia are 

methodologically obtained. Besides, the derivatives are shown to have important roles in full 

electromagnetic CSB specification and in description of its interfacial microphysical processes. It 

is seen that this model is justifiably successful in the cloud characterization of electromagnetic 

interest with a single dependent variable in the form of the electric pressure only. The electrostatic 

pressure arises due to the electrostatic repulsion among the shielded dust grains and their 

inhomogeneous distribution [12-13]. The model offers an extension for detailed characterization 

of neutron stars, other observed DMCs, and double layers in space and astrophysical environments. 

 

2.2 PHYSICAL MODEL 

We consider an idealized astrophysical multi-fluid model of an external field-free, quasi-neutral, 

self-gravitating DMC consisting of the thermal electrons, ions, and the inertial dust grains in a 
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spherically symmetric geometry approximation in hydroelectrostatic equilibrium on the 

astrophysical scales of space and time. A bulk differential flow is assumed to pre-exist, which is 

justifiable due to temperature scaling, TTTT ied   (for unequal mass scaling, eid mmm  ; 

where T stands for temperature and m for mass of the superscripted species, defined in detail later). 

Global electrical quasi-neutrality is supposed to subsist over the gravito-electrostatically bounded 

spherical enclosure containing the plasma volume. The solid matter of the identical spherical dust 

grains is embedded in the inhomogeneous gaseous phase of the background plasma. We further 

consider that the heavier grains behave as an inertial fluid, whereas, lighter inertia-corrected 

electrons and ions as the inertia-modified Boltzmannian thermal particles [11] on the Jeans scale 

length. So, the grain self-gravitational interaction would be significant even within the Newtonian 

point-mass approximation [15]. This means that the grain self-gravity would accelerate the cloud 

contraction against the Coulombic repulsion. This assumption of thermalization is valid provided 

the phase velocity of intrinsic background fluctuations, if any, is much smaller than their thermal 

velocity, i.e., any fluctuation in the electron-ion temperature profile is instantly smoothened out. 

In addition, complications like the effects of dispersed grain rotation, kinetic viscosity, non-

thermal energy transport (wave dissipation process) and magnetic field due to involved convective 

circulation dynamics are neglected for simplification. Such idealization would provide the 

simplistic equilibrium picture of the cloud and its average behavior, particularly, the CSB in 

absence of any inductive reconnection process [16]. 

 

2.3 MATHEMATICAL ANALYSES 

The adopted theoretical model consists of a charged self-gravitating DMC with the thermal 

electrons, ions and inertial dust grains under hydroelectrostatic equilibrium configuration under 

spherical symmetry. The light neutral gas particles develop a constant background which is weakly 

coupled to the collapsing charged grains. The dynamics is described by the continuity, momentum, 

and the coupling electro-gravitational Poisson equations with all conventional notations. The 

electron and ion dynamics in unnormalized form are described by, 

  0



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s n.
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v , and                                                                                                                  (2.1) 
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Here, the label  ies ,  characterizes the electronic and ionic species with charge eqe   and 
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eqi  , respectively. Equations (2.1)-(2.2) are respectively the continuity and momentum 

equations of the flowing electrons and ions with density sn  and velocity sv .  

The massive dust grain dynamics is similarly described by, 

  0



dd

d n.
t

n
v , and                                                                                                                (2.3)
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As usual, dn , and dv  represent number density and velocity of the grains, respectively. The spatial 

distributions of the electrostatic potential  , and self-gravitational potential   in presence of the 

weak but finite thermal inertia are defined by the closing Poisson equations respectively as follows, 

  ddei nqnne   42
, and                                                                                               (2.5) 

 iieedoddd nmnmnmnmG   42
,                                                                                 (2.6) 

where, dodd nm0  models the Jeans swindle [5, 17] of the equilibrium unipolar gravitational 

force field. The swindle provides a formal justification for discarding the unperturbed (zeroth-

order) gravitational force field. It allows us to consider the equilibrium initially as ‘homogeneous’ 

thereby validating local analysis (as discussed detail in chapter 1). Thus, the full dynamics of the 

DMC is described by equations (2.1)-(2.6). In gravito-electrostatic equilibrium, the gravitational 

pressure ( GP ) is exactly balanced by the electrostatic pressure ( EP ) acting radially in opposite 

directions ( EG PP  ). Therefore, the DMC equation of force balance [12-13] is given by, 

  dEP .                                                                                                                              (2.7) 

Applying equation (2.7), we obtain a conversion relationship between electric charge density  E  

(defined as dust-charge per unit volume), and inertial dust mass density  d  (defined as dust-

mass per unit volume) in gravito-electrostatic equilibrium as, 

Ed   ,                                                                                                                                     (2.8) 

where,  dd Gmq 34  is the gravito-electrostatic conversion factor. Here, 1  for eqd 100 , 

and 
71019.3 dm  kg [5, 18-20]. So, mass density ( d ) is replaced by charge density ( E ) in 

our calculation scheme for a gravito-electrostatically bounded structure characterization. This type 

of mass-charge density conversion relation has been derived by Roseeland under perfect gravito-
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electrostatic equilibrium condition [6]. Such conversions have also been adopted in past to see the 

effect of charged polytropic compact stars in the maximum charge accumulation limit [7]. 

Applying equations (2.6)-(2.8), we obtain the m-LEE for electrostatic pressure ( Ep ) and charge 

density ( E ) in a spherically symmetric geometry with radial dimension r  given as follows, 
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The respective modified normalized Boltzmannian population density distribution of the electrons 

and ions including their weak but finite inertia are obtained from equations (2.1)-(2.2) with all the 

usual notations in accordance with the basic rule of inertial drag effects [11], presented as follows, 
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This is worth noticing that equations (2.10)-(2.11) are the lowest-order inertia-corrected population 

density of the electrons and ions, respectively. If we consider 0, diie mmmm  for the 

inertialess electrons and ions in equations (2.10)-(2.11), they reduces back to the zero-inertia 

electrons and ions as given by the normal Boltzmann distribution [12-13].  

The electric pressure EP  [12-13] normalized by the equilibrium plasma thermal pressure 

TnPE 00  , with  inertia-corrected thermal species (equations (2.10)-(2.11)) is derived as, 
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where, Te   is the electrostatic potential, developed due to the local charge-imbalance 

resulting from shielded dust-dust repulsive interaction, normalized by the plasma thermal potential 

1~eT V, for 1~T eV [5, 18-20]. Also, eN , iN , and dN  are respectively, the population 

densities of the electrons, ions, and the dust grains normalized by the equilibrium plasma 

population density 0n . The electron and ion flow velocities ( eoM , and ioM ) are normalized by 

the ion acoustic phase speed (   21

iS mTC  ), and dust sound phase speed (   21

dSS mTC  ), 

respectively. The velocity normalization is such that the weak but finite inertial effects against the 

electrodynamic response of both the plasma thermal species becomes realizable [11].  
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Now, the charge density E  after inertial correction, normalized by equilibrium charge density 

enE 00  1210601 .~  C m-3 (for 7

0 10n  m-3, and 19106.1~ e  C), is given as follows, 
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Equation (2.9) in the normalized (with standard astrophysical parameters) form with all the usual 

notations can be simplified into the following, 
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Equation (2.14) represents the local relationship between the normalized electric pressure EP  and 

normalized electric charge density E  , where, 
43 1010  ~nn doo [5, 12-13]. Here, don  is the 

equilibrium dust population density, and Jr    is the radial space coordinate normalized by 

the Jeans scale-length  JssJ C   .  The Jeans scale-length  J  is defined as the critical scale-

length above which any astrophysical structure, such as molecular cloud, undergoes a gravitational 

collapse. Also,   21

04  GJ   is the Jeans frequency, and 0  is the inertia-corrected equilibrium 

mass density of the cloud. The equation (2.14) may be termed as the electrical analogue of the 

polytropic m-LEE with weak thermal inertia. Now, using equations (2.12)-(2.13) to (2.14), and 

after multiple differentiation, we obtain m-LEE on  -distribution in the following reduced form, 
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where,  
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Equation (2.15) is the electrostatic version of the fourth-order m-LEE with inertial role of the 

thermal species. Both the explicit and implicit functional dependences of the variable m-LEE 

coefficients on the plasma and confining geometry parameters are evident from equations (2.16)-

(2.23). As a consequence, initial inputs play a vital role in the dynamical evolution of the m-LEE. 

This may be pertinent to add that, if the assumption of spherical symmetry (for radial degree of 

freedom only) as applied in the presented analysis is dropped, then a more realistic three-

dimensional (3-D) picture would come into play. Then, one has to deal with all the components of 

the relevant potential parameters in spherical polar coordinates   ,,r . The analytical calculations 

would become very complex due to the nonlinear coupling of multi-order spherical harmonics and 

polynomials. The m-LEE might be of different form with diverse complex coefficients and 

geometrical effects. However, the assumption of spherically symmetric configuration simplifies 

equation (2.15) to represent the electrostatic version of the fourth-order radially evolving m-LEE 

in differential form. We are interested in the detailed radial profiles of the relevant electromagnetic 

parameters on the zeroth-order. Being highly complicated, nonlinear and lengthy form, analytical 

integration for exact solutions is avoided. Applying the fourth-order Runge-Kutta (RK-IV) 

method, it is numerically integrated as an initial value problem to see the equilibrium structure of 

the cloud, its lowest-order CSB, associated electromagnetic properties, and transitional behaviors. 

 



  

25 
 

2.4 RESULTS AND DISCUSSIONS  

Based on the application of a new technique derived from the polytropic m-LEE on the Jeans scales 

of space and time, a theoretical model is developed for investigating the electromagnetic behavior  

of a simplified self-gravitating spherically symmetric charged dust cloud in an external field-free 

inhomogeneous hydroelectrostatic equilibrium configuration. The unique originality is the 

application of the lowest-order inertial correction (weak, but finite; over the zeroth-order inertia) 

through the modified Boltzmann distributions of the thermal species in the analytical derivation of 

the multi-order derivative forms of the m-LEE on the normalized electrostatic pressure. Different 

differentials involved in it typify different electromagnetic significances, thereby characterizing 

diverse cloud properties. So, in order to understand the full electrodynamic cloud features, the 

multi-order differential forms are numerically integrated under suitable astrophysical conditions. 

Before presenting the numerical analyses, different normalization constants are estimated 

methodologically from the available inputs [5, 12-13, 18-21]. An overview of the normalization 

scheme along with estimated typical values is tabulated in Table 2.1 as follows. 

Table 2.1: Normalization constants with estimated typical values 

S. No      Physical property                Normalization constant                            Typical value       

  1           Distance                              Jeans length [ J ]                                     
121045.2   m 

  2           Electrostatic potential         Cloud thermal potential [ eT ]                 00.1 V   

  3           Electric field                       Cloud thermal field [ JeT  ]                   
131008.4   V m-1    

  4           Dielectric constant              Permittivity of free space [ 0 ]                121085.8   F m-1      

  5           Electric pressure                 Thermal pressure [ ]             
361047.1   N m-2 

  6           Electric charge density       Equilibrium charge density [ en0 ]           
121060.1   C m-3    

  7           Population densities            Equilibrium density [ ]                        710001 .  m-3    

  8           Electric energy                   Thermal energy [ ]               110682 .  J   

  9           Conventional pressure        Thermal pressure [ Tn0 ]                         1210601 .  N m-2 

  10         Ion flow velocity                Dust-sound phase speed [ ] 710087 .  m s-1 

  11         Electron flow velocity       Ion-acoustic phase speed [   21
iS mTC  ]  310799 .  m s-1 
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Now, to get the graphical picture, the multi-order differential form (equation (2.15)) of the m-LEE 

is numerically integrated by using the RK-IV method with judicious plasma parameter values [5, 

12-13, 18-21] to yield the profiles as shown in figures 2.1-2.5.  

 

                            
                           (2.1)                                                                                           (2.2)   
                                   

Figure 2.1 Profile of the normalized values of (a) electric potential (blue line), (b) potential gradient (red 

line), (c) potential scale-length (green line), and (d) potential curvature (black line) with normalized 

position. Various inputs and initial values are given in the text. Figure 2.2 Profile of the normalized electric 

potential with normalized position under the same condition as figure 2.1.  

 

Figure 2.1 shows the profile of the normalized values of (a) electric potential      (rescaled 

by dividing with 8 and denoted by blue line), (b) potential gradient     (rescaled by 

multiplying with  and denoted by red line), (c) potential scale-length    1
  logL  

(rescaled by multiplying with  and denoted by green line), and (d) potential curvature 

 22    (rescaled by multiplying with  and denoted by black line) with 

normalized position. Various numerical input and initial parameter values adopted here are 

100dZ , 10 N , 310002  .N d
, 71019.3 dm  kg, 310405  . ,   31040.3 i , 

  101000.1 
i ,   71000.1 

i , and   111000.1 
i . Figure 2.2 shows the evolutionary 

profile of the electric potential, specifically as in figure 2.1, but in magnefied form. It is clear that 

a monotonous potential profile exists in the cloud (Figure 2.2) with a value 31040053  .~  (

31040053  . V) at 50.3 . Beyond this point, nonmonotonous features come into picture. The 

410

310003 .

610303 .
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lowest-order CSB by the potential gradient minimization (Figure 2.1, red line) is specified to exist 

at 121058.850.3  Jr   m for 121045.2 J  m calculated with average interstellar mass density 

~ 2810  kg m-3 [18-20]. The potential scale-length minimization (Figure 2.1, green line), and zero 

potential-curvature (Figure 2.1, black line) are other characteristic features of the CSB. The value 

of scale- length at the CSB is 11067.4~ NL
 relative to the center of the cloud. This, 

physically, is estmated as 1210151  .~LL NJPhy    m. By the terminology ‘lowest-order 

boundary’, we mean the nearest spherical electric potential boundary surface (formed by gravito-

electrostatic balancing) relative to the center of the self-gravitating cloud mass distribution, such 

that it behaves as an interfacial transition surface layer exhibiting Bounded Interior Scale (BIS) 

dynamics on one hand, and Unbounded Exterior Scale (UES) dynamics on the other; as reported 

earlier in like situations [14]. This is seen that the cloud exhibits perfect quasi-neutrality at the 

obtained boundary. But, before and after the CSB, an appreciable deviation from quasi-neutrality 

condition due to gravity-induced polarization is observed (Figure 2.1, black line). These 

observations are in good agreement with our earlier results on self-gravitating plasma systems with 

plasma boundary-wall interaction processes taken into account [14]. As one moves away radially 

outwards relative to that center, the cloud may be found to possess next similar higher-order 

potential (non-rigid) boundaries, and so forth, as clearly seen from the curvature profiles. Thus, 

figures 2.1-2.2 show that the CSB is not neutral, but it is electrically charged. Applying the normal 

Coulomb formula [21], the total electric charge at the CSB is calculated as 

2434 0 .~)r(Q Phy   C for 3104005.3~ Phy  V. Figure 2.3 displays the profile of the 

normalized values of (a) electric field   E  (blue line), (b) field divergence   EEdiv


 

(red line), (c) field scale-length    1
 ElogLE

 (rescaled by multiplying with  and 

denoted by green line), and (d) field curvature  22   EE  (rescaled by multiplying with 5 and 

denoted by black line) with normalized position. The field becomes maximum, 71019.2 NE  

with the physical value    2010948  .~EeTE NJPhy   V m-1 at 50.3 , and after that, starts 

monotonously decresing to a lower value (~ 71001.1  , with physical value ~ 2010124  .  V 

m-1) at  ~10.00 (Figure 2.3, blue line). The field-divergence is zero (Figure 2.3, red line), and the 

curvature is found to be maximum negative at 50.3  (Figure 2.3, black). Thus, the CSB (on the 

710003 .
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lowest-order) by the electric field maximization, vanishing field-divergence, and field curvature 

minimization is re-specified to exist at 50.3 .  

            We know that for a spherical distribution of electric charge (be it conducting, or 

nonconducting), the electric field gets maximized only at the surface [22]. So, conversly, if the 

electric field gets maximized at some radial point relative to some origin, the point corresponds to 

the location of the nearest (lowest-order) surface boundary relative to the same origin of the 

considered charge distribution. Therefore, the lowest-order CSB is specifically located at 50.3  

based on the electric field maximization principle. This CSB is primarily a field boundary in our 

model description. Thus, the cloud has no solid physical (rigid) boundary wall, but only a diffuse 

potential boundary (non-rigid) is found to exist. The cloud electric field itself acts as an 

electrostatic non-rigid wall having variable strengths against self-gravity enclosing the background 

plasma volume with the maximum strength at the CSB. The field scale-length at the CSB is 

11020.2~ ENL  (Figure 2.3, green line), which is physically ~EPhysL 1110395  .  m. The 

corresponding strength of the magnetic field at the CSB is semi-empirically estimated as 

281098.2~)(~ cEB PhyPhy
 T, where the vacuum light-speed is 

8103~ c  m s-1 [21]. The 

magnetic field is too weak to contribute to the cloud dynamics, and hence, neglected at the outset. 

These findings are found to go in agreement with our earlier results on the self-gravitating plasmas 

[14]. After the CSB, field reversibility occurs on the unbounded scale at 75.7  due possibly to 

the surface-charge polarization and interstellar radiation-ionization mechanisms. In the field 

curvature profile (Figure 2.3, black line), nonmonotonic quasi-neutrality deviation is found to exist 

at near 1 , which is due to the thermal pressure driving wave-instability followed by 

compression and rarefaction. The deviation is maximum at the CSB with normalized value 

81000.4~ NE , which is physically PhyE   NJ EeT 3 451072.2~   V m-3 . From the CSB on, 

monotonic deviation results from the random cloud surface-leakage of the electrons and ions due 

to their high thermal velocities [14]. Figure 2.4 depicts the profile structure of the normalized 

values of (a) electric pressure  221 EP   (blue line), (b) pressure gradient    PP  (red line), 

(c) pressure scale-length    1
 PlogLP

 (rescaled by multiplying with  and 

denoted by green line), and (d) pressure curvature  22   PP  (rescaled by multiplying with 2 

and denoted by black line) with normalized position. Here,   is the dielectric constant normalized 

141000.9 
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by the permittivity of free space, 12

0 10858  .  F m-1 [21], normally taken in the plasma 

environment of the DMC, the real value of which is yet to be known. The value of 1~)( 0

, as we consider both the media in the same background. The maximum normalized pressure at the 

CSB comes out to be 141038.2~ NP  (Figure 2.4, blue line), which is physically equal to 

  NJPhy PeTP 22
0

2   501050.3~   N m-2. The existence of the CSB at 503.  is further ensured 

by the joint association of the maximum pressure (Figure 2.4, blue line), zero pressure gradient 

(Figure 2.4, red line), and  minimum pressure curvature (Figure 2.4, black line). The physical value 

of the pressure curvature at the CSB is 631015.2~ PhyP  N m-4 for normalized value 151075.8~ NP

. Their small values are due to the application of the small permittivity value 0  and application 

of the inertia-modefied thermal distributions. The normalized value of the scale-length at the CSB 

is 11011.1~ PNL , which is physically 1110722  .~LPPhy
 m. The electric pressure is maximum 

at the CSB due to the electrostatic repulsion between shielded dust grains, repulsion between 

similar thermal species (like polar) and surface-charge polarization. Moreover, as the strength of 

the electric field decreases outside the CSB, then, the electrostatic pressure also decreases. 

  

                                                
                                              

                                              (2.3)                                                                                 (2.4) 

 

Figure 2.3 Profile of the normalized values of (a) electric field (blue line), (b) field divergence (red line), 

(c) field scale-length (green line), and (d) field curvature (black line) with normalized position under same 

condition as figure 2.1. Figure 2.4 Profile of the normalized values of (a) electric pressure (blue line), (b) 

pressure gradient (red line), (c) pressure scale-length (green line), and (d) pressure curvature (black line) 

with normalized position under same condition as figure 2.1. 
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Figure 2.5 shows the profile of the normalized values of (a) electric energy  3232  EU E   

(blue line), (b) energy gradient    UU E  (red line), (c) energy scale-length 

   1
log


 EU UL  (rescaled by multiplying with and denoted by green line), and 

(d) energy curvature  22   EE UU  (black line) with normalized position. The CSB by the 

zero-energy curvature (Figure 2.5, black line) is further re-specified to lie at 50.3 . The energy 

at the CSB is    1122
0 1048.9~  ENJEPhy UeTU   J for normalized energy 121037.4~ ENU .  

The energy shows variable behaviour with maximum strength on the unbounded scale. As already 

mentioned, in addition to the CSB, there may be higher-order concentric spherical surface 

boundaries as well. These boundaries are characterized by the extreme behaviours of the relevant 

physical parameters beyond the CSB. The basic mechanism for such behaviors may be due to the 

differential flow of the constituents with differential mass-scaling and periodic gravito-acoustic 

coupling. The scale-length at the CSB is 11038.1~ UNL , which is physically ~UPhyL 111038.3   

m. It is possible to calculate the magnetic energy 32
032 rBUMPhy   at the CSB. Taking dusty 

plasma permeability as that of vacuum, 7

0 104    H m-1 [21], the CSB magnetic energy 

comes out to be 2210471 .~UMPhy
 J . Thus, the physical value of the electrostatic-to-magnetic 

energy ratio is, 1110~UU MPhyEPhy
. So, various observed phenomena on the Jeans scale are mainly 

due to the electrical energy transports only, and not due to the magnetic counterpart. The other 

electromagnetic properties of the cloud in detail are presented in Ref. [23]. 

In our model, we neglect various realistic conditions, such as, neutral grain dynamics, the 

dynamical evolution of background gas, spatiotemporal evolution of the inhomogeneous 

equilibrium, neutral-charged dust interactions, grain-size, grain-mass distribution, etc. So, we 

admit that our spherically symmetric model is purely idealized and some deviations may widely 

exist in reality. Besides, it is developed without the application of any external electromagnetic 

field, dust-charge fluctuations, etc. All the dissipative agencies are too neglected for simplicity. 

But, recently, many authors have reported similar results on the relativistic regime for examining 

the properties of nonlinear field theories embedded in expanding Euclidean Friedmann-Lemaitre-

Robertson-Walker metrics in the context of cosmology and the Lagrangian formulation of the 

stochastic inflationary universe [24]. Their path-integral model approach has shared many 

111000.4 
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similarities with the quantum Brownian motion and non-equilibrium statistical quantum formalism 

under dynamical space-time. The model analysis presented here might be extended to the 

relativistic limit to study the evolutionary patterns of the DMC electromagnetic properties with the 

spatial expansion of the universe, especially with a mass-hierarchy, as reported before [24]. 

 

 

 

 
 

 

 

 

 

 
                                   

                                                                                          

                                                                                                                                                                                                                                                                                                            (2.5) 

 

Figure 2.5 Profile of the normalized values of (a) electric energy (blue line), (b) energy gradient (red line), 

(c) energy scale-length (green line), and (d) energy curvature (black line) with normalized position under 

the same condition as figure 2.1. 

 

It might be relevant to judge the extensive applicability of  our model in diverse other 

astrophysical situations as well. This can be used to extimate different electromagnetic parameters 

at the surface boundary of neutron star (with surface charge CQ 2010~ ) [7], other DMCs such as 

Barnard 68 (with radius ~ 1510871 . m, central population density ~ 1110002 .  m-3, and dust grain 

mass ~ 1610001 .  kg) [16], 69 and 70 ; Taurus Molecular Cloud 1 (TMC1), Lynds 134N (L134N), 

and so forth.  In addition, the investigation might have astrophysical applications including the 

Earth’s auroral region, extragalactic jets, X-ray and gamma-ray bursts, X-ray pulsars, double radio 

sources, solar flares, and the source of cosmic ray acceleration like the double layers [8]. One 

specific example is the double radio galaxy, Cygnus A, with electric field strength ~ 210206 .  V 

m-1 [25], for which the applicability is tested. The estimated values (approximately) of diverse 

electromagnetic parameters for different astrophysical objects are shown in Table 2.2 as follows. 
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                                  Table 2.2: Estimated values of electromagnetic parameters 

 

No Parameter Astrophysical objects 

Neutron star 

 

Barnard 68 

 

Cygnus A 

 

1 Charge ( Q ) 2010  C 3210  C 141007.5   C 

2 Electric potential ( phy ) 171005.1   V 291074.1   V 111032.5   V 

3 Potential scale-length ( PhyL ) 121061.8   m 121061.8   m 121061.8   m 

4 Electric field ( PhyE ) 51022.1   V m-1 161003.2   V m-1 21020.6   V m-1 

5 Field curvature ( PhyE ) 211066.1   V m-3 101076.2   V m-3 161042.8   V m-3 

6 Field scale-length ( EPhyL ) 121058.8   m 121058.8   m 121058.8   m 

7 Magnetic field ( PhyB ) 51007.4   T 71077.6   T 101006.2   T 

8 Electric pressure ( PhyP ) 21058.6   N m-2 211082.1   N m-2 141070.1   N m-2 

9 Pressure curvature ( PhyP ) 281094.8   N m-4 51047.2   N m-4 401030.2   N m-4 

10 Pressure scale-length ( PPhyL ) 121058.8   m 121058.8   m 121058.8   m 

11 Electric flux ( Phy ) 321013.1   V m 431087.1   V m 131073.5   V m 

12 Flux gradient ( Phy ) 191031.1   V 301017.2   V 67.6  V 

13 Flux curvature ( Phy ) 61052.1   V m-1 171052.2   V m-1 131077.7   V m-1 

14 Flux scale-length ( PhyL ) 121058.8   m 121058.8   m 121058.8   m 

15 Electric energy ( EPhyU ) 371003.2   J 601082.4   J 241008.5   J 

16 Energy gradient ( PhyEU  ) 241046.2   J m-1 471061.5   J m-1 111092.5   J m-1 

17 Energy curvature ( PhyEU  ) 111086.2   J m-2 241053.6   J m-2 21089.6   J m-2 

18 Energy scale-length ( UPhyL ) 121058.8   m 121058.8   m 121058.8   m 

19 Magnetic energy ( MPhyU ) 241010.3   J 481038.7   J 131007.7   J 

20 Electric-to-magnetic energy 

ratio  (
MPhyEPhy UU ) 

1110  1110  1110  
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2.5 CONCLUSIONS 

In this chapter, we study relevant electromagnetic properties of a self-gravitating spherical DMC 

based on application of the m-LEE formalism on the astrophysical space-time scales. The effects 

of the lowest-order inertial correction of the thermal species are taken into account amid diverse 

spatial inhomogeneities. The gravito-electrostatic equilibrium structure of the cloud is modeled 

analytically, graphically and numerically. The basic framework of the m-LEE calculation scheme 

is based on a perfect coupling of the Newtonian and Coulombic dynamics of the fluid cloud 

constituents. The proposed technique of the cloud characterization lies in the diverse relevant 

electromagnetic properties, their multi-order gradients, scale-lengths and extreme behaviors on 

both the bounded and unbounded scales using a single potential variable of electrodynamical 

significance.  In addition, one of the most important conjectures derivable from our investigation 

is that dust acoustic waves and oscillations are prominent within the interior scale of the plasma 

volume bounded by the lowest-order CSB (Figures 2.1-2.5) located at 50.3  (on the Jeans 

scale). This, however, is not so on the unbounded exterior scale and beyond. Thus, it offers a coarse 

definition and specification of the lowest-order CSB by the principle of extremization of various 

relevant electromagnetic parameters, and corresponding transitional dynamics. Weaker 

electromagnetic parameter values at the CSB, and also beyond, are in qualitative conformity with 

the existing results previously reported in literature [6, 14]. This may equally offer an alternate 

approach to understand the basic physics of the realistic electromagnetic phenomena occurring in 

self-gravitating objects like stars, clusters, and their atmospheres through the proposed m-LEE 

framework. This is because this methodological technique conveniently uses a single self-

consistent mathematical construct to depict the entire cloud, its non-rigid boundary, transitional 

behavior, and so forth. Our results are in qualitative agreement as characterized by different space 

probes, multispace satellite observations, and detectors [15, 26].  

Deviating slightly from the principal aim of the study, we examine the applicability of our 

model for realistic characterization of neutron stars, other observed DMCs, and double layers also 

together with future expansion possibilities in space and astrophysical environments. It is pertinent 

to add further that the neutral gas, neutral grains, ions, electrons, and charged grains all need to be 

considered simultaneously along with suitable equations of state for future refinements. To 

summarize, we repeat the major conclusive remarks briefly as follows. 
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(1) The lowest-order CSB demarcating the bounded interior and unbounded exterior scales is 

precisely determined by a new technique based on the m-LEE. 

(2) The CSB is found to exist at 121085.850.3   m by the maximization principle of relevant 

physical parameters.  

(3) The radial scale-size of the CSB ( 1312 10~1085.8  Jr   m) is in exact correspondence with 

that ( 1310~L  m ) of the Avinash-Shukla mass limit ( 2510~ASM  kg) with grain-size effect [13]. 

(4) The physical mechanism responsible for the CSB is the joint action of plasma-wall interaction 

and plasma sheath-sheath coupling processes. 

(5) The basic properties of the DMC are dominated by the electrical parameters as the strength of 

magnetic field is negligible  1110~MPhyEPhy UU , which is in agreement with the reports by others. 

(6) Smaller values of various electromagnetic parameters are still debatable for vacuum electric 

permittivity and magnetic permeability adopted in place of those really unknown for the 

plasma. 

(7) The net charge at the CSB is estimated as 243.~Q  C. But, in case of the dust-free gravito-

electrostatic sheath model analysis [14], it comes out to be  21020.1~ Q C. This lowering 

deviation is due to the loss of the thermal electrons in the charging process of the grains, and 

the subsequent sheath-sheath interaction developed around each of the shielded grain. 

(8) Lastly, we must admit that our model study is a simplified one, originally developed for the 

DMC characterization with a single key potential parameter only. It is devised under the 

assumption that the cloud is spherically symmetric, relevant physical parameters have radial 

components only and it finds an alternate way with the aid of the m-LEE instead of going for 

solving the complicated source equation. In spite of all these idealizations, it may be of 

extensive applications for further study of the electromagnetic state of diverse astrophysical 

objects, their constituent dust grains of various characteristics, and ambient dusty atmospheres 

by an exact polytropic sphere even without any conventional kind of typifying polytropic 

indices for the degree of astrophysical material concentration towards the center of symmetry.   
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