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Chapter-2 

 

SHEATH STRUCTURE WITH ELECTRON-INERTIA 

IN MAGNETIZED PLASMAS  

      

Abstract: The equilibrium properties of planar plasma sheath with electron-inertia in two-

component magnetized bounded plasmas† is methodologically investigated. It is seen that the 

derived Bohm condition for the sheath formation is considerably modified (supercriticality), 

and so forth. A multi-parametric numerical analysis is provided to depict the new sheath 

features against the conventional ones (with inertialess electrons) alongside future scope.  

 

2.1 INTRODUCTION 

It is a well-known fact that the bulk plasma (presheath) in any bounded plasma system is 

interactively coupled to the confining wall only via the process of sheath formation (indirect 

coupler). The terminology ‘plasma sheath’, ‘sheath’ or ‘Debye sheath’ is originally coined to 

represent a thin non-neutral space-charge layer (dark in colour) formed due to electrostatic 

polarization developed between the bulk plasma (system size order) and the absorbing wall 

[1-4]. The bounded plasma indeed shields itself from the resulting electric field (due to loss 

of lighter, more mobile electrons to the wall) by means of the sheath-creation (positive 

charge region, Debye length order). The threshold value of the ion flow at the sheath 

entrance is given by a well-established (local) condition known as the Bohm criterion [2-8].  

The existence of plasma sheath can naturalistically be realized in a wide-range 

domain of scales from laboratories to galaxies. The principal importance of sheath physics 

here is due to various technological applications, such as the Langmuir probe diagnostics, 

mass-spectrometry, plasma-wall interactions in thermonuclear fusion devices, plasma 

processing of materials, Hall thrusters, energy-harvesting reactors, and so forth [5-8]. 

In this chapter, we herein present a hydrodynamic (bi-fluidic) model to study the 

Bohm criterion in two-component magnetized plasma in the presence of active electron-
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inertial role. Both the constituent electrons and ions are taken to be magnetized in the 

presence of an oblique (relative to the bulk fluid flow) magnetic field. In our model, the 

relevant physical parameters (density, potential and velocity) vary only in a direction normal 

to the confining wall boundary [9]. A new construct of the Bohm criterion is derived and 

established. The new sheath evolutionary dynamics resulting from the consideration of non-

trivial electron-inertial effects is investigated illustratively alongside anticipated future scope. 

 

2.2 PLASMA MODEL AND FORMALISM 

A hydrodynamic model of magnetized quasi-neutral collisionless plasma in a planar (flat) 

geometry configuration is considered. The model consists of hydrogenic ions (H+, inertial 

species) and tiny electrons (e-, thermal species) coupled via ambipolar polarization effects. 

The presence of neutrals and other impurity ions is ignored for simplicity. The adopted 

model highlights the lowest-order electron-inertial correction (fluid, modified Boltzmann) 

over its leading-order distribution (inertialess, pure Boltzmann) [6-12]. The justification for 

the electron-inertia is attributable to the unstable transonic plasma zone (between bulk and 

sheath). It is rich in random acoustic fluctuations unshielded by inertial electrons [10-11].  

 The schematic diagram of magnetized plasma sheath configuration, where the 

external magnetic field acts in the )( zx   plane, at a directional angle   with respect to the 

bulk plasma flow (along the x-axis) is depicted in figure 2.1. At the sheath edge (sheath-

presheath boundary), 0 Dex  and 0)(  eTe . Again, at the wall, 
wDewx   and 

0)(  we eT . Here,   is the normalized space coordinate and   is the normalized 

electrostatic potential (normalization defined later).  

 

 

Figure 2.1: Schematic diagram of the considered magnetized plasma sheath configuration.  
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It may be now pertinent to give a rough idea about the fundamental relevant 

properties of the model setup. The estimation is carried out in the usual plasma parametric 

domain [13-15]. The magnitude of electronic (protonic) charge is e = 19106.1  C; electronic 

mass, 31101.9 em  kg; and ionic (protonic) mass, 271067.1 im  kg. The external 

magnetic field is B = 0.1 T; and electron-to-ion temperature ratio, 1 ie TT . The 

estimated value of electron cyclotron frequency is 101075.1  ece meB  rad sec-1 and that 

of ion cyclotron frequency is 61058.9  ici meB  rad sec-1. Therefore, the ratio of 

electron-to-ion cyclotron frequencies roughly comes out as cice  ei mm 31083.1  . 

Similarly, the electron gyro radius is 
51038.2  eBvmr eege  m, and the ion gyro radius is 

31002.1  eBvmr iigi  m. Hence, the electron-to-ion gyration radii ratio is 

gige rr ie mm  2103.2  . The estimation indicates that both the electronic and 

ionic dynamics are sensible to the magnetic field. Eventually, we adopt both electrons and 

ions magnetized; instead of unmagnetized electrons, against traditional viewpoints [16-19].  

The evolutionary set of the structuring equations in time-stationary form with all the 

customary notations in dimensional form [20] is constructed as follows. The zeroth-order 

electronic dynamics with zero-inertia ( 0ie mm ) is described with the Boltzmann law as  













e

e
T

e
nn


exp0 ,                                                                                                                 (2.1) 

where,   is the self-consistent electrostatic potential and eT  is the electron temperature (in 

eV). The goal here is to incorporate the weak but finite electron-inertia over the leading-order 

(equation (2.1)). The corresponding electron continuity and momentum equations in the 

steady-state ( t ~0) in the leading-order are respectively given as 

0)(. 


ee vn ,                                                                                                                      (2.2) 

0)( 


BvenTEen eeee .                                                                                             (2.3) 

Based on the existing literature regarding inclusion of the weak but finite electron-inertial 

effects in a compatible procedural way [8, 10-12], equation (2.3) in the presence of weak but 

finite electron-inertia can also be presented as follows 
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The methodological details on simultaneous application of the Boltzmann distribution law 

(leading-order solution on density with zero-inertia) and hydrodynamic equations (inertially 

perturbed solution on the lowest-order inertia) to incorporate the weak but finite electron-

inertia have already been established in the past [8, 10-12]. 

The different notations en , em , ev , e  and E  represent the number density, inertial 

mass, flow velocity, electric charge of the electrons; and the self-consistent electric field; 

respectively. Similarly, the steady-state ion fluid continuity and momentum equations under 

the isothermal pressure, iii nTp  , are respectively presented as  

0)(. 
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ii vn ,                                                                                                                       (2.5) 
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Lastly, the electrostatic Poisson equation coupling the electron-ion dynamics is given by 

)(
0

2

ei nn
e




  .                                                                                                          (2.7) 

The relevant physical parameters (plasma density, electrostatic potential and flow velocity) 

are assumed to vary only in a direction normal to the confining wall boundary. It implies that 

the parameters vary only in the x-direction, for which xx 


ˆ , and the B-direction is 

 sinˆcosˆˆ zxB , where   is the B-obliquity relative to the bulk flow. In such a case, the z- 

component of the ionic dynamics is ignorable. So, the basic set of governing equations (from 

equations (2.1)-(2.7)) dictating the x-directional dynamics can respectively be written as 
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In order to see the scale-invariant sheath features, we present the customary normalization 

procedure, as shown in Table 2.1. 

 

Table 2.1: Adopted normalization scheme 

S No. Physical parameters Normalizing parameters Typical value 

1 Position ( ) Plasma Debye length  41032.3 De  m [27] 

2 Population density  ie NN ,  Equilibrium density  0n 14105  m-3 [27] 

3 Mach number  ie MM ,  Sound phase speed  4101sc  m s-1 [27] 

4 Electric potential    Plasma thermal potential  1eTe  J C-1 [27] 

 

The ion acoustic phase speed, in the usual notations and units [20], is given by 

  iies mTTc  , with  =1 for the isothermal ionic fluid. The normalized form of 

equations (2.8)-(2.13) is respectively constructed and cast as 

)exp( eN ,                                                                                                                  (2.14) 
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It is seen here that only the last term on the right hand side of equation (2.16), 

    sin11 0 eyeL MnNY  , represents a cross-coupling parametric term mapping 
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orthogonal interaction of the electron population ( eN  evolving along x̂ ) with its flow ( eyM  

evolving along ŷ ). Here, pici    is the ratio of the ion cyclotron frequency 
ici meB  

to the ion plasma frequency 
ipi men 0

2

0  . In order for simplification to our x-directional 

planar problem, let us first examine its relative strength. We now, for estimation, adopt a 

plasma parametric window [8, 18] as 
110eyM , B  0.1 T, 14

0 105n  m-3, 

12

0 10854.8   F m-1 and 030 . Clearly, our estimation further shows that 

ioo mnB2 ~ 11016.3  . In such a situation, we estimate the term strength as 
LY ~ 

 eN110 18 . It indicates insignificant 
LY -effects in the electronic dynamics on the 

laboratory scales of space and time. Thus, equation (2.16) justifiably simplifies to 
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Here, ie TT  is the electron-to-ion temperature ratio (both in eV). Coupling equation 

(2.14) with equations (2.15) and (2.17), the inertia-corrected electron distribution becomes 
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which, on the  -differentiation once, yields 
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Now, using iioix NMM   from equation (2.18) in equation (2.19), we have 
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Multiplying both sides of equation (2.23) by   1
  and simplifying, we obtain  
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Differentiating equation (2.20) with respect to  ; and substituting  eN  and  iN  

from equations (2.22) and (2.24); respectively, one finds 
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The integration of equation (2.25) with respect to   results in 
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For smooth, nonoscillatory and monotonic transition of the plasma from presheath to sheath 

region via thin patching transonic plasma layer (as per the universal energy conservation 

rule), )( eTe  should be minimum at the sheath edge [21]. Thus, for min , the 

following derivative condition in terms of potential curvature needs to be fulfilled 
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Therefore, from equation (2.26), one gets 

 

0

11
2

1
exp

1
sin1

22

0

22

0

1

3

2

0

1






























































































































 




eM
m

m
eM

m

m

NN

M
M

e

i

e
e

i

e

ii

i
iy








,                                     (2.28) 

Equation (2.28), after the  -differentiation on both sides, yields 
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Therefore, according to standard rules of basic integration [22], equation (2.29) gives

 

  .011
2

1
exp

1
sin1

22

0

22

0

1

3

2

0

1



































































































eM
m

m
eM

m

m

NN

M
M

e

i

e
e

i

e

ii

i
iy








                                           (2.30)   

The boundary conditions, 0 , 1iN  and 0  , hold good at the sheath entrance 

point [18]. Applying the condition for monotonic plasma transition together with the proper 

boundary conditions, the local Bohm criterion is derived as 
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where, as already indicated, sixi cvM 00   is the ion Mach number at 0 . It is seen that 

the ion Mach threshold value gets drastically modified due to the presence of lowest-order 

electron-inertial correction ( ie mm ), magnetic field (B) and the thermal motion of the ions 

(
ie TT ). It may be noted that the above inequality holds good only when the degree of 

ion-neutral collision is too small to affect the collective plasma dynamics. 

 

2.3 RESULTS AND DISCUSSIONS 

The analytical formalism for the magnetized collisionless plasma sheath structure in the 

presence of electron-inertia is now established. The non-trivial findings of applied value 

obtained from our simplified calculation schemes on are discussed below.  

 

2.3.1 ANALYTICAL RESULTS  

The analytical model to study the time-stationary sheath structure formation in the presence 

of both the Lorentz force and active electron-inertial dynamics on the lowest-order is 

methodologically constructed. The magnetic field acts at an oblique angle relative to the 

background ion flow. The local Bohm criterion for sheath formation is obtained 

systematically. The inclusion of the electron-inertia in association with the Lorentz gyro-

kinetic effects is analytically found to play a crucial role in influencing the sheath 
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characteristics. It is found that the threshold value of the ion Mach number ( 0iM ) entering 

the sheath edge layer is slightly enhanced. For the different parameter values [23, 24] like 

210iyM , B 0.1 T, 14

0 105n  m-3, 030 , 10 eM , 1 , 33.3 ie TT  and 

  0)( 0.01, one finds 139.10 iM . This is a first consequence of the considered 

factors in our analysis against the conventional picture of 139.10 iM . 

 

2.3.2 NUMERICAL RESULTS 

The basic governing equations for modelling plasma sheath structurization are now 

constructed. A numerical illustrative analysis to see the sheath evolutionary characteristics is 

carried with the help of fourth-order Runge-Kutta (RK-IV) method [25], as an initial value 

problem (IVP), to produce the numerical profiles as shown below. 

Figure 2.2 illustrates the spatial profiles of the normalized (a) electron and ion 

population densities ( eN  and iN ), (b) ion-flow velocity ( iM ), (c) electrostatic potential ( ), 

and (d) electrostatic potential curvature ( 22  ) under different strengths of the applied 

magnetic field ( B 0.1, 0.2 and 0.3 T ). The different input initial values [15, 20] used are 

010.i   with  = 0.01, 10 eN , 10 iN , 1

0 10ixM , 2101)(  i  and 

3101)(  i ; respectively. The fixed input parameters [8, 18, 20] are 10 eM , 10 iM , 

2

0 10iyM , 14

0 105n  m-3, 11020.3  , 1 , 1  eV, and 030 .  

It is seen that eN  and iN  go on decreasing with increase in the B-value [figure 

2.2(a)]. The deviation from quasi-neutrality increases with increase in B. This is because of 

enhanced ion gyro-kinetic effects. It confirms that the plasma sheath structure, so formed in 

our proposed model, is indeed a non-neutral (ion-rich) space-charge layer. It is further seen 

that, with the B-increment, iM  increases; and vice-versa [figure 2.2(b)]. It is because of the 

fact that, the ions get an additional boost because of the Lorentz force, the effect of which is 

more pronounced for stronger magnetic fields; and vice-versa, on the ion flow dynamics.  
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Figure 2.2: The spatial profiles of the normalized (a) electron and ion population densities 

( eN  and iN ), (b) ion Mach number ( iM ), (c) electrostatic potential ( ), and (d) potential 

curvature ( 22  ) under different strengths of the applied magnetic field (B). The two 

distinct line sets (solid and dashed) in figure 2.2(a) depict the electron and ion densities for 

B 0.1 T, 0.2 T, and 0.3 T; respectively. The blue, red and black distinct lines in figures 

2.2(b)-2.2(d) link to the same respective B -values. Fine details are given in the text. 

 

Figure 2.2(c) portrays the -evolution under different B-values. It is realized that B 

plays an important role in holding up the ions gyro-kinetically in reaching the sheath region. 

The gyro-kinetic influence is more for larger B; and vice-versa. The electron-ion density 

separation is evident from the potential curvature [figure 2.2(d)]. It is seen that, with the B-

increment, the deviation from quasi-neutrality increases thereby showing the non-neutral 

nature of the sheath structure. 
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Figure 2.3: Same as figure 2.2, but with B 0.1 T and 030 . Different lines link to 

)( ie TT =2.5, 1.42, and 1; respectively. Here, 1eT  eV (fixed), and different 4.0iT  

eV, 70.Ti   eV, and 1iT  eV; respectively. 

 

Figure 2.3 displays the same as in figure 2.2, but with B 0.1 T and 030 . 

Different lines now indicate )( ie TT = 2.5, 1.42, and 1; respectively. Here, 1eT  eV 

(fixed), and different 4.0iT  eV, 70.Ti   eV, and 1iT  eV; respectively. Such situations 

are practically realizable in the magnetic confinement fusion plasmas and so forth [20]. It is 

seen that with increase in iT -values,
 
the deviation from quasi-neutrality decreases towards 

the sheath [figure 2.3(a), 2.3(d)]; and vice-versa. This is because with the iT -increment, the 

random kinetic energy of the ions increases thereby getting enhanced flow speed. The degree 

of local charge-imbalance between the hetero-polar plasma species in the presence of B 

decreases. Thus, the ionic gyro-kinetic effects in association with the electrons, in turn, 
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decrease the electrostatic polarization potential (sheath potential) via the transonic 

equilibrium point. As a result, the sheath-width decreases slightly. This is interestingly a new 

original outcome due to the consideration of weak but finite electron-inertia under the action 

of the Lorentz gyro-kinetic effect in contrast with the previous predictions [23, 26]. 

 Also, the M-profile [figure 2.3(b)] is found to be different in contrast with the other 

case as already discussed [figure 2.2(b)]. We infer that the 
iT -increment slightly shifts the 

sonic point towards the sheath termination relative to the edge. In contrast, the variation in   

[figure 2.2(c)] evolves quite well in comparison with the investigations by others [15].  

 

2.3.3 COMPARATIVE RESULTS 

The results investigated here are widely compared and discussed in the light of different 

existing scenarios [8, 18, 21, 24]. The following special cases derivable from the modified 

Bohm criterion obtained by us herein may also be worth mentioning. 

 

Case (a)-Unmagnetized cold plasma in absence of electron-inertia: 

Substituting 0 , 0ie mm   and ei TT 0, in equation (2.31), one gets 

0iM 1,                                                                                                                              (2.32)                                                                                                                             

which is the well-established usual Bohm criterion [7, 21].  

  

Case (b)-Unmagnetized cold plasma in presence of electron-inertia: 

Substituting 0  and ei TT 0, in equation (2.31), we have 
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The above inequation exactly matches with the Bohm criterion derived by Deka et al. [8]. 

 

Case (c)-Unmagnetized warm plasma without electron-inertia: 

Substituting 0 , and ie mm 0, in equation (2.31), one obtains  

110 iM .                                                                                                                 (2.34) 

This inequation again matches with the analytical form of the local Bohm criterion as derived 

by Ghomi et al. [24], where ei TTT  1 . 
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Case (d)-Magnetized cold plasma with no electron-inertia: 

Substituting ei TT 0 and ie mm 0, in equation (2.31), we get 
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which matches with the Bohm criteria as derived by Zou et al. [18]. 

 

Case (e)-Magnetized warm plasma without electron-inertia:  

Substituting ie mm 0, equation (2.31) gets modified to 
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which matches with that by Ou et al. [20] after neglecting the collisional effects. 

 

Case (f)-Magnetized warm plasma in presence of electron-inertia: 
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which is the work on the modified Bohm threshold condition on the ion flow dynamics 

towards the sheath as proposed herein for the first time.  

 

2.4 CONCLUSIONS  

A collisionless bi-fluidic theoretical model is methodically developed to investigate the 

equilibrium structural features of steady-state plasma sheath in the presence of weak 

electron-inertia in magnetized plasma configuration. The local Bohm condition is found to be 

significantly influenced by the electron-inertial correction, applied magnetic field and its 

orientation relative to the bulk-flow. It is interestingly found that the threshold value of the 

ion flow entering the sheath edge is enhanced (typically, 139.10 iM , in normal plasma 

conditions [23, 24]) due to collective cooperative gyro-kinetic effects. A numerical 

illustrative platform shows that the relevant sheath characteristics get considerably modified 

due to the considered factors. The obtained results are compared and discussed in the 

panoptic light of the literature. To sum up, the following concluding remarks are in order.  
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1. The Bohm criterion for sheath formation in quasi-neutral collisionless plasma in an applied 

oblique magnetic field in the presence of active electron-inertial dynamics is analyzed.  

2. The inclusion of electron-inertia, alongside the Lorentz gyro-kinetic effects, enhances the 

threshold ion Mach number towards the sheath entrance due to electron-inertial delay effect.  

3. It is seen that the electron and ion densities decrease; ion flow velocity, potential and 

curvature increase with the increment of the applied magnetic field; and vice-versa. 

 4. The electron and ion densities increase; ion flow velocity slightly shifts the sonic point 

towards the sheath termination point relative to the sheath edge; potential and curvature 

decrease with increase in ion temperature; and vice-versa. 

5. The quasi-neutrality breaks down, as the sheath edge is reached, with increase in the 

magnetic field strength. In contrast, the deviation from quasi-neutrality (indicated by 

potential curvature) decreases with increase in the ion temperature.  

In addition to the above, the proposed results corroborate with the fact that the sheath-

structure is closely related with ion-acoustic shock formation and evolution. The sheath, in 

fact, if travelling through the plasma, would depict shock wave propagation, notwithstanding 

dissimilar boundary conditions. In this context, the formation of non-monotonic double layer 

structures developed by the coupling of the non-neutral monotonic Debye sheath and the 

charged body boundary of the plasma-confining wall is noteworthy [27]. Thus, an alternative 

sheath-based viewpoint on igniting hydrodynamic shocks is speculated. Lastly, it is conceded 

that the proposed analysis relies on the approximation of two distinct isothermal magnetized 

fluids (electronic plus ionic) for the sake of simplicity. But, recent hydro-kinetic studies have 

shown that the ion temperature may change appreciably (with varying adiabaticity) over the 

plasma wall-transition layer [28, 29]. It indicates that further refinements are indeed needed 

for a more profound exploration of the plasma boundary-wall interaction processes. 
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