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Chapter-3  

 

A PERTURBATIVE CORRECTION ON ELECTRON-

INERTIA IN MAGNETIZED PLASMA SHEATHS  

 

Abstract: An analytic hydrodynamic model† to study the equilibrium properties of planar 

plasma sheaths (spatially-flat geometry) in two-component quasi-neutral magnetized 

plasmas is proposed. It includes weak but finite electron-inertia incorporated via a regular 

perturbation on electronic fluid dynamics only relative to a new smallness parameter,  , 

assessing the weak inertial-to-electromagnetic coupling strength. The zeroth-order 

perturbation around   leads to the usual Boltzmann distribution law (inertialess electrons); 

whereas, the next higher-order correction yields the modified Boltzmann law (inertial 

electrons). It is seen that the mutualistic action of electron-inertia amid gyro-kinetic effects 

slightly modifies the local Bohm criterion with an enhancement in the ion-flow Mach 

threshold value (typically, 140.10 iM , against the traditional ‘unity’). The various electro-

dynamical sheath-response features are numerically illustrated alongside future scope. 

 

3.1 INTRODUCTION 

The effect of electron-inertia is normally neglected in the traditional study of plasma sheath 

structure and its evolutionary dynamics. In a panoptic sense, the existing theory of plasma 

sheaths is based on the assumption that electron-to-ion mass ratio asymptotically goes to zero 

[1-3]. However, although very small relative to ionic inertia, electron-inertia has been 

reported to have interesting influences in rendering the transonic plasma zone resonantly 

destabilized amid acoustic wave fluctuations [4-8]. It has, in other words, been found both 

theoretically and experimentally that, electron-inertia plays as a source of acoustic wave 

instability in the transonic plasma equilibrium conditions because of an incomplete Debye 

screening (due to electron-inertia) in normal plasma configurations [4-7].  
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In addition to above, it has later been revealed in magnetized plasma systems that 

magnetic field plays an important role in controlling the kinetic energy of ions reaching the 

wall. As a result, the role of the field in modifying the sheath width and other characteristics 

needs to be well investigated [9]. The importance of such sheaths is essentially realizable for 

many technological applications as well [2, 9-11]. To name a few on the laboratory scales, it 

includes plasma processing of materials, mass-spectrometry, plasma sputtering, plasma 

etching, plasma-wall interactions in many fusion confinement devices, etc. 

The present chapter compiles a theoretical hydrodynamic model to see the sheath 

structural characteristics in two-component quasi-neutral magnetized plasmas in the presence 

of weak but finite electron-inertia in the framework of a regular perturbative analysis in a 

modified form. The electronic dynamics is accordingly shown to follow different inertia-

governed distribution laws with respect to the perturbation parameter derived self-

consistently on the basis of small inertia-electromagnetic coupling strength. It is 

demonstrated, alongside diverse parametric dependences of the sheath, that putative electron-

inertia amid gyro-kinetic effects slightly enhances the ion-flow threshold value (Bohm 

condition, 140.10 iM ) against the conventional threshold unity towards the sheath entrance.  

 

3.2 PLASMA MODEL AND FORMALISM 

A hydrodynamic model configuration of magnetized collisionless plasma with presumed 

global quasi-neutrality is considered. The model is configured on one-dimensional (1-D) 

coordinate space and three-dimensional (3-D) phase space. It consists of isothermal electrons 

(lighter, Boltzmann distribution) and isothermal ions (heavier, fluid). Active inertial 

dynamics of electrons through the consideration of weak but finite electron-inertia, 

incorporated via a regular reductive perturbation technique [4], is incorporated to fulfil the 

transonic plasma behavior [5-7]. The external magnetic field is embedded in the )( zx   

plane and makes an angle   with respect to the x-direction (bulk flow). We consider both 

magnetized electrons and magnetized ions rather than the conventional viewpoint of treating 

electrons as unmagnetized species in similar plasma environments [12-14]. A schematic 

diagram of our considered magnetized plasma sheath configuration together with various 

directed parametric fields is displayed in figure 3.1. 
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Figure 3.1: Schematic of the considered plasma sheath configuration, same as figure 2.1. 

  

The different relevant physical parameters here are normalized by adopting a standard 

normalization scheme [8] which is shown in Table 3.1. 

 

Table 3.1: Standard normalization scheme 

S No. Physical parameters Normalizing parameters 

1 Position ( ) Plasma Debye length ( De )  

2 Population density  ie NN ,  Equilibrium density (
0en ,

0in )  

3 Mach number  ie MM ,  Sound phase speed ( sc ) 

4 Electric potential    Plasma thermal potential ( eTe ) 

 

The basic set of the normalized equations [15] governing equilibrium magnetized 

plasma (time-stationary) is developed as follows. According to the Boltzmann distribution, 

electron number density in the thermalized state in the asymptotically zero-limit of electron-

to-ion mass ratio ( 0ie mm ) with all usual notations (discussed later) is set out as 

)exp( 00
eN .                                                                                                                 (3.1) 

The electron continuity and momentum equations in the steady-state form ( 0~t ) in the 

same customary system of notations are respectively given as 
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The physical parameters are assumed to vary only in the x-direction, for which xx  ˆ


, 

and so the other remaining components are justifiably omitted. The direction of the magnetic 

field is taken as   sinˆcosˆˆ zxBBB 


, where   is the angle of B


 relative to the bulk 

flow. Obviously, the small terms in equation (3) are the electronic inertial force term, 

    eeiee MMmmT , and the Lorentz force term     sin11 0 eyeL MnNT  . We now 

estimate their relative strengths in the parametric space of laboratory plasmas [8, 15] as: 

110eyM , 1510 eM , B  0.1 T, 31101.9 em
 
kg, 271067.1 im
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C, 19

0 10n m-3,  1210854.8   F m-1 and o30 . In such conditions,  ee MT 1910~   and 

LT ~  eN110 23 , too meager to affect electron dynamics. A smallness parameter,  , is 

therefore introduced for a perturbative expansion of electron inertial dynamics as  
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The relevant parameters, eN  and  , are expanded perturbatically around   as follows  
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Substituting equations (3.4), (3.5) and (3.6) in equation (3.3) simultaneously and retaining 

the terms up to the first order, we have 
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Equating the like terms in various powers of   from both sides of equation (3.7), one obtains 
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Now, equations (3.8) and (3.9), on further integration and simplification, yield 

)exp( 00
eN .                                                                                                               (3.10) 

It is seen from equation (3.10) that the zeroth-order perturbation reproduces the Boltzmann 

distribution law for electrons. We now apply a current specially imposed condition for 

simplification as 00  eN  (small equilibrium-gradient approximation) so that the term 

   00

2

01  eee NNN  in equation (3.9). As a result, integration of equation (3.9) yields  

     011
exp2  eN .                                                                                         (3.11) 

Equation (3.11) represents the inertia-corrected electron population distribution law (inertia-

modified Boltzmannian) of our current investigative interest. In order for further 

simplification of our problem, we choose  ~10 . On potential differentiation, 

equation (3.11) gives 
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The ion continuity and momentum equations under the isothermal pressure law, iii nTp  , 

are respectively presented as 

0iixi MMN  ,                                                                                                                    (3.13) 
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Here, ie TT  is the electron-to-ion temperature ratio (both in eV), with 
pici    as the 

ratio of the ion cyclotron frequency ici meB  and plasma frequency 
ipi men  2

0 .  

Lastly, the electrostatic Poisson equation, coupling electron-ion dynamics in a closure, is 

given as 

12

2

ei NN 





.                                                                                                                 (3.15) 

Now, substituting iiix NMM 0  from equation (3.13) in equation (3.14), we have 
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Multiplying both sides with   1
  and simplifying, equation (3.16) yields 
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Differentiating equation (3.15) with respect to  , and substituting  1eN  from equation 

(3.12) and  iN  from equation (3.17), one finds 
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After integrating, equation (3.18) can be expressed as 
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At the sheath edge, )( eTe  should be minimum so that a smooth, non-oscillatory and 

monotonic transition of the plasma from presheath to sheath region takes place [3]. Thus, the 

condition for minimizing the potential at the sheath edge, min , for the monotonous 

variation, requires the following derived condition on the potential curvature [15] as  
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Therefore, from equation (3.19), one gets 
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which, on the  -differentiation on both sides, yields  
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Thus, according to standard rule of basic integration [16], equation (3.22) gives 



Chapter 3: A perturbative correction on electron-inertia in magnetized plasma sheaths 

39 

 

  0221exp
1

sin1

1

3

2

0

1














































































ii

i
iy

NN

M
M .                           (3.23)   

The boundary conditions, 0 , 1iN  and 0  , hold good at the sheath edge. 

Thus, applying the condition for monotonic potential transition in equation (3.23), the local 

Bohm criterion needed for sheath formation in a bounded plasma system comes out as 
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It is clearly seen that the new Bohm condition, which usually states that the threshold value 

of the ion Mach number near the sheath entrance should be at least equal to unity, gets 

drastically modified due to the joint role of weak but finite electron-inertial perturbation via 

   2/1

0
221




  , magnetic field via  , and the thermal motion of ions via 

ie TT . It is interesting to note that, once the new factors considered here are switched 

off, equation (24) reduces to the well-established Bohm criterion, 0iM 1 [2, 3]. 

 

3.3 RESULTS  

An analytical model to study the time-stationary behavior of plasma sheath formation in a 

collisionless quasi-neutral warm plasma configuration in the presence of the lowest-order 

electron-inertial perturbative correction and oblique magnetic field is investigated. The local 

Bohm criterion is systematically derived and special corollaries are discussed. It is seen that 

the lowest-order electron-inertial correction, in the presence of the Lorentz gyro-kinetic 

effects, plays a crucial role in the sheath evolution. The ion threshold Mach number near the 

sheath edge is slightly enhanced with respect to the normal Bohm value of unity. We now 

consider laboratory plasma parameter values [15, 17] like 210iyM , B  0.1 T, 19

0 10n m-3, 

1210854.8   F m-1, 030 , 10 eM , 1 , 33.3 ie TT  and   0)( 61042.0  . In 

such situations, the new Bohm condition gives the threshold Mach value as 140.10 iM . 

A numerical analysis is carried out by applying the fourth-order Runge-Kutta method 

[18] to see the exact evolutionary patterns of the sheath structure. The numerical profiles, 
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thus obtained, are displayed graphically in figures 3.2-3.3. Figure 3.2 illustrates the spatial 

profiles of the normalized (a) electrostatic potential ( ), and (b) electrostatic potential 

curvature ( 22  ) under different strengths of the applied magnetic field ( B 0.10, 0.20 

and 0.30 T). The different input initial values [8, 15] used are 010.i   with  = 0.01, 

10 eN , 10 iN , 1

0 10ixM , 2101)(  i  and 
3101)(  i . The other fixed 

inputs [8, 15] are 10 eM , 10 iM , 2

0 10iyM , 19

0 101n  m-3, 
31030.2  , 1 , 

1  eV and 030 . It is seen that   and 22   go on increasing with increase in the 

magnetic field. This is because of enhanced ion gyro-kinetic effects producing a new 

equilibrium. The gyro-kinetic influence is more for larger B; and vice-versa. It is realized that 

B plays an important role in holding up ions gyro-kinetically moving towards the sheath 

region. The electron-ion density separation is evident from figure 3.2(b). It is seen that, with 

increasing B, the deviation from quasi-neutrality increases depicting non-neutral sheath. 

 

 

Figure 3.2: The spatial profiles of the normalized (a) electrostatic potential ( ), and (b) 

electrostatic potential curvature ( 22  ) as a measure of deviation from quasi-neutrality 

under the different B-values. Different lines link to 10.0B  T (blue), 0.20 T (red), and 0.30 

T (black); respectively. The related fine details are presented in the text. 

 

Figure 3.3 depicts the same as figure 3.2, but with 30.0B  T (fixed). Different lines 

now correspond to   = 010 , 
030 , and 

050 ; respectively. The evolutionary sheath patterns in 

this case are found to be consistent with those as in figure 3.2. 
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Figure 3.3: Same as figure 3.2, but with 20.0B  T (fixed). Different lines correspond to 
010 , ,300  and 050 ; respectively. 

 

3.4 CONCLUSIONS  

A hydrodynamic model is theoretically formulated to study the equilibrium structural 

properties of steady-state plasma sheaths in a magnetized plasma configuration. It accounts 

for the lowest-order perturbative electron-inertial correction. The effects of electron-inertia, 

applied magnetic field and its orientation are found to play an important role in influencing 

the sheath dynamics parametrically. To sum up, the main concluding remarks are given as  

1. The local Bohm criterion is revisited in quasi-neutral magnetized collisionless plasmas in 

the presence of electron-inertial perturbative dynamics.  

2. The ion flow threshold value entering the sheath edge is found to be enhanced due to the 

considered paramount factors (via modified Bohm criterion).  

3. We see that the potential and its curvature increase with increase in the applied magnetic 

field and the field orientation. 

4. It is found that, at the sheath edge, the deviation from quasi-neutrality is more pronounced 

for higher magnetic field and for greater field-flow angle.   

5. The sheath structure investigated here can be intimately related with ion-acoustic shock 

development, because a travelling sheath would pertain to shock wave propagation, despite 

dissimilar boundary conditions. It may, thus, provide an alternative modified sheath-based 

viewpoint of hydrodynamic shocks and their evolutionary dynamics.  

6. The theoretical analysis is based on two distinct isothermal electron-ion fluids, against a 

recent hydro-kinetic study showing that at the vicinity of the sheath edge, the ion temperature 
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may change appreciably [19]. We admit that the inclusion of non-isothermal constituent 

fluids with proper equations of state is more suitable to understand real sheath structure.  

It is, lastly, recognized that a collisionless plasma configuration is realistically 

improper and inadequate as well. This is because the collisions between ions and neutrals 

could play a decisive role in influencing the effects of magnetic field on the upper and lower 

limits of the Bohm sheath criterion [20]. Thus, a more in-depth study of the plasma sheath in 

the presence of all the possible collisional transport effects needs to be formulated.  
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