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Chapter-4 

 

NONLINEAR FLUCTUATIONS IN GRAVITATING 

POLYTROPIC CHARGED DUST CLOUDS 

 

Abstract: We study the evolutionary dynamics of weakly nonlinear gravito-electrostatic 

fluctuations in a self-gravitating polytropic dust molecular cloud in quasi-hydrostatic 

equilibrium configuration†. It is a nonthermalized situation in the constituent cold dust grain 

dynamics; but, mutually thermalized in the dynamics of constituent hot electrons and hot 

ions. It is specifically demonstrated that the cloud fluctuation dynamics is governed by a new 

gravito-electrostatically coupled pair of the modified Korteweg-de Vries (m-KdV) equations 

having unique self-consistent nonlinear sources. A numerical illustrative shape-analysis 

shows that solitary wave spectral patterns, both compressive (gravitational) and rarefactive 

(electrostatic), are indeed excitable in the cloud. The electrostatic waves show bi-periodicity, 

while, the self-gravitational ones retain uni-periodicity in the defined potential phase space. 

 

4.1 INTRODUCTION 

Nonlinear waves in multispecies self-gravitating dusty plasmas have been an important area 

of research investigation because of their roles in the formation processes of diverse galactic 

structures, such as stars, planets, nebulae, cometary comae and tails, and other astrophysical 

structures [1-3]. The evolution of such waves in the nonlinear regime is usually governed by 

the Korteweg-de Vries (KdV) type of equations, or by their derivative forms, due to the 

convective nonlinearity and linear dispersion of the media [3]. It has later been predicted 

analytically that the dust acoustic waves and oscillations propagating through a polytropic 

dust molecular cloud is governed by an extended KdV (e-KdV) equation having a linear 

integral source arising due to the gravitational interaction of the heavier dust grains [3]. 

 In addition to the above, various dynamical aspects of linear and nonlinear plasma 

waves in dusty space and astrophysical plasmas have been reported [3-6], like solitary waves, 
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shock waves, double layers, vortices, voids, etc. These diverse eigen-mode structures have 

been predicted to result from a complex interplay of nonlinearity, dispersion, dissipation, and 

so on. In the strong nonlinear regime, the Sagdeev potential approach has been adopted to 

investigate the properties of both rarefactive and compressive solitary spectral patterns for 

varieties of dust species [7-10]. It may be noted that the Sagdeev potential approach (strongly 

nonlinear non-perturbative technique) is validated for any arbitrary amplitude of the 

fluctuations against the multiple scaling techniques (reductive perturbation techniques) meant 

for weakly nonlinear fluctuations. The later techniques have been applied methodologically 

to study the stability behaviors of diverse astrophysical dust clouds resulting in a plethora of 

miscellaneous solitary, shock-like and hybrid spectral patterns amid inhomogeneous gravity 

on the Jeans scales of space and time [11-14]. Nevertheless, none has so far investigated the 

excitation dynamics of nonlinear eigen-mode patterns in a polytropic complex dusty plasma 

configuration in the presence of nonlocal long-range gravitational interactions in detail.  

In this chapter, we propose a theoretical model to study the weakly nonlinear 

behavior of gravito-electrostatic wave fluctuations in a polytropic self-gravitating dusty 

plasma system in field-free hydrodynamic equilibrium configuration on the astrophysical 

scales of space and time. The plasma constituents are the lighter electrons, less light singly 

ionized positive ions, heavier inertial spherical micron-sized dust grains with full ionization. 

The massive dust-grain dynamics adopted is such that the first-order self-gravity becomes 

significant amid diverse spatiotemporal plasma inhomogeneties normally neglected for 

analytical simplification. The analytical infrastructure is developed by applying a standard 

multi-scale analysis [11-14] to derive a new gravito-electrostatically coupled pair of the 

modified KdV (m-KdV) equations involving self-consistent nonlinear sources. The source 

terms arise due to diverse gravito-electrostatic inhomogeneities thereby driving the 

fluctuations. A detailed numerical illustrative shape-analysis exhibits the excitations of both 

compressive (gravitational) and rarefactive (electrostatic) solitary spectral patterns. Their 

relevant properties, like fields, scale-lengths, curvatures and geometrical trajectories are also 

investigated. It is interestingly found that the electrostatic fluctuations undergo bi-periodicity, 

while the self-gravitational counter parts retain uni-periodicity in our defined phase space. 
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4.2 PHYSICAL MODEL 

We consider an unmagnetized polytropic configuration of a one-dimensional (1-D) charged 

dust molecular cloud in a quasi-hydrostatic equilibrium. The hydrostatic equilibrium of the 

self-gravitating multispecies dusty cloud consists of the lighter electrons, less light ions and 

heavier charged dust grains. The justification behind adopting the polytropic dust cloud is 

that the simplest way of allowing spatial variation of the temperature in an astrophysical 

configuration is to replace the isothermal assumption by a polytropic energy equation 

involving pressure and density fields in accordance with the universal law of conservation of 

energy [15]. The constitutive collective dynamics is assumed to maintain a presumed global 

quasi-neutrality condition. The mathematical simplicity of the model ignores the grain-size 

distribution, grain-mass distribution, equilibrium spatiotemporal inhomogeneities, rotational 

dynamics of the grains, etc. The multi-fluidic polytropic cloud system is finally closed with 

the coupling classical electro-gravitational Poisson equations for potential distributions 

created by the charge and matter density fields. Such polytropic situations are indeed 

realizable in many star-forming molecular clouds, stellar atmospheres and accretion disks.  

 

4.3 MATHEMATICAL FORMULATION 

The equilibrium dynamics of the self-gravitating charged dust molecular cloud in polytropic 

configuration, as already mentioned above, is dictated by a closed set of normal fluid 

equations involving the continuity equation, momentum equation, polytropic equation of 

state and closing Poisson equations for electro-gravitational potential distributions. Before 

presenting the fluid formalism, the adopted normalization scheme is shown in Table 4.1.  

 

Table 4.1: Details of normalization scheme 

S No. Physical parameters Normalizing parameters 

1 Position ( ) Jeans length ( J ) 

2 Time ( ) Jeans time ( 1

J ) 

3 Population density ( sN ) Equilibrium population density ( 0sn ) 

4 Flow velocity ( sM ) Acoustic phase speed ( Sc ) 

5 Thermal pressure ( sP ) Equilibrium thermal pressure ( 0sp ) 

6 Electrostatic potential ( ) Effective electron thermal potential 

( ss qT , with s=e) 

7 Gravitational potential ( ) Same ( ss qT , with s=e) 
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Here, the suffix ‘s’ characterizes the type of the different plasma constituents (electrons, ions 

and charged dust grains). Thus, the basic set of the normalized equations [3] governing such 

a cloud in a spatially-flat coordination space defined by (x, t) is enlisted as follows, 
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The closing normalized Poisson equations for electrostatic and self-gravitational potentials 

are respectively given by 
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The notation   represents the normalized position coordinate,   the normalized time, sN  

the normalized plasma density corresponding to the plasma species characterized by ‘s’,  sM  

the normalized acoustic phase speed described by the label s, sP  the normalized pressure 

corresponding to the label s of the species with temperature sT  (in eV),   the normalized 

electrostatic potential  and   the normalized self-gravitational potential. Both   and   are 

each normalized by the electron thermal potential ( ss qT , with s=e) for a common 

comparison with the same equivalence standpoint. 

For a standard scale-invariant analysis, we now apply a standard normalization 

technique of astrophysical significance [11-13]. It may be pertinent to add that the self-

gravitating plasmas are indeed inhomogeneous in nature due to large-scale gradient dynamics 

[16-20]. So, all the characteristic equilibrium parametric values keep on spatiotemporally 

changing from point to point [16-19]. Thus, adopting constant normalization parametric 

values, which are dependent on the diverse plasma equilibrium variables throughout the 

entire cloud, is not so justifiable in such realistic non-uniform situations [17-19]. But, within 
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the framework of the Jeans homogenization assumption (Jeans swindle) of self-gravitating 

inhomogeneous medium thereby validating local analyses [20], our choice of the 

normalization constants dependent of the equilibrium parameter values is well justified for 

analytical simplification leading to a nonlinear normal (local) mode analysis. 

We, with all the salient reservations, now assume that the perturbations of our interest 

are local, meaning that their wavelengths are much smaller than the relevant inhomogeneity 

scale lengths. Accordingly, the relevant dependent variables ( F ) appearing in equations 

(4.1)-(4.5) are now expanded nonlinearly (in -powers) around the respective homogeneous 

equilibrium values ( 0F ) under weak nonlinearity approximation (perturbation order  < 3) as  





FFF 





1

0 ,                                                                                  (4.6) 

where,  Tsss MPNF  ,                                                                                         (4.7)  

 TF 000110  ,                                                                                                                (4.8) 

 Tsss MPNF   .                                                                                           (4.9) 

 

4.4 Coupled m-KdV equations 

The nonlinear fluctuation dynamics in the considered polytropic astrofluid is already 

mentioned as being governed by a coupled pair of the m-KdV equations. For deriving the m-

KdV system, we introduce slow stretched variables [11-14] for space and time as  

),(2/1  X 2/3T ,                                                                                            (4.10) 

where,   is a smallness parameter measuring the balanced strength of the nonlinearity and 

dispersion, and   is the normalized phase velocity of the reference frame. It transforms the 

spatiotemporal linear differential operators as X // 2/1 , 2222 // X   and 

XT  /// 2/12/3  . We now use equations (4.6) and (4.10) in equations (4.1)-

(4.5). Equating the like terms (in powers of ) from both sides of equation (4.1), one gets  
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Similarly, equating the like terms from both sides of equation (4.2), one gets  
































Js

ss

ss

ss

n

p

X

P

mXXm

q

X

M




0

011112/3 1
:  ,                                                    (4.15)    























































Js

ss

s

s

ss

ss

s

ss

n

p

X

P
N

X

P

mXXm

q

X

M
M

X

M

T

M




0

01

1

2221

1

212/5 1
: , (4.16) 













































Js

ss

s

s

s

s

s

s

s

s

s

n

p

X

P
N

X

P
N

X

P
N

mX

M
M

T

M

0

012

1

1

2

2

1

2

1

22/7 1
: ,                        (4.17)   



































Js

ss

s

s

s

s

s

s
n

p

X

P
N

X

P
N

mX

M
M

0

022

1

2

2

2

2

2/9 1
: , and so on.                                     (4.18) 

Similarly, equation (4.3) gives 
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The same order-by-order analysis in various powers of   from equation (4.4) yields 
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Similarly, equation (4.5) yields 
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We apply the customary procedure [15-20] of simplification by replacing the second-order 

perturbed variables among equations (4.11)-(4.29). Using them in equation (4.24), we get a 

coupled m-KdV equation of unique type for the electrostatic fluctuations presented as 
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which is the self-consistent nonlinear driving source, asymmetric in nature. The different 

coefficients involved here are given as 
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Again, we use the same standard method of simplification among the various-order 

mathematical expressions and terms represented by equations (4.11)-(4.29) in equation 

(4.28). As a result, the m-KdV equation for self-gravitating fluctuations is obtained as 
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where, the self-consistent nonlinear driving source becomes 
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with the different coefficients involved given as 
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We apply a Galilean frame transformation  TX   so that  // X  and 

 // T . This new reference frame moves with the phase velocity of the fluctuations, 

where equations (4.30) and (4.37) would be transformed into a time-stationary (ODE) form, 

respectively, given as  
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Thus, we see that the steady-state form of the fluctuation dynamics of the polytropic cloud is 

collectively governed by the stationary coupled m-KdV system (equations (4.44) and (4.46)). 

A numerical analysis is needed for exact pattern prediction as presented in the next section. 
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4.5 RESULTS AND DISCUSSIONS 

A theoretical study of gravito-electrostatic fluctuations in a self-gravitating polytropic 

charged dust molecular cloud is carried out. A coupled pair of m-KdV equations governing 

the fluctuations is derived by applying standard multiple scaling techniques. Interestingly, 

both the equations are found to involve self-consistent nonlinear sources which depend on 

the lowest-order gravito-electrostatic potential fluctuations, spatiotemporal inhomogeneities 

and their interplayed asymmetric coupling. The uniqueness of the derived equations lies in 

their gradient-driven coefficients evolving in diverse multi-parametric space. So, it is 

extremely difficult to obtain their exact analytical solutions due to the complicated coupling 

of diverse spatiotemporal terms in an intermixed form. The model is, consequently, analyzed 

numerically to display the fluctuation patterns using the well-known fourth-order Runge-

Kutta (RK-IV) method [21] for the spatial (stationary) case and finite difference method [22] 

for the spatiotemporal (non-stationary) case of our interest.  

 

4.5.1 Electrostatic fluctuations  

In figure 4.1, we show the spatial profiles of the normalized electrostatic (a) potential ( , 

blue line), field strength (  , red line), potential curvature ( 22  , green line), and 

gradient scale length ( eL , black line); and (b) phase portrait (in a phase space defined by   

and  ) to see the geometrical trajectories of the fluctuations. The different input initial 

values [7-10] used are 3

1 101  , 
4

1 101 


, 
5

1 101   , dZ 100, 

111067.6 G  N m2 kg-2, 1 , 12

0 10854.8   F m-1, 19106.1 eq  C, 

19106.1 iq  C, 66.1 , 31101.9 em  kg, 27106.1 im  kg, 12

0 1001.2 en  m-3, 

3

0 105in  m-3, 1

0 102 dn   m-3 and  pie TTT 1 eV. 

It is interestingly seen that the electrostatic fluctuations evolve as rarefactive solitonic 

spectral patterns having two unique compressive tails with relatively smaller wave amplitude 

[figure 4.1(a)]. The corresponding field variation evolves as an asymmetric admixture of 

solitons and anti-solitons, growing as bipolar pulse structures, similar to distorted double 

layers [figure 4.1(a)]. The corresponding potential curvature variation on an average evolves 

as a compressive solitonic structure having some asymmetric damped periodic rarefactive 
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tails of anti-solitonic nature [figure 4.1(a)]. The gradient scale length of the potential 

fluctuations (    1
log


 eL ) shows strong inhomogeneities at about 4  and 11 ; 

respectively. It is found that rarefactive sub-solitons with gradually enhancing strengths are 

formed at this point due to complex interplay of the long-range inter-species interaction 

forces. The geometrical patterns in our defined phase space show conservative nature of the 

fluctuations, but with a periodic doubling. Thus, it is seen that the weak electrostatic 

fluctuations as a whole are conservative in nature.  

As in figure 4.2, we portray the spatiotemporal characteristics of the fluctuations, 

where, the input initial value is taken as     2222

0 sin txtx   with t=2. The initial 

value is randomly generated by hit and trial method with the average behavior to go as per 

the spatial profiles presented before [figures 4.1-4.2]. It is seen that, in the above parameter 

regime, the electrostatic fluctuations propagate as a periodic wave composed of soliton 

(compressive) and anti-soliton (rarefactive) patterns. There is, however, no destabilization of 

the patterns in our defined slow time frame. 

 

 

Figure 4.1: Spatial profile of the normalized electrostatic (a) potential ( , blue line), field 

strength (  , red line), potential curvature ( 22  , green line), and gradient scale 

length ( eL , black line); and (b) phase portrait (in a phase space defined by   and  ). 

Different input and initial values are given in the text. 
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Figure 4.2: Spatiotemporal profile of the electrostatic potential fluctuations. Input details 

can be found in the text. 

 

4.5.2 Self-gravitational fluctuations 

The numerical technique as in the electrostatic case is similarly applied to see the exact 

patterns of the self-gravitational fluctuations. Figure 4.3 represents a spatial profile of the 

normalized self-gravitational (a) potential ( , blue line), field (  , red line), potential 

curvature ( 22  , green line), and gradient scale length ( gL , black line); and (b) phase 

portrait (in a phase space defined by   and  ). The different initial values used are 

1

1 101  , 
3

1 101 


, 
1

1 101    and the rest of the input parameters are the 

same as in the electrostatic case.  

From figure 4.3(a), it is observed that the self-gravitational fluctuations evolve as 

extended compressive solitonic structure. The corresponding field variation [figure 4.3(a)] 

evolves as a distorted mixture of an anti-soliton (rarefactive) and a soliton (compressive). It 

shows that a bipolar field (pulse) structure is associated with the soliton. The corresponding 

potential curvature variation gives the idea that, although the nonlinear fluctuations are weak, 

the mass-neutrality deviation becomes dominant between 6  and 9 . Before and after 

this range, we get compressive soliton-like structures, but in an aperiodic irregular fashion 

[figure 4.3(a)]. The scale length (    1
log


 gL ) shows strong inhomogeneities at 

about 3  and 12  relative to the center of the cloud matter mass distribution [figure 
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4.3(a)]. The conservative nature of the self-gravitational fluctuations is reflected in the phase 

portrait as shown in figure 4.3(b), and it is found to be uni-periodic parametrically.  

 

 

Figure 4.3: Spatial profile of normalized self-gravitational (a) potential ( , blue line), field 

strength (  , red line), potential curvature ( 22  , green line), and gradient scale 

length ( gL , black line); and (b) phase portrait (in a phase space defined by   and  ). 

Different input and initial values are described in the text. 

 

 

Figure 4.4: Spatiotemporal profile of self-gravitational potential fluctuation. Different input 

and initial values used are described in the text. 
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4.6 CONCLUSIONS 

A methodological study of the nonlinear gravito-electrostatic fluctuations in a self-gravitating 

polytropic charged dust cloud is carried out. The basic features of nonlinear electrostatic and 

self-gravitational waves that arise in weakly coupled unmagnetized plasma comprising of the 

hot electrons, ions; and cold identical charged dust grains is briefly presented. The main 

conclusive remarks which may be drawn are summarized as the following. 

1. The nonlinear eigenmode patterns of a charged polytropic dust cloud dynamically evolve 

as a new coupled pair of m-KdV dynamics with self-consistent nonlinear sources involving 

coupled gravito-electrostatic interactions in an intermixed form. 

2. Numerical shape-analysis shows that electrostatic eigenmodes evolve as rarefactive 

solitons-like structures (bi-periodic); whereas, the self-gravitational fluctuations evolve as 

extended compressive solitonic structures (uni-periodic). 

3.  A detailed numerical analysis of the associated field, curvature and gradient scale length 

under multi-parameter variation support that both quasi-neutrality and mass-neutrality 

deviations become maximum at a radial distance 7.5 (on the Jeans scale) relative to the center 

of the entire cloud mass distribution.  

4. The phase space trajectories show the conservative nature of the electrostatic fluctuations 

with periodic doubling; whereas, the conservative nature of the self-gravitational 

fluctuations, with a single periodicity is revealed by the geometrical trajectories. 

5. The presented solitary spectral patterns of the m-KdV dynamics are in partial and 

qualitative correspondence with the various observations in situ made by various spacecraft 

instrumentations, on-board multispace satellite reports, sophisticated imaging detections and 

experimental laboratory findings [6, 23]. In addition, molecular clouds well-known to 

support such structures are Lynds 204 Complex [6], Barnard 68 [23] and so forth.  

It is admitted that the entire investigation is based on local analysis valid under the 

approximation of weak nonlinearity (<3rd order). But, astrophysical analyses would require 

nonlocal analyses due to diverse equilibrium spatiotemporal inhomogeneities under large 

scale convective dynamics. Thus, our investigation gives a simplistic picture of the existing 

eigen-mode patterns in molecular clouds, thereby avoiding such realistic complications. 
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