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Chapter-6 

 

STABILITY OF THE POLYTROPIC SOLAR WIND 

 

Abstract: A linear stability analysis of a simple polytropic hydrodynamic model† for the solar 

wind dynamics is proposed. The proposed analysis is based on the data available from the 

Advanced Composition Explorer (ACE) spacecraft mission. We apply the usual variable-

separation methodology in the dispersion analysis. It is seen that the growth rate of the 

fluctuations is an explicitly nonlinear function of the variable polytropic index ( ) and the 

radial position ( r ) relative to the heliocenter. The growth attains a maximum near the solar 

corona ( 1~ ); and so forth. 

 

6.1 INTRODUCTION 

The Sun, its atmosphere and associated flow dynamics constitute an intriguing area of 

research because of their richness in various collective degrees of freedom exhibited through 

diverse waves, fluctuations and oscillations [1-6]. Due to many such gravito-electro-magnetic 

wave-related phenomena, the outer solar atmosphere is so hot that even its gravity cannot 

prevent it from continuously expanding [3-8]. The continuous stream of high energetic 

particles emanating from the Sun and flowing radially outward is known as the ‘solar wind’. 

The solar wind comprises mainly of two parts: the fast solar wind and slow solar wind, the 

intercoupling of which results in large-scale temporal dynamics. The origin of the solar wind, 

dynamical stability, the outflow dynamics of the solar wind acceleration mechanism are yet 

to be well understood [7-11]. Bold efforts have been made to see the solar wind flow 

dynamics and stability from different perspectives, like hydrodynamic model [1, 4, 8], 

magnetohydrodynamic (MHD) model [6, 7], kinetic model [11, 12], and so forth.   

In spite of the anisotropic nature of the solar wind, the existing MHD models have 

been able to reproduce the global, average and physical sensible picture of the wind 

characteristics nicely [4-7]. The classic MHD models involve the energy and momentum 
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equations with extra source or sink terms. However, there is another class of MHD models 

involving reduced adiabatic index known as ‘polytropes’. Polytropes are much simplified 

models based on the assumption that a power-law relationship exists between pressure and 

density in stars in a hydrodynamic equilibrium configuration. This equation of state is called 

the polytropic equation of state or polytropic energy equation or polytropic power law [13]. 

This excludes the need for solving the energy equation throughout the star [13-17]. Such 

models allow radial variation of the polytropic index, but within the validity limit of the total 

energy conservation of the radially symmetric expansion of the hot coronal plasma.  

Moreover, a new and simple polytropic model for the solar wind, incorporating data 

from the Advanced Composition Explorer (ACE) spacecraft to set the model parameters, has 

recently been proposed [6, 7]. In this chapter, we present a simple linear fluctuation analysis 

of the polytropic solar wind by the well-known Fourier technique [14-17]. The main 

motivation behind the proposed analysis is to investigate the local nature of the solar plasma 

fluctuations with radial position, and also, with the variability of the associated polytropic 

index relative to the center of the Sun methodologically. A dispersion analysis of the 

associated fluctuations give the linear growth rate of the fluctuations as a nonlinear function 

of the variable polytropic index ( ) and radial position ( r ) with respect to the center of the 

Sun. This is shown, both by analytical (approximate) and numerical (exact) techniques, that 

the growth of the fluctuations is stronger near the isothermal corona of the Sun, where 1~ , 

relative to that observed elsewhere within the same solar plasma system.  

 

6.2 PHYSICAL MODEL 

We consider an idealized polytropic model of the solar wind for the stability analysis on the 

bounded Sun and its unbounded atmosphere. The model explicitly assumes a simple 

barotropic relationship in the usual form of ~P  between the fluid pressure, P , and the 

fluid material density,  , with the cospatially variable polytropic index  . The pressure-

density correlation is also termed as the polytropic energy equation, which gives the simplest 

analytical tool to allow spatial variations in the solar or stellar temperature [16, 17].  

An example of such a polytropic model is the Lane-Emden equation of state 

describing the mass-pressure relationship inside a star, but with 11  n , where n  is 
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called the polytropic index of the stellar structure [5]. The main advantage of adopting this 

model is that the equation of energy may be omitted from the set of structure equations to 

solve the solar wind stability problem [6]. Moreover, the polytropic index   is often 

considered to have a numerical value close to unity in order to represent the nearly 

isothermal corona of the Sun, and also, to obtain the acceleration of the solar wind. Under the 

polytropic assumption, the process is adiabatic only if the polytropic index satisfies the 

relation,    
s

lnPln   at constant entropy S. This is because the quantity P  is 

directly associated with the entropy S of the solar wind system. These model justifications 

are according to the analysis of Helios-1 data [5] that the solar wind behaves fairly polytropic 

between the radial distance range of 0.3 AU and 1 AU, with   = 1.46 as an average value 

for the polytropic index. This model, however, does not include the non-uniform temperature 

for the solar corona, any kind of anisotropy and density distribution over the solar surface. 

 

6.3 MATHEMATICAL FORMULATION  

In order to derive the dispersion relations for the solar wind fluctuations, both adiabatic and 

polytropic flow considerations are made [6]. The adiabatic and polytropic processes may be 

coupled together with the help of ideal gas approximation of the solar wind gas. Now, the 

equation of state for the ideal gas is ~P , which implies KP  , where K is the 

polytropic constant and   is the adopted polytropic index [6]. For an adiabatic process, the 

conservative form of polytropic matter yields   0PDtD , where 

   xvtDtD  0  represents commoving (material) derivative relative to the solar 

wind flow dynamics. Thus, using this, we get the following equation 
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which can be also written in coordination space (x, t) for our inhomogeneous configuration as 
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where, vp cc  is the ratio of specific heats of the solar wind (here, constant). 

 For linear stability analysis, we consider the plasma parameters to be linearly 

perturbed about the defined equilibrium as 
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 

 PPP
       .                                                                                                                  (6.3)  

Since, we are interested in small perturbation analysis; therefore, the standard technique of 

the Fourier analysis is applied in order to see the spectral behavior of the linear fluctuations 

in the transformed Fourier space [14-17], characterized by wave frame ( k, ). 

 The perturbations can, according to the Fourier technique, be assumed to propagate 

periodically in the form of sinusoidal signals as ~   tkxi exp , so that the linear 

differential operators get transformed as it   and ikx   in the Fourier wave space 

( k, ). Here, k is the angular wave number and   is the angular frequency of the linear 

fluctuations. The equation of state, KP  , in the limit of small perturbation 

approximation  10 PP   now reduces to the following form  

1

1

0010    KKPP ,                                                                                                 (6.4) 

which, on separation of equilibrium and perturbation, yields 
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Applying the perturbation (equation (6.3)) in equation (6.2), we have a linearized form as 
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Using the standard Fourier transform technique [15] as mentioned earlier and with the help of 

equation (6.5), equation (6.6) can be written as  
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Since, our model is based on linear fluctuation analysis under small amplitude 

approximation, therefore ,,, 2

1

2

111  PP …. =0. Thus, equation (6.7) can be written as 
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In our modified analysis, K and   are considered to vary in the radial direction only because 

the acceleration is different in different types of solar wind [6]. Thus, the radial variation of 

the relevant polytropic parameters is taken into account. The explicit radial form of )(rf  

as a function of the radial coordinate r evolving between the initial point 1rr   and the final 

point 2rr   with all usual notations [6] is given by 
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Similarly, the functional form of the factor K(r) can be written as 
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with 
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Equation (6.8) can now be written as 
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which on simplification yields 
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Equation (6.14), after simplification, finally leads to the local dispersion relation as 
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Now, substituting ir i   in equation (6.15), where r  is the real part representing the 

actual frequency, and i  is the imaginary counterpart representing the instability behavior. 

This i  is of our interest, since, it measures physically the growth (or, decay) rate of the 

fluctuations within the solar plasma environment. Therefore, separating the real and 

imaginary parts in equation (6.15), we get the following expressions 
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or vk. ,                                                                                                                     (6.16) 
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From equations (6.16) and (6.17), it is found that the phase velocity of the fluctuation is 

0vkv rp  , and their group velocity is 0vkv rg   . Thus, the phase velocity and 

group velocity are equal, and the real speed of the fluctuation propagation comes out to be 

0v . Equation (6.17) is further simplified to derive i  as a function of   along with r within 

this strategy. Hence, the final expression derived for i  is 
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Equation (6.18) shows that the polytropic solar wind fluctuations under investigation evolve 

with growth rates, which are nonlinear functions of the polytropic index ( ), and radial 

distance (r) relative to the heliocentre. The quantitative details of the fluctuations can be seen 

with the help of graphical representation of equation (6.18) through numerical illustrative 

analysis within judiciously chosen multi-parametric variation as explained elsewhere [6]. 

 

6.4 RESULTS AND DISCUSSIONS 

A simplified linear stability analysis of the polytropic solar wind model using the standard 

Fourier techniques is proposed. This is based on the application of a modified classic 

polytropic assumption with the inclusion of ideal gas-nature approximation of the wind. 

Thus, both the considered ideal adiabatic and polytropic flows are the underlying basic 

physical basis of the proposed model analysis. The associated growth rates are obtained by 

the Fourier techniques and then studied methodologically. It is seen that the growth rates of 

the solar wind fluctuations evolve dynamically as unique nonlinear functions of the spatially 

varying polytropic index    and the radial distance (r) relative to the heliocenter.  

A detailed numerical analysis further elucidates the graphical behavior of the exact 

linear growth rates systematically by using some input data on relevant plasma parameters 

available from the ACE spacecraft [6]. The profile of the growth rate evolution as a function 

of the polytopic index is shown in figure 6.1. The input values taken for this numerical 
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analysis are K = 2322)1062.23(    N m, 3

0 1043.1   kg m-3, 3

0 10682.11 P  N m-2, and 

1 . Different lines correspond to the different cases with velocity v  = 250 (blue line), 400 

(red line), 550 (green line), and 700 km s-1 (black line); respectively. It is seen that greater the 

flow velocity of the wind, which is in the particular regime specified by 0511 .  

(isentropic process), the greater the fluctuation growth-rate; and vice-versa. This is because 

the solar wind with greater flow velocity within the isentropic flow condition has greater 

kinetic energy, and vice-versa. It is seen that, if the wind flow is linearly perturbed, the 

equilibrium flow energy associated with each of the comoving wind elements (particles) 

undergo resonant coupling. This results in growths of the fluctuations in accordance with 

their phase and amplitude coordination as a coherent process. This happens only at the above 

 -regime, which corresponds to an isothermal process [6]. At different  -values, the 

isothermal condition is lost, and the wind fluctuations with different speeds get randomized 

(non-isentropic process). As a consequence, the wind fluctuations are averaged out to near-

zero values, leading neither to growth, nor to any decay. 

 

 

Figure 6.1: Profile of linear growth rate ( i ) with variable polytropic index ( ). Different 

lines correspond to different cases with velocity v = 250 (blue line), 400 (red line), 550 

(green line), and 700 km s-1 (black line); respectively. The fine details are given in the text. 

 

The profile of the growth-rate as a function of polytropic index ( ) and position (r) 

normalized by the solar radius ( R ) in the case of the solar interior is shown in figure 6.2(a). 
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The same is extended up to the solar exterior scale as displayed in figure 6.2(b). The different 

input values [6] taken for this computation are K = 2322)1062.23(    N m, 3

0 1043.1   

kg m-3, 3

0 10682.11 P  N m-2, 1 , 0K = 1710042.2   J, 0n = 141072.5   m-3, 0 =1.26, 

1 =1.424, and v = 400 km s-1. It is realized that the growth rate starts increasing at the 

position specified by 0~r , and then. it reaches a maximum value at 

08.0~r )106.0( 145

max,

 si . The growth rate for the weak fluctuations again comes down 

to a certain minimum value )0(~  at 5.0~r , and then, it keeps on growing until it reaches a 

maximum value at 7.0~r )100.1( 145

max,

 si , as is clearly shown in figure 6.2(a). The 

growth achieves the  maximum value  145100.1  si  at 150~r  on the solar exterior 

scale [figure 6.2(b)], corresponding to 101.  (isentropic situation) near the solar corona. 

  

 

                                  (a)                                                                      (b)                                  

Figure 6.2: Profile of linear growth rate ( i ) with position (r normalised by R⊙ ) and 

polytropic index ( ) for the solar interior (a) and for the solar exterior scale (b). The 

different input and initial values adopted here are described in the text.  

 

  Thus, it is inferred that the solar fluctuations undergo resonant growths only in 

isentropic processes due to coherent (resonant) interaction among themselves at the cost of 

the free energy source coming from the defined dynamic equilibrium (uniformly flowing) 

itself within the expanding solar plasma volume. This may be considered as a new theoretical 
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idea to give a qualitative explanation based on a simple approach about solar wind waves, 

oscillations and fluctuations, as compared with other different simple and complex 

theoretical models reported earlier [1, 6, 9]. However, our calculation scheme using a 

reduced and variable polytropic index excludes the sudden disturbances and fluctuations in 

the relevant solar parameters generated by the coronal mass ejections (CMEs) and thereby 

driven shocks in the solar plasma system. Moreover, nonlinear saturation mechanisms of the 

perturbations in the large-amplitude regime, due to balancing between nonlinear convection 

(caused by fluidity) and linear dispersion (caused by solar self-gravity amid large-scale 

dynamics) are also ignored for simplification of the proposed model.   

 

6.5 CONCLUSIONS 

In this chapter, a simplified theoretical model for the linear stability analysis of the polytropic 

solar wind in the framework of the well-known Fourier technique is methodically developed. 

The considered equilibrium is of the MHD-type (hydrodynamic) formed by a coupling of the 

adiabatic and polytropic processes in the limit of ideal gas approximation. The behavior of 

macro-instability in the solar wind is analyzed using the modified polytropic model, which 

forbids the conservation of energy, instead of using the basic MHD model. Based on the 

methodologically derived linear dispersion relation, the explicit form of the associated 

growth rate of the fluctuations is seen to evolve dynamically as a unique nonlinear function 

of the polytropic index and the anti-Sun-ward radial distance.  

Applying a multi-parametric variation scheme, a constructive numerical analysis is 

carried out, which depicts the graphical nature of the local linear growth rates based on the 

ACE spacecraft data [5, 6]. The growths are found to be maximum only in the isentropic 

regions on the solar exterior scale; elsewhere, no growth saturation occurs. Such observations 

on growing fluctuations are mainly due to resonant interaction processes among the said 

fluctuations, plausibly due to their phase and amplitude coordination in isentropic conditions, 

which correspond to the isothermal corona of the Sun.  

Moreover, the growth for higher flow velocity of the wind is interestingly found to be 

greater; and vice-versa. In addition, the fluctuations are randomized (with no phase and 

amplitude coordination), and hence, averaged out to zero in non-isentropic regions elsewhere 

in the solar wind system. This is in good agreement where normally source and sink terms 
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need to be considered in the solar plasma flow dynamics. Our proposed theoretical model 

gives a simplified proposition for worthwhile understanding of the solar instability, involving 

various complex processes about helioseismic and asteroseismic wave activities within the 

framework of a new polytropic perspective. However, it is to be noted that such models fall 

short of explaining the coronal mass ejection driven shocks as energy conservation has not 

been used. Therefore, a full MHD simulation is more suitable to understand the shock 

propagation and shock-induced instabilities as compared to the polytropic models [14]. In 

addition, necessary modifications and refinements have to be considered to see the actual 

picture of the stability behaviors of the Sun and its atmosphere.   
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