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APPENDIX-A 

 

A GENERALIZED BI-FLUIDIC MODEL FORMALISM 

OF PLASMA SHEATH EVOLUTION 

 

A generalized two-fluid model† to study the equilibrium structure of plasma sheath in normal 

two-component plasma in the presence of both viscoelastic effects [1] and weak but finite 

electron-inertia [2] is built up. The Bohm ionic-flow condition for the sheath formation in 

viscoelastically modified form is strategically derived. It is reliably bolstered by an exact 

reproduction of the pre-reported results on normal plasma sheaths [3]. The role of both 

plasma viscoelasticity and electron-inertia on the sheath evolutionary dynamics is 

specifically discussed. The findings may be useful to explore realistic plasma boundary-wall 

interaction processes relevant in diversified laboratory, star-space and astro-environs. 

 The local Bohm ionic-flow criterion, which is found to be considerably modified with 

the plasma viscoelasticity and electron-inertia in our model, is systematically obtained as 
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where,   is the normalized (by electron plasma Debye length) spatial coordinate, 

ieei mm  is the electron-to-ion mass ratio, eM  is the normalized (by ion sound phase 

speed) electron flow velocity,   is the normalized (by electron thermal potential) 

electrostatic potential, eT  is the electron temperature (in eV). Furthermore, 

 34 )()()( ieieie    is the effective generalized electron (ion) fluid viscosity, with 
)(ie  

and 
)(ie  the bulk and shear viscosity of the electron (ion) fluid. Here,   depicts the average 

effective generalized dynamic viscosity in a mean fluid approach.   

            A numerical analysis over the sheath structure equations is strategically performed to 

see the reality on the sheath evolution characteristics by employing the fourth-order Runge-

Kutta method. The resultant sheath evolution is graphically displayed in figure A1.  
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Figure A1: Spatial profiles of the normalized (a) electron and ion population densities and 

(b) electrostatic potential for different  -values. Different lines in two distinct sets (blue and 

red) in figure A1(a) depict the densities for   0.10, 0.20, 0.30 kg m
-1

 sec
-1

; respectively. 

The blue, red and green lines in figure A1(b) link the same  -values; correspondingly. 

  

It is seen that the joint action of both viscoelasticity and electron-inertia has 

significant influences on the local Bohm flow criterion and sheath characteristics. The 

deviation from quasi-neutrality increases with viscosity; and vice-versa [figure A1(a)]. Thus, 

the plasma sheath, so formed, is a non-neutral space charge layer with non-neutrality 

enhanced by viscosity. It is further seen that, with increase in viscosity, the sheath potential 

increases; and vice-versa. As a result, the sheath thickness decreases [figure A1(b)]. 

 We admit that it is a simplified approach excluding external electromagnetic force 

fields, temperature variations, etc. The results are validated a posteriori only on an empiric 

basis against experimental verification. A future scope for further refinements is hereby 

opened. However, the presented analysis may be extensively applied for basic understanding 

of realistic plasma-boundary wall interaction processes in diversified plasma environs. 
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APPENDIX-B  

 

PULSATIONAL MODE BEHAVIOR IN COMPLEX 

NONEXTENSIVE VISCOUS ASTROCLOUD 

 

The pulsational mode dynamics of self-gravitational collapse [1] in a hydrostatically bounded 

complex non-thermal dusty astrocloud is theoretically investigated. The adopted multi-fluidic 

model† consists of nonextensive electrons and ions, and massive dust grains along with 

partial ionization in a flat space-time. A linear normal mode analysis reduces the basic cloud 

equations into a quartic (biquadratic) dispersion relation with unique set of multi-parametric 

coefficients. It is interestingly found with a numerical illustrative calculation that non-

thermal associations in the cloud pave the way for faster normal mode propagation. The 

neutral dust viscosity plays a decisive role towards a transition of the pulsational mode from 

a non-dispersive to dispersive nature.  

 The )(ieq -nonextensive non-thermal electron (ion) population distributions ( )(ieN ) in 

normalized form with all the conventional notations [2] is given as   

   )(11

)()( 11 ieq

ieie qN


 ,                                                                                         (B1) 

where, )(ieq  represents the non-thermal entropic index of electrons (ions), )(ieN  is the 

normalized (by equilibrium concentration) electron (ion) population density,   is the 

normalized (by electron thermal potential) electrostatic potential developed by conjoint bi-

polar charge density fields. A plane-wave analysis over the linearly perturbed astrocloud 

relative to its equilibrium finally results in a linear generalized dispersion relation (quartic) as                                                                                                                 

  ,0, 43

2

2

3

1

4  AAAAKD                                               (B2) 

where, 1A , 2A , 3A  and 4A  are the various involved multi-parametric coefficients. † 

It reveals that the pulsational mode propagatory properties are likely to be appreciably 

affected by the various dispersion coefficients. It is then numerically analyzed to explore the 

basic mode characteristic features in an exact form as shown in figure B1. 
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Figure B1: Profile of the normalized (a) real frequency part  r  and (b) imaginary 

frequency part  i  with the variation in the normalized wave number  K . The various 

lines indicate the diversified situations with different viscosities as 5


dn  (blue, solid line), 

10


dn  (red, dashed line), and 15


dn  (black, dotted line); respectively.  

   

It is seen that the real frequency of the pulsational mode increases with rise in the 

kinematic neutral dust viscosity; and vice-versa. It implies that the non-thermal associations 

in the cloud are responsible for faster normal mode propagation against a thermalized 

situation [1]. A unique transition from non-dispersive to dispersive nature is also speculated 

[figure B1(a)]. In contrast, the growth rate decreases with the neutral dust kinematic 

viscosity; and vice-versa [figure B1(b)]. Consequently, the neutral fluid viscosity has a 

stabilizing influence on the slightly perturbed non-thermal cloud, and, hence, in the 

pulsational dynamics. The results may be significant in understanding the self-gravitational 

cloud collapse dynamics leading to a hierarchical initiation of bounded structure formation in 

diverse astro-plasma-cosmic non-thermal equilibrium environments. 
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APPENDIX-C  

 

WAVE DAMPING BEHAVIORS IN SOLAR 

PROMINENCE PLASMAS 

   

The evolutionary dynamics of non-adiabatic magneto-hydrodynamic (MHD) waves, in the 

prominence plasmas in the presence of kinematic viscosity and inertia-dependent 

stratification of the constitutive species is explored†. It judiciously implements a new energy 

equation devised to describe optically thin radiation losses, thermal conduction, viscosity, 

heating mechanisms, and so forth [1, 2]. A linear perturbative analysis over the basic 

governing equations for the prominence plasma dynamics results in a generalized dispersion 

relation (quintic) with a unique set of multi-parametric coefficients. It interestingly enables 

us to characterize two distinct classes of modes: the fast wave and slow ramified wave. 

The dispersion relation in our visco-gravitational prominence model is derived as 
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where, 0a , 1a , 2a , 3a , 4a  and 5a  are the various involved multi-parametric coefficients.† 

Clearly, equation (C1) is a fifth-degree polynomial in   with functional 

dependencies on k  via the coefficients. We aim at the time-damping behaviors of the 

magnetoacoustic waves ( IR i  , 0ikk  ). We obtain five roots numerically, out of 

which, only one root is purely imaginary, indicating non-propagatory thermal or 

condensation mode [3]. The rest roots consist of two conjugative pairs, one representing the 

fast wave, and the other the slow one. The wave damping time is ID  1  and the period is 

RT 2 . A numerical analysis yields the results graphically displayed in figure C1. 

 It is seen that, with the KT -increment, D  of the fast wave [figure C1(A)] at first 

decreases followed by a rapid rise (at k ~103 m-1), and then, again decreases. On the other 

hand, D  of the slow wave [figure C1(C)] decreases in magnitude with increase in KT . It 

implies that higher the temperature, the more is the time required to damp the waves; and 
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vice-versa. Likewise, T [figures C1(B), C1(D)] decreases similarly relative to D  of the slow 

wave [figure C1(C)]. Thus, the thermal conduction affects the damping mechanism. The 

results could be applied as prominence seismology test-bed to see the solar morphodynamics. 

  

 

  

Figure C1: Profile of the logarithmic damping time ( D10log ) and logarithmic period 

( T10log ) with the logarithmic wave number ( k10log ) for the fast ([A]-[B]), and slow ([C]-

[D]) modes. The dashed, dotted, and dashed-dotted lines link to the three distinct prominence 

conditions: (a) KT  = 6000 K, (b) KT = 7000 K and (c) KT = 8000 K; respectively.  
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