CONTENTS

a. Abstract	i
b. Declaration	xi
c. Certificate	xii
d. Dedication	xiii
e. Acknowledgement	xv
f. Contents	xix
g. List of Tables	xxvii
h. List of Figures	xxxi
i. List of abbreviations	lv
CHAPTER I: INTRODUCTION	[1-50]
1.1 General introduction to conducting polymers (CPs) and its	1
interesting features	
1.1.1 Conducting polymers (CPs)	1
1.1.2 Requirements of electrical conductivity in CPs	3
1.1.2.1 Conjugated alternation of double bonds	3
1.1.2.2 Doping	4
1.1.3 Charge carriers in CPs	5
1.1.4 Polyaniline (PAni)	10
1.1.5 Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-	12
phenylenevinylene] (MEH-PPV)	
1.2 Tissue engineering and biomaterials	14
1.3 CPs in biomedical applications	16
1.3.1 Biosensors	18
1.3.2 Tissue engineering	19
1.3.3 Neural probe	20
1.3.4 Drug delivery	21
1.3.5 Bioactuators	21
1.4 CP based biomaterial scaffolds: Biomimetic properties	22
1.5 One dimensional (1D) CP based nanostructures	24

1.6	Synthesis a	and modifica	ation strategies of nanostructured CP based	26
	biomaterials			
	1.6.1 Syr	thesis of 1I	O CP nanostructures	26
	1.6.1.1	Hard phys	ical template method	28
	1.6.1.2	Soft chem	ical template method	28
	1.6.1.3	Reactive to	emplate method	29
	1.6.1.4	Nanoimpri	int lithography or embossing	29
	1.6.1.5	Electroche	emical approach	30
	1.6.1.6	Directed e	lectrochemical nanowire assembly	31
	1.6.1.7	Electrospin	nning	31
	1.6.2 Sur	face functio	nalization of CP based biomaterials	32
	1.6.2.1	Biomolecu	le immobilization	33
		1.6.2.1.1	Physical adsorption	34
		1.6.2.1.2	Entrapment	34
		1.6.2.1.3	Covalent modification	34
		1.6.2.1.4	Doping	35
	1.6.2.2	Surface fu	nctionalization by polar groups	35
		1.6.2.2.1	Wet chemical	37
		1.6.2.2.2	Silane monolayers	38
		1.6.2.2.3	Ionized gas treatments	38
		1.6.2.2.4	UV irradiation	39
1.7	Electrical	stimulation	through CP based biomaterials	40
1.8	Motivatio	n of the thes	sis	41
1.9	Scope of t	he thesis an	d statement of the problem	44
СНА	PTER II:	THEORET	ICAL ASPECTS	[51-77]
2.1	Chemical	polymeriza	tion	51
	2.1.1 The	ermodynam	ics of nucleation and growth of a material	51
	2.1.1.1	Homogen	eous nucleation and growth	52
	2.1.1.2	Heteroger	neous nucleation and growth	53
	2.1.2 Pol	ymerization	mechanisms of Polyaniline (PAni)	53
	2.1.2.1	Dilute po	lymerization mechanisms	55
	2.1.2.2	Interfacia	l polymerization mechanisms	57
2.2	Theory of	electrospin	ning	59

	2.2.1	Charge generation and transport in polymer solution	60
	2.2.2	Droplet generation	61
	2.2.3	Taylor cone formation	62
	2.2.4	Launching of the jet	62
	2.2.5	Elongation of straight segment	62
	2.2.6	Whipping instability region	63
	2.2.7	Solidification into nanofiber	63
2.3	Curren	nt-voltage (I-V) characteristics	63
	2.3.1	Ohmic conduction	64
	2.3.2	Space charge limited conduction	64
	2.3.3	Non-linear I-V characteristics: Kaiser Equation	65
2.4	Deterr	mination of binding sites and binding constant (K_A) :	66
	Fluore	escence resonance energy transfer (FRET)	
2.5	Deterr	mination of surface energy and its components: Contact	70
	angle	measurement	
	2.5.1	Owens, Went, Rabel and Kaelble (OWRK) method	71
	2.5.2	Van Oss-Chaudhury-Good theory (OCG) or Acid-base	72
		(AB) method	
2.6	Enzyn	ne kinetics	73
	2.6.1	Michaelis-Menten equation	74
	2.6.2	Lineweaver-Burk equation	76
СНА	PTER	III: EXPERIMENTAL DETAILS	[79-116]
3.1	Mater	ials	79
3.2	Synthe	esis and surface functionalization of conducting polymer	82
	(CP) b	based nanostructures	
	3.2.1	Synthesis of polyaniline (PAni) nanofibers	82
	3.2.2	Surface functionalization of polyaniline (PAni) nanofibers	83
	3.2.3	Synthesis of polyaniline nanofibers:chitosan (PAni:Ch)	85
		nanocomposites	
	3.2.4	Surface functionalization of polyaniline	86
		nanofibers:chitosan (PAni:Ch) nanocomposites	
	3.2	2.4.1 Using Glutaraldehyde	86
	3.2	2.4.2 Using BOC-Glycine N-hydroxysuccinimide (NHS)	86

ester

	3.2.5 Electrospinning of MEH-PPV:PCL nanofibers	87
	3.2.5.1 Doping of MEH-PPV	87
	3.2.5.2 Simple electrospinning of MEH-PPV:PCL	87
	nanofibers	
	3.2.5.3 Coaxial electrospinning of MEH-PPV:PCL	88
	nanofibers	
	3.2.5.4 Surface functionalization of MEH-PPV:PCL	89
	nanofibers	
	3.2.5.4.1 Using (3-Aminopropyl)triethoxysilane (APTES)	89
	3.2.5.4.2 Using 1,6-Hexanediamine	89
3.3	Characterization techniques	90
	3.3.1 Transmission electron microscopy (TEM)	90
	3.3.2 Scanning electron microscopy (SEM)	91
	3.3.3 X-ray diffraction (XRD)	92
	3.3.3.1 Calculation of d-spacing, domain length (L) and	93
	microstrain (ε)	
	3.3.3.2 Degree of crystallinity	96
	3.3.4 Thermogravimetric analysis (TGA)	97
	3.3.5 Current-voltage (I-V) characteristics	98
	3.3.6 Mechanical property measurement	98
	3.3.7 Contact angle measurements	99
	3.3.8 Fourier transform infrared spectroscopy (FT-IR)	99
	spectroscopy	
	3.3.9 Nuclear magnetic resonance (NMR) spectroscopy	100
	3.3.10 X-ray photoelectron spectroscopy (XPS)	101
	3.3.11 Ultra violet-visible (UV-Vis) spectroscopy	102
	3.3.12 Fluorescence spectroscopy	103
	3.3.13 Stability test	103
3.4	Biochemical properties	104
	3.4.1 Urease immobilization	104
	3.4.2 Urease activity test	104
3.5	Biological characterization	105

	3.5.1 Hemolysis activity assay	105
	3.5.2 Cell culture	106
	3.5.2.1 MDA-MB-231 cell culture	107
	3.5.2.2 3T3 cell culture	107
	3.5.2.3 PC12 cell culture	107
	3.5.3 Sample preparation for cell culture	108
	3.5.4 MTS proliferation assay	108
	3.5.5 Acridine orange/ethidium bromide (AO/EtBr) staining	109
	3.5.6 Live/dead assay	110
	3.5.7 Beta (III) tubulin immunochemistry	111
	3.5.8 Image analysis	111
	3.5.9 Cell adhesion test	112
	3.5.9.1 MDA-MB-231 cell attachment	112
	3.5.9.2 3T3 cell attachment	112
	3.5.9.3 PC12 cell attachment	112
3.6	Electrical stimulation of PC12 cells	113
3.7	Statistical analysis	115
СН	APTER IV: POLYANILINE NANOFIBRES FOR	[117-165]
BIC	OMEDICAL APPLICATIONS	
4.1	Introduction	117
4.2	Physicochemical characterization	121
	4.2.1 Electron microscopy	121
	4.2.2 X-ray diffraction analysis	122
	4.2.3 Current-voltage (<i>I-V</i>) characteristics	124
	4.2.4 Mechanical strength test	127
	4.2.5 Stability test	128
	4.2.6 Thermogravimetric analysis (TGA)	129
	4.2.7 FT-IR spectroscopy	130
	4.2.8 ¹ H NMR spectroscopy	132
	4.2.9 UV-visible absorption spectroscopy	134
	4.2.10 Fluorescence spectroscopy	136
4.3	Surface functionalization induced variation in redox state of PAni	137
4.4	Enhancement in surface free energy and surface polarity after	139

surface functionalization

4.5	Fluore	escence enhancement of SF-PNFs in presence of aromatic	143	
	amino acids			
	4.5.1	Absorption & emission spectroscopy	143	
	4.5.2	FT-IR spectroscopy	147	
	4.5.3	¹ H NMR spectroscopy	149	
	4.5.4	Study of interaction mechanisms by fluorescence	154	
		enhancement equation		
	4.5.5	Comparative interference study	156	
4.6	Biolog	gical characterization	158	
	4.6.1	Hemolysis activity assay	158	
	4.6.2	MTS proliferation assay	159	
	4.6.3	Acridine orange/ethidium bromide (AO/EB) staining	160	
	4.6.4	Cell adhesion test	163	
4.7	Summ	ary	163	
CHA	PTER	V: SYNTHESIS AND SURFACE	[167-226]	
FUN	CTION	ALIZATION OF POLYANILINE		
		ALIZATION OF POLYANILINE RES:CHITOSAN NANOCOMPOSITES FOR		
NAN	OFIBE			
NAN	OFIBE	RES:CHITOSAN NANOCOMPOSITES FOR CAL APPLICATIONS	167	
NAN BION 5.1	OFIBF MEDIC Introd	RES:CHITOSAN NANOCOMPOSITES FOR CAL APPLICATIONS	167 172	
NAN BION 5.1	OFIBF MEDIC Introd	RES:CHITOSAN NANOCOMPOSITES FOR CAL APPLICATIONS uction		
NAN BION 5.1	OFIBR MEDIC Introd Physic 5.2.1	RES:CHITOSAN NANOCOMPOSITES FOR CAL APPLICATIONS uction cochemical characterization	172	
NAN BION 5.1	OFIBR MEDIC Introd Physic 5.2.1	RES:CHITOSAN NANOCOMPOSITES FOR CAL APPLICATIONS uction cochemical characterization Electron microscopy	172 172	
NAN BION 5.1	OFIBR MEDIC Introd Physic 5.2.1 5.2.2	RES:CHITOSAN NANOCOMPOSITES FOR CAL APPLICATIONS uction cochemical characterization Electron microscopy X-ray diffraction analysis	172 172 173	
NAN BION 5.1	OFIBR MEDIC Introd Physic 5.2.1 5.2.2 5.2.3	RES:CHITOSAN NANOCOMPOSITES FOR CAL APPLICATIONS uction cochemical characterization Electron microscopy X-ray diffraction analysis Current-voltage (<i>I-V</i>) characteristics	172 172 173 174	
NAN BION 5.1	OFIBR MEDIC Introd Physic 5.2.1 5.2.2 5.2.3 5.2.4	RES:CHITOSAN NANOCOMPOSITES FOR CAL APPLICATIONS uction cochemical characterization Electron microscopy X-ray diffraction analysis Current-voltage (<i>I-V</i>) characteristics Mechanical strength test	172 172 173 174 177	
NAN BION 5.1	OFIBR MEDIC Introd Physic 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	RES:CHITOSAN NANOCOMPOSITES FOR CAL APPLICATIONS uction cochemical characterization Electron microscopy X-ray diffraction analysis Current-voltage (<i>I-V</i>) characteristics Mechanical strength test Stability test	172 172 173 174 177 179	
NAN BION 5.1	OFIBR MEDIC Introd Physic 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7	RES: CHITOSAN NANOCOMPOSITES FOR CAL APPLICATIONS uction cochemical characterization Electron microscopy X-ray diffraction analysis Current-voltage (<i>I-V</i>) characteristics Mechanical strength test Stability test Thermogravimetric (TGA) analysis	172 172 173 174 177 179 181	
NAN BION 5.1	OFIBR MEDIC Introd Physic 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7	RES: CHITOSAN NANOCOMPOSITES FOR CAL APPLICATIONS uction cochemical characterization Electron microscopy X-ray diffraction analysis Current-voltage (<i>I-V</i>) characteristics Mechanical strength test Stability test Thermogravimetric (TGA) analysis Surface properties	172 172 173 174 177 179 181 183	
NAN BION 5.1	OFIBR MEDIC Introd Physic 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.7 5.2.7	A PPLICATIONS uction uction bechemical characterization Electron microscopy X-ray diffraction analysis Current-voltage (<i>I-V</i>) characteristics Mechanical strength test Stability test Thermogravimetric (TGA) analysis Surface properties 2.7.1 Surface chemistry of glutaraldehyde functionalized	172 172 173 174 177 179 181 183	

		Enhancement in wettability and surface energy after	192
		surface functionalization	
5.3	Biomedical ap	plications of GFPAni:Ch nanocomposites	197
	5.3.1 Enhance	ed urease activity and kinetics on GFPAni:Ch	197
	nanocor	mpistes	
	5.3.1.1	Urease activity	197
	5.3.1.2	Reusability	201
	5.3.1.3	Kinetics of immobilized urease	202
	5.3.2 Biocom	patible GFPAni:Ch nanocomposites for enhanced	203
	MDA-N	AB-231 cell adhesion and proliferation	
	5.3.2.1	Hemolysis activity	203
	5.3.2.2	MTS proliferation assay	205
	5.3.2.3	Acridine orange/ethidium bromide (AO/EB)	206
		staining	
	5.3.2.4	Cell attachment	208
5.4	Biomedical ap	plications of EFPAni:Ch nanocomposites	209
	5.4.1 Biocor	npatible EFPAni:Ch nanocomposites for enhanced	209
	3T3 fil	probalst adhesion and proliferation	
	5.4.1.1	Hemolysis activity	209
	5.4.1.2	MTS proliferation assay	210
	5.4.1.3	Improved 3T3 fibroblast adhesion and morphology	212
	5.4.1.3.1	Live/dead assay	212
	5.4.1.3.2	3T3 cell attachment	214
	5.4.1.4	PC12 cell behaviour	216
	5.4.1.4.1	Beta (III) tubulin immunochemistry	216
	5.4.1.4.2	PC12 cell attachment	218
5.5	Electrical stim	ulation of PC12 cells	219
5.6	Summary		223
CHA	PTER VI: EL	ECTROSPINNING AND SURFACE	[227-295]
FUN	CTIONALIZA	TION OF MEH-PPV:PCL NANOFIBERS	
FOR	TISSUE ENG	INEERING APPLICATIONS	
6.1	Introduction		227
6.2	Physicochemi	cal characterization	231

	6.2.1	Electron microscopy	231
	6.2.2	X-ray diffraction analysis	233
	6.2.3	Thermogravimetric (TGA) analysis	235
	6.2.4	Current-voltage (I-V) characteristics	237
	6.2.5	Mechanical strength test	244
	6.2.6	Stability test	247
	6.2.7	Surface chemistry	250
	6.	2.7.1 FT-IR spectroscopy	250
	6.	2.7.2 X-ray photoelectron spectroscopy	253
	6.	2.7.3 Mechanisms of surface functionalization	258
6.3	Biolo	gical characterization	261
	6.3.1	Hemolysis activity assay	261
	6.3.2	MTS proliferation assay	263
6.4	Enhar	nced 3T3 fibroblast adhesion, spreading and proliferation on	265
	amine	e functionalized electrospun MEH-PPV:PCL nanofibers	
	6.4.1	Live/dead assay	265
	6.4.2	3T3 cell attachment	271
6.5	PC12	cell behaviour	274
	6.5.1	Beta (III) tubulin immunochemistry	274
	6.5.2	PC12 cell attachment	281
6.6	Electr	rical stimulation of PC12 cells	283
6.7	Sumn	nary	292
CHA	PTER	VII: CONCLUSIONS AND FUTURE PROSPECTS	[297-310]
7.1	Concl	lusions	297
	7.1.1	Conclusions from Chapter IV	297
	7.1.2	Conclusions from Chapter V	301
	7.1.3	Conclusions from Chapter VI	306
7.2	Future	e prospects	309
REF	EREN	CES	[311-354]
LIST	OF P	UBLICATIONS	[355-357]

List of Tables

Table	Caption	Page No.
Chapter I Table 1.1	Key properties of some commonly used CPs including	46
	MEH-PPV and their limitations including their major	
	biomedical applications.	
Chapter I	II	
Table 3.1	Some physical properties of materials used in the	80
	synthesis and surface functionalization of PAni	
	nanofibers and PAni:Ch nanocomposites.	
Table 3.2	Some physical properties of MEH-PPV used in	81
	electrospinning of MEH-PPV:PCL nanofibers.	
Chapter I	V	
Table 4.1	Characteristics of the X-ray diffraction peaks of PNFs	123
	and SF-PNFs corresponding to (100) and (110)	
	reflections.	
Table 4.2	Calculated sheet resistance (R_s) and critical voltage (V_c)	126
	values of PAni nanofibers (PNFs) before and after	
	surface functionalization by glutaraldehyde.	
Table 4.3	Fitting parameters to Kaiser Equation for PNFs and SF-	127
	PNFs.	
Table 4.4	Average contact angle values \pm S.D. of water, ethylene	140
	glycol and diiodomethane on pristine and surface	
	functionalized PAni films.	
Table 4.5	Surface energy and its components calculated by the	141
	OWRK method taking water and diiodomethane as	
	probe liquids. Data are Mean \pm S.D.	
Table 4.6	Surface energy and its components calculated by AB	141
	method taking water, ethylene glycol and diiodomethane	
	probe liquids. Data are Mean \pm S.D.	

Table 4.7	FRET Efficiency (E_{FRET}) of SF-PNFs with different	156
	concentrations of Tyrosine, Tryptophan, and	
	Phenylalanine. Data are Mean \pm S.D.	
Chapter V	<i>V</i>	
Table 5.1	Degree of crystallinity of pure Ch, PAni nanofibers	174
	(PNFs) and PAni:Ch nanocomposites with 4 wt% and 6	
	wt% PAni content.	
Table 5.2	Calculated sheet resistance (R_s) and critical voltage (V_c)	176
	values of the different PAni:Ch nanocomposites films	
	before and after surface functionalization. Sheet	
	resistance (R_s) data were expressed as Mean \pm S.D (n=3).	
Table 5.3	Sheet resistance (R_s) , and percentage of weight loss of	180
	the non-functionalized and functionalized PAni:Ch	
	nanocomposites after 15 days in PBS (pH=7.4).	
Table 5.4	Major thermal degradation temperatures and	182
	corresponding weight loss of the non-functionalized and	
	functionalized nanocomposites.	
Table 5.5	Elemental composition of non-functionalized and	185
	glutaraldehyde functionalized PAni:Ch nanocomposites	
	determined by XPS survey scans.	106
Table 5.6	Details of C1s narrow scan spectra of PAni:Ch-4 wt%	186
	and GFPAni:Ch-4 wt% corresponding C1s peak	
	deconvolution [366, 399, 400].	
Table 5.7	Elemental composition of non-functionalized and	189
	glycine NHS ester functionalized PAni:Ch	
	nanocomposites determined by XPS survey scans.	
Table 5.8	Details of C1s narrow scan spectra of PAni:Ch-4	189
	wt%and EFPAni:Ch-4 wt% and their corresponding C1s	
T 11 50	peak deconvolutions [366, 399, 400].	100
Table 5.9	Average contact angle values for PAni:Ch	193
	nanocomposite films before and after surface	
	modification (n = 3, mean \pm SD).	

Table 5.10	Surface energy and its components calculated by the OWRK method taking water and diiodomethane as	193
	probe liquids.	
Table 5.11		194
	method taking water, ethylene glycol and diiodomethane	
	probe liquids.	
Chapter V	VI	
Table 6.1	Characteristics of the X-ray diffraction peaks of blended	235
	MEH-PPV:PCL nanofibers and core-sheath MEH-	
	PPV:PCL nanofibers corresponding to (110) and (200)	
	reflections.	
Table 6.2	Major thermal degradation temperatures and	236
	corresponding weight loss of the blended and core-	
	sheath MEH-PPV:PCL nanofibers.	
Table 6.3	Calculated sheet resistance (R_s) values of the different	240
	electrospun meshes prepared by simple electrospinning	
	and coaxial electrospinning process. Sheet resistance	
	(R_s) data were expressed as Mean \pm S.D (n=3).	
Table 6.4	Fitting parameters to Kaiser equation for blended MEH-	243
	PPV:PCL nanofibers and core-sheath MEH-PPV:PCL	
	nanofibers before and after surface functionalization by	
	APTES and 1,6-Hexanediamine.	2.10
Table 6.5	Fiber diameters, sheet Resistance (R_s) , and percentage of	249
	weight loss of the different blended MEH-PPV:PCL	
	electrospun nanofibers and core-sheath MEH-PPV:PCL nanofibers before and after 45 days of incubation in PBS	
	(pH=7.4).	
Table 6.6	Elemental composition of non-functionalized and	255
	functionalized blended MEH-PPV:PCL electrospun	255
	nanofibers determined by XPS survey scans.	
Table 6.7	Details of peak deconvolution of C1s narrow scan	255
	spectra of SEN1, AFSEN1, and HFSEN1.	
Table 6.8	Elemental composition of non-functionalized and	257

xxix

functionalized core-sheath MEH-PPV:PCL electrospun nanofibers determined by XPS survey scans.

Table 6.9Details of peak deconvolution of C1s narrow scan257spectra of CSN1, AFCSN1, and HFCSN1.

List of Figures

Figure	Caption	Page No.
Chapter I		
Figure 1.1	Molecular structures of some of the widely used	1 2
	conducting polymers (CPs).	
Figure 1.2	Schematic illustration of the formation of σ and	1 3
	π molecular orbitals from two sp^2 hybridized carbor	l
	atoms in conducting polymers.	
Figure 1.3	Scheme of HOMO and LUMO band formation in	n 5
	conducting polymers (CPs).	
Figure 1.4	Schematic representation of band structure of CPs after	: 6
	the formation of localized defects (charge carriers) viz.	,
	polaron, bipolaron, soliton and defect band upor	l
	doping.	
Figure 1.5	Formation of polaron and solitons in trans-PA (a)) 7
	neutral chain, (b) polaron and (c) soliton. (d) Schematic	;
	illustration of the modifications in the band structure of	
	trans-PA after the creation of neutral, positively charged	l
	and negatively charged soliton upon doping.	
Figure 1.6	Phase transition of localized bipolaron to ordered	8
	polaron lattice in PAni. Formation of (a) bipolaron, (b)	
	two polarons (after disassociation of bipolaron) and (c)	
	polaron lattice in PAni. (d) Schematic illustration of	
	energy levels of neutral polymer, positive polaron	,
D' 1	bipolaron, and polaron pair of PAni.	
Figure 1.7	Formation of localized defects in MEH-PPV: (a) neutral	
	chain, (b) polaron and (c) bipolaron, (d) Schematic	
	illustration in the band modifications of MEH-PPV	
	upon formation of localized defects, i.e., polaron and	l
Eigura 1 9	bipolaron.	10
Figure 1.8	Generalized molecular structure of PAni along with	n 10

typical intrinsic oxidation states of PAni viz. leucoemeraldine (LEB), protoemeradine (PEB), nigraniline (NA), emeraldine (EB), and pernigraniline (PNB).

- Figure 1.9Molecular structure of PPV and its various alkoxy-12substituted derivatives in increasing order of their
solubility.12
- Figure 1.10 Principle of tissue engineering. General process of 14 tissue engineering involves seed cells on biomaterial scaffold, culturing *in vitro* and implant into the patient showing the necessary characteristics that an ideal scaffold should possess.
- Figure 1.11 Biomedical applications of CPs.
- Figure 1.12Various parameters and factors in fabrication of27electrically conductive CP based biomaterials.
- Figure 1.13 Common modification strategies of CPs for biomedical 33 applications: (a) physical adsorption, (b) entrapping, (c) covalent modification and (d) exploiting the doping mechanism.
- Figure 1.14 Schematic representation of surface functionalization of 35 CP based biomaterials through incorporation of polar functionalities such carboxyl (-COOH), amine (-NH₂), aldehyde (-CHO), hydroxyl (-OH) etc. for favorable cell-biomaterial interaction.
- Figure 1.15 Statistics on the literature published on (a) CPs in tissue 42 engineering applications and (b) CP based biomaterials for electrical stimulation during the period 1993-2017(search made through Web of Science using as keywords: (a) Conducting polymers + Tissue engineering and (d) Electrical stimulation + Conducting polymers).

Chapter II

Figure 2.1 Mech	anism of chemical	polymerization of	aniline in	54
-----------------	-------------------	-------------------	------------	----

presence of oxidant ammonium persulfate, $(NH_4)_2S_2O_8$ as proposed by Epstein *et al* [269].

- Figure 2.2Schematic representation of the growth and elongation55of an initially formed nanofiber.
- Figure 2.3Single heterogeneous nucleation mechanism of PAni56nanofiber formation according to Chiou *et al* [267].
- Figure 2.4 Schematic illustration of interfacial polymerization 58 process in a aqueous/organic biphasic solution. The top layer is an aqueous solution consisting of dopant and oxidant, whereas the bottom layer is monomer solution in organic solvent.
- Figure 2.5 Schematic representation of electrospinning process to 59 produce o nanofibers from a polymer solution using syringe and high voltage power supply showing the formation of Taylor cone and subsequent generation of polymer jet deposited on the collector.
- Figure 2.6Schematic diagram illustrating charge generation and
transport during electrospinning.61
- Figure 2.7Jablonski diagram illustrating the FRET process.
- Figure 2.8 Absorption and fluorescence spectra of an ideal donoracceptor pair showing the spectral overlap between the fluorescence spectrum of donor and absorption spectrum of acceptor.
- Figure 2.9The effect of substrate concentration on the rate of an74enzyme-catalyzed reaction.

Chapter III

- Figure 3.1Images illustrating dilute polymerization of polyaniline82(PAni) nanofibers.
- Figure 3.2Schematic representation of surface functionalization of
polyaniline (PAni) nanofibers by glutaraldehyde.83
- Figure 3.3.
 Percentage of cell viability of PBMC for 1%
 84

 glutaraldehyde solution at three different doses. As the concentration of the doses increases, percentage of cell
 84

viability observed to be decreased. It indicates the biocompatibility nature of glutaraldehyde at lower dose level.

- Figure 3.4 Schematic representation of synthesis of and polyaniline 84 (PAni) nanofibers and polyaniline nanofibers:chitosan (PAni:Ch) nanocomposites.
- Figure 3.5 Schematic representation of the surface 85 functionalization of polyaniline nanofibers:chitosan (PAni:Ch) nanocomposites using BOC glycine-NHS ester.
- Figure 3.6Schematic representations showing electrospinning of
MEH-PPV:PCL by (a) simple electrospinning process
and (b) coaxial electrospinning process.87
- Figure 3.7 Photograph of coaxial electrospinning of MEH- 89 PPV:PCL nanofibers.
- Figure 3.8 (a) Typical X-ray diffractogram of a semi-crystalline 97 polymer and (b) XRD patterns showing the superposition of crystalline peaks and an amorphous hump.
- **Figure 3.9** An example of a photoelectron emitted due an incident 101 photon.
- Figure 3.10 (a) Schematic illustration of the electrical stimulation 114 experiment using a custom made electrical stimulation set up ; (b) photograph of self made cell culture plate with different CP based scaffolds fixed on it for electrical stimulation experiment; (c) photograph of the electrical stimulation experiment in situ.

Chapter IV

Figure 4.1Schematic illustration of synthesis of PAni nanofibers120(PNFs) by the dilute polymerization technique and
surface functionalization by glutaraldehyde for
enhanced fluorescence signals in presence of aromatic
amino acids (Tyr, Trp and Phe) and for enhanced MDA-

MB-231 cell adhesion, spreading and proliferation.

	MD-251 cell adhesion, spreading and promeration.	
Figure 4.2	Transmission electron micrograph of PAni nanofibers	121
	synthesized by dilute polymerization technique. Inset	
	shows the SAED pattern of PAni nanofibers.	
Figure 4.3	Scanning electron micrograph of PAni nanofibers in (a)	122
	powder form and (b) film form.	
Figure 4.4	X-ray diffraction patterns of PNFs (black) and SF-PNFs	122
	(red). Inset shows a Voigtian fit of the x-ray profile that	
	best describes the x-ray pattern for (a) PNFs and (b) SF-	
	PNFs.	
Figure 4.5	Room temperature (300 K) I-V characteristics of PNFs	124
	and SF-PNFs.	
Figure 4.6	Plots of forward I-V data on a log-log scale for (a)	124
	PNFs, and (b) SF-PNFs.	
Figure 4.7	Positive sides of I-V characteristics of PNFs and SF-	127
	PNFs fitted with Kaiser Equation.	
Figure 4.8	(a) Stress vs Strain curve of PAni film prepared in NMP	128
	before and after surface functionalization; (b)	
	Comparison of Young Modulus or stiffness constant (E)	
	and ultimate tensile strength (UTS) of PNFS and SF-	
	PNFs. Data were expressed as Mean \pm S.D (n=3).	
Figure 4.9	Scanning electron micrographs of (a) PNFs, and (b) SF-	128
	PNFs recorded after keeping in PBS (pH=7.4) for 30	
	days (Scale bar = 500 nm).	
Figure 4.10	(a) TGA thermograms and (b) DTG plots of PNFs and	129
	SF-PNFs.	
Figure 4.11	Vibrational spectra of PNFs (black) and SF-PNFs (red)	130
	showing incorporation of polar functional hydroxyl (-	
	OH) and aldehyde (-CHO) groups.	
Figure 4.12	¹ H NMR spectrum showing the characteristics peaks of	132
	PNFs. Observed peaks are assigned by labelling the	
	various protons in different chemical environment in	
	predicted chemical structure of the polymer.	

Figure 4.13	¹ H NMR spectrum of SF-PNFs showing the chemical	133
	shift value after incorporation of hydroxyl (-OH) and	
	aldehyde (-CHO) functional groups. Observed peaks are	
	assigned by labelling with the help of predicted	
	chemical structure of the polymer.	
Figure 4.14	(a) UV-visible absorption spectra (b) emission spectra	134
	of PNFs and SF-PNFs in 0.1M PBS at p^{H} =7.4 (λ_{ex} =280	
	nm).	
Figure 4.15	Scheme of possible functionalization mechanisms of	138
	PNFs by three different forms of glutaraldehyde	
	showing quinoid to benzenoid transformation in the	
	polymer chain.	
Figure 4.16	Representative images of contact angle measurement	140
	using three different liquids (water and ethylene glycol	
	as polar liquids and diiodomethane as non polar liquid)	
	on film of PNFs and SF-PNFs.	
Figure 4.17	(a) UV-Visible absorption spectra and (b) Fluorescence	143
	spectra of SF-PNFs before and after exposure to	
	aromatic amino acids Tyrosine (S1), Tryptophan (S2),	
	Phenylalanine (S3), Proline (S4) and Histidine (S5) in	
	PBS at $p^{H} = 7.4$.	
Figure 4.18	Chemical structure of five aromatic amino acids	144
	classified in accordance with their contributions to	
	fluorescence enhancement of SF-PNFs.	
Figure 4.19	Overlapping of absorption spectrum of SF-PNFs	145
	(acceptor) with emission spectrum of (d) Tyrosine	
	(donor), (e) Tryptophan (donor) and (f) Phenylalanine	
	(donor) in PBS at $p^H = 7.4$.	
Figure 4.20	Fluorescence spectra of SF-PNFs, Tyrosine,	145
	Tryptophan, and Phenylalanine in PBS at $P^{H} = 7.4$ at an	
	excitation wavelength λ_{ex} = 250 nm.	
Figure 4.21	Vibrational spectra of PNFs, SF-PNFs and SF-PNFs	147
	before and after exposure to Tyrosine (S1), Tryptophan	

(S2) and Phenylalanine (S3) indicating different covalent interactions between the amino acids and SF-PNFs.

- Figure 4.22 ¹H NMR spectrum of SF-PNFs in presence of Tyrosine 149 (S1) in DMSO. Observed peaks are assigned by labelling with the help of predicted chemical structure of the polymer amino acid complex.
- **Figure 4.23** ¹H NMR spectrum of surface functionalized PAni 150 nanofibers (SF-PNFs) in presence of Tryptophan (S2) in DMSO. Observed peaks are assigned by labelling with the help of predicted chemical structure of the polymer amino acid complex.
- **Figure 4.24** ¹H NMR spectrum of surface functionalized PAni 151 nanofibers (SF-PNFs) in presence of Phenylalanine (S3) in DMSO. Observed peaks are assigned by labelling with the help of predicted chemical structure of the polymer amino acid complex.
- Figure 4.25Predicted covalent interaction mechanisms between SF-153PNFs and Tyrosine (Scheme I), SF-PNFs and
Tryptophan (Scheme II) and SF-PNFs and
Phenylalanine (Scheme III) based on FT-IR and ¹H
NMR results.
- **Figure 4.26** Fluorescence response of SF-PNFs when exposed to 154 different concentrations of (a) Tyrosine, (b) Tryptophan and (c) Phenylalanine in PBS at $p^{H} = 7.4$. The double reciprocal curves for the interaction between SF-PNFs with (d) Tyrosine (n=2, Adj. R-square = 0.9966), (e) Tryptophan (n=2, Adj. R-square = 0.9886) and (f) Phenylalanine (n=2, Adj. R-square = 0.9873).
- Figure 4.27Fluorescence micrographs of (a) SF-PNFs before and
after exposure to (b)Tyrosine, (b) Tryptophan and (c)
Phenylalanine under illumination of 365 nm light
acquired by Fluorescence microscope model Leica DM

300.

- Figure 4.28Comparative interference studies using different amino157acids with both PNFs and SF-PNFs in PBS at $p^H = 7.4$.The concentration of PNFs and SF-PNFs kept fixedthroughout the experiment, while the concentration ofall the amino acids is taken as 30 mM.
- Figure 4.29 Hemolysis activity of PNFs and SF-PNFs in terms of percentage of hemolysis in PBS at p^H=7.4 showing a comparison of hemolysis activity of drug ascorbic acid. Data are expressed as means ± SD, n=3; **: P≤0.001, values are significantly different from those obtained with +ve control.
- **Figure 4.30** Percentage of MDA-MB-231 cell viability on films of 159 PNFs and SF-PNFs in direct contact after 24 h of culture as compared to tissue culture plastic (TCP) as a negative control and tert butyl maleate as a positive control. Data were Mean \pm S.D, n=3.* \leq 0.05.
- Figure 4.31 Acridine orange/ethidium bromide (AO/EtBr) stained 160 fluorescence images of MDA-MB-231 cells cultured for 48 h on (a) glass cover slip, (b) PNFs and (c) SF-PNFs (Scale bar = 75µm).
- **Figure 4.32** Quantitative analysis of (a) cell density per 780 μ m² 161 area,(b) projected cell area and (c) percent of cell spreading, derived from the AO/EtBr stained fluorescence images of MDA-MB-231 cells after 48 h of culture. Data were expressed as Mean ± S.D, n=6.*indicates statistically significance difference at ≤ 0.05 .
- Figure 4.33Scanning electron micrographs of MDA-MB-231 cells163on PNFs (a1 & a2) and SF-PNFs (b1 & b2) after 48 h of
culture at lower magnification (a1: 500X, b1:300X) and
higher magnification (b1 & b2: 900X).163

Chapter V

- Figure 5.1 Schematic illustration of incorporation of polar 171 functional groups (carboxyl and amine) by surface functionalization of PAni:Ch nanocomposites for improved 3T3 cell adhesion, spreading and proliferation. Electrical stimulation of PC12 cells through collagen coated PAni:Ch nanocomposites for enhanced neurite outgrowth.
- Figure 5.2Scanning electron micrographs of (a) powdered PAni172nanofibers, (b) Ch and PAni:Ch nanocomposites with
(c) 4 wt% and (d) 6wt% of PAni content.172
- Figure 5.3 (a) X-ray diffraction patterns of pure Ch and PAni 173 nanofibers as labeled; (b) X-ray diffraction patterns of PAni:Ch nanocomposites with 4 wt% and 6 wt% of PAni content as labeled.
- Figure 5.4 Room temperature (300 K)*I-V* characteristics of (a) 175
 GFPAni:Ch-4 wt% (red), (b) GFPAni:Ch-6 wt% (red),
 (c) EFPAni:Ch-4 wt% (red) and (d) EFPAni:Ch-6 wt%
 (red) with comparison to their non-functionalized counterparts (black).
- Figure 5.5 Plots of forward I-V data on a log-log scale for (a) 177 PAni:Ch-4 wt%, (b) PAni:Ch-6 wt%, (c) GFPAni:Ch-4 wt%, (d) GFPAni:Ch-6 wt%, (e) EFPAni:Ch-4wt%, and (f) EFPAni:Ch-6 wt%.
- Figure 5.6(a) Stress vs Strain curve and (b) comparison of Young178Modulus or stiffness constant (E) and ultimate tensilestrength (UTS) of PAni:Ch nanocomposites before and
after surface functionalization. Data were expressed as
Mean \pm S.D (n=3).
- Figure 5.7 Scanning electron micrographs of (a) PAni:Ch-4 wt%, 180
 (b) PAni:Ch-6 wt%, (c) GFPAni:Ch-4 wt%, (d)
 GFPAni:Ch-6 wt%, (e) EFPAni:Ch-4 wt% and (f)
 EFPAni:Ch-6wt%recorded after keeping in PBS

(pH=7.4) for 15 days (Scale bar = 200 nm).

- Figure 5.8(a) TGA thermograms and (b) DTG plots of different181PAni:Ch nanocomposites as labeled.
- Figure 5.9Vibrational spectra of PAni nanofibers (black) and pure183Ch (red).
- Figure 5.10 (a) Vibrational spectra of PAni:Ch nanocomposites 184 before and after surface functionalization by glutaraldehyde; (b) elemental composition PAni:Ch nanocomposites before and after functionalization with glutaraldehyde. Peak deconvolutions of high-resolution C1s XPS spectra of (c) PAni:Ch-4 wt% and (d) GFPAni:Ch-4 wt%.
- Figure 5.11Probable interaction mechanisms of glutaraldehyde with187PAni:Ch nanocomposites based on XPS and FTIR
results.
- Figure 5.12 (a) Vibrational spectra of PAni:Ch nanocomposites and 188
 (b) elemental composition PAni:Ch nanocomposites before and after surface functionalization by glycine NHS ester. Peak deconvolutions of high-resolution C1s XPS spectra of (c) PAni:Ch-4 wt% and (d) EFPAni:Ch-4 wt%.
- Figure 5.13
 Probable interaction mechanisms of glycine NHS ester
 190

 with PAni:Ch nanocomposites based on XPS and FTIR results.
 190
- Figure 5.14 Representative contact angle images of using three 192 probe liquids on PAni:Ch-4 wt% (a1:water; c1:ethylene glycol; e1:diiodomethane), PAni:Ch-6 wt% (b1:water; d1:ethylene glycol; f1:diiodomethane), GFPAni:Ch-4 wt% (a2:water; c2:ethylene glycol; e2:diiodomethane), GFPAni:Ch-6 wt% (b2:water; d2:ethylene glycol; f2:diiodomethane), EFPAni:Ch-4 wt% (a3:water; c3:ethylene glycol; e3:diiodomethane) and EFPAni:Ch-6 wt% (b3:water; d3:ethylene glycol;

f3:diiodomethane).

- Figure 5.15 Calibration curve to determine the slope. Slope is 198 0.00125 mM^{-1} i.e., $3.0 \times 10^{-3} \text{ }\mu\text{mol}^{-1}$ (Since the total volume of the solution is 2 mL).
- **Figure 5.16** (a) Activity of free urease and immobilized urease on 199 non-functionalized and glutaraldehyde functionalized PAni:Ch nanocomposites at room temperature ($p^{H} =$ 7.4). (b) pH stability of the activity of free urease and immobilized urease on non-functionalized and glutaraldehyde functionalized PAni:Ch nanocomposites.
- Figure 5.17Reusability of urease immobilized non-functionalized201andglutaraldehydefunctionalizedPAni:Chnanocomposites at room temperature (pH=7.4).
- **Figure 5.18** Lineweaver-Burk plots of free urease, immobilized 202 urease on non-functionalized and glutaraldehyde functionalized PAni:Ch nanocomposites. Reactions were carried out in PBS (pH=7.4) at room temperature.
- **Figure 5.19** Percentage hemolysis (Mean \pm S.D, n=4) shown by the 204 non-functionalized and functionalized PAni:Ch nanocomposites as compared to negative control (Phosphate buffer saline, pH= 7.4) and positive control (Triton X 100). Inset shows photographs of RBC treatment with different materials as labeled.
- **Figure 5.20** Percentage of MDA-MB-231 cell viability on the nonfunctionalized and glutaraldehyde functionalized PAni:Ch nanocomposites in direct contact after 24 h of culture as compared to tissue culture plastic (TCP) as a negative control and *tert* butyl maleate as a positive control. Data were Mean \pm S.D, n=3.* \leq 0.05.
- Figure 5.21 Fluorescence micrographs of AO/EtBr stained MDA-MB-231 cells on (a) PAni:Ch-4 wt%, (b) PAni:Ch-6 wt%, (c) GFPAni:Ch-4 wt% and (d) GFPAni:Ch-6 wt% after 48 h of culture.

- Figure 5.22Quantitative analysis of (a) cell counts, (b) percentage207of cell spreading and (c) area per cell on non-
functionalized and functionalized PAni:Ch
nanocomposites after 48 h of culture. Data were Mean \pm
S.D., n=3.[#] and ^{*} indicate the statistical significance at
p≤0.01 and p≤0.05, respectively.
- Figure 5.23 Scanning electron micrograph of MDA-MB-231 cells 209 cultured on (a) PAni:Ch-4 wt% (Scale bar= 50 μm), (b) PAni:Ch-6 wt% (Scale bar= 20 μm), (c) GFPAni:Ch-4 wt% (Scale bar= 50 μm) and (d) GFPAni:Ch-6 wt% (Scale bar=20 μm) after 48 h.
- Figure 5.24Percentage hemolysis (n = 4, mean \pm S.D) shown by the
non-functionalized and glycine NHS ester
functionalized PAni:Ch nanocomposites as compared to
negative control (Phosphate buffer saline, pH= 7.4) and
positive control (Triton X 100). Inset shows
photographs of RBC treatment with different materials
as labeled.210
- Figure 5.25Percentage cell viability after 24 h of culture on glycine211NHS ester functionalized nanocomposites compared to
non-functionalized nanocomposites, raw materials (n=4,
mean \pm SD) with (a) 3T3 fibroblasts and (b) PC12 cells.
*Significant differences between negative control and
test materials at p<0.05; #Significant differences
between unmodified nanocomposites and modified
nanocomposites at p<0.05.</th>
- Figure 5.26Confocal images of 3T3 fibroblasts after 24 h of culture212on pure tissue culture plastic (a1-a4), Ch (b1-b4),PAni:Ch-4 wt% (c1-c2), PAni:Ch-6 wt% (d1-d4),EFPAni:Ch-4 wt% (e1-e4) and EFPAni:Ch-6 wt% (f1-f4) in direct contact by live/dead staining using EthD-1(staining dead cells), calcein AM (staining live cells)and DAPI (staining nucleic acid). Live cells were

stained with green, dead cells were stained with red, and nucleic acids were stained with blue. (Scale bar = $75 \mu m$).

- **Figure 5.27** (a) Representative confocal images of calcein AM 214 stained viable cells seeded on different scaffolds (labeled in the photographs) for 24 h and 48 h, used for analysis of cell morphology(Scale bar = 75 μ m). (b) Histogram showing area covered by single cell on different scaffolds after 24 h and 48 h. c. Histogram of percent of cell spreading on different scaffolds after 24 h and 48 h. *indicates significant differences between the non-functionalized and functionalized nanocomposites at $p \le 0.05$.
- Figure 5.28 SEM images of 3T3 cells cultured for 3 days on the 215 non-functionalized (a) PAni:Ch-4 wt%, (b) PAni:Ch-6 wt% and glycine NHS ester functionalized (c) EFPAni:Ch-4 wt% and (d) EFPAni:Ch-6 wt%.(Scale bar = 20 μm)
- **Figure 5.29** Beta (III) tubulin immunostaining of PC12 cells cultured for 7 days on non-functionalized PAni:Ch-4 wt% (a1) and PAni:Ch-6 wt% (b1), EFPAni:Ch-4 wt% (a2), EFPAni:Ch-6 wt% (b2) and collagen I coated PAni:Ch-4 wt% (a3) and PAni:Ch-6 wt% (b3) [Scale bar = 75 μ m]. Inset of a1 shows the immnulabelling of PC12 cells cultured on collagen coated glass cover slip. Quantitative analysis of differentiated PC12 cells: (c) % neurite bearing cells and (d)avg. neurite length per cell.
- Figure 5.30 Scanning electron micrographs of PC12 cells after 7 218 days of culture on collagen coated (a) PAni:Ch- 4wt% and (b) PAni:Ch- 6wt%. Red arrows point to the neurite projection. Scale bar = 5 μm
- Figure 5.31 (a) Schematic illustration of the electrical stimulation219experiment using a custom made electrical stimulation

set up; (b) photograph of self made cell culture plate with PAni:Ch nanocomposites with 4 wt% and 6 wt% PAni content (dark blue colur) fixed on it for electrical stimulation experiment; (c) photograph of the electrical stimulation experiment in situ.

- Figure 5.32 Current signal recorded (upto 50 s) during electrical 220 stimulation of PC12 cells through conductive PAni:Ch nanocomposites through (a) collagen coated PAni:Ch-4 wt% and (b) collagen coated PAni:Ch-6 wt%. A constant potential of 500 mV/cm for 2 h was applied in chronoamperometric technique in pulsed mode (pulse duration 1 ms).
- Figure 5.33 Confocal images with phase contrast overlay of beta (III) tubulin immunostained PC12 cells cultured for 7 days under no electrical stimulation (a1-collagen coated PAni:Ch-4 wt%, b1-collagen coated PAni:Ch-6 wt%) and under electrical stimulation of 500 mV/cm for 2h/day for 3 cosecutive days (a2-collagen coated PAni:Ch-4 wt%, b2-collagen coated PAni:Ch-6 wt%) [Scale bar = 75 μ m]; (c) Percentage of neurite bearing cells, (d) Neurite length per cell, (e) Median neurite length and (f) Neurite per cell of differentiated PC12 cells on collagen coated PAni:Ch nanocomposites without electrical stimulation and with electrical stimulation. Data were Mean \pm S.D. ^{*}indicates statistical significance difference from unstimulated PC12 cells at p≤0.05.

Chapter VI

Figure 6.1 Schematic illustration of simple and coaxial electrospinning of MEH-PPV:PCL nanofibers in blended form and core-sheath morphology along surface amination by post-surface functionalization by APTES and 1,6-hexanediamine for 3T3 fibroblasts adhesion and

222

230

xliv

spreading and neuronal growth of differentiated PC12 cells under electrical stimulation.

- Figure 6.2 Scanning electron micrographs of electrospun 231 nanofibers prepared by simple electrospinning of blend of MEH-PPV and PCL at various volume ratios. a1 & a2: SEN1 (20:80), b1 & b2: SEN2 (40:60), c1 & c2: SEN3 (50:50) and d1 & d2: SEN4 (60:40). Suffix '1' and '2' stand for magnification at 5 K and 50 K, respectively. Scale bar: 4 μm (a1, b1, c1 & d1) and 400 nm (a2, b2, c2 & d2).
- **Figure 6.3** Scanning electron micrographs of CSN1 (a1 & a2) and 232 CSN2 (b1 & b2), acquired at two different magnifications of 5 K and 50 K. Transmission electron micrographs of CSN1 (c1) and CSN2 (c2) showing the formation of nanofibers with core-sheath morphology. Scale bar = 4 μ m (a1 & b1), 300 nm (a2 & b2) and 500 nm (c1 & c2).
- Figure 6.4X-ray diffraction patterns of (a) SEN1, (b) SEN2, (c)234SEN3 and (d) SEN4 as labeled along with a Voigtian fit
of the x-ray profile that best describes the x-ray pattern
of the blended electrospun nanofibers of MEH-PPV and
PCL.
- Figure 6.5X-ray diffraction patterns of (a) CSN1 and (b) CSN2 as234labeled along with a Voigtian fit of the x-ray profile thatbest describes the x-ray pattern of the core-sheathelectrospun nanofibers.
- Figure 6.6(a) TGA thermograms and (b) DTG plots of blended235and core-sheath MEH-PPV:PCL nanofibers.
- Figure 6.7Room temperature (300 K) *I-V* characteristics of (a)237blended MEH-PPV:PCL nanofibers and (b) core-sheathMEH-PPV:PCL nanofibers.
- Figure 6.8Plots of forward *I-V* data on a log-log scale for (a1)241SEN1, (b1)SEN2, (c1)SEN3, (d1)SEN4, (a2)

xlv

AFSEN1, (b2) AFSEN2, (c2) AFSEN3, (d2) AFSEN4, (a3) HFSEN1, (b3) HFSEN2, (c3) HFSEN3, and (d3) HFSEN4 at room temperature (300 K) showing the fitting parameters.

- Figure 6.9 Plots of forward *I-V* data on a log-log scale for (a1) 241
 CSN1, (a2) AFCSN1, (a3) HFCSN1, (b1) CSN2, (b2)
 AFCSN2, and (b3) HFCSN2 at room temperature (300
 K) showing the fitting parameters.
- Figure 6.10 Positive sides of *I-V* characteristics of (a) non-242 functionalized and functionalized blended MEH-PPV:PCL nanofibers and (b) non-functionalized and functionalized core-sheath MEH-PPV:PCL nanofibers fitted with *Kaiser Equation*.
- Figure 6.11(a) Stress vs Strain curve and (b) comparison of Young244Modulus or stiffness constant (E) and ultimate tensilestrength (UTS) of blended MEH-PPV:PCL nanofibersprepared by simple electrospinning process before andafter surface functionalization. Data were expressed asMean \pm S.D (n=3).
- Figure 6.12(a) Stress vs Strain curve and (b) comparison of Young245Modulus or stiffness constant (E) and ultimate tensilestrength (UTS) of the core-sheath MEH-PPV:PCLnanofibers prepared by coaxial electrospinning processbefore and after surface functionalization. Data wereexpressed as Mean \pm S.D (n=3).
- Figure 6.13 Scanning electron micrographs of (a1) SEN1, (a2) 248
 AFSEN1, (a3) HFSEN1, (b1) SEN2, (b2) AFSEN2, (b3) HFSEN2, (c1) SEN3, (c2) AFSEN3, (c3) HFSEN3, (d1) SEN4, (d2) AFSEN4 and (d3) HFSEN4 recorded after keeping in PBS (pH=7.4) for 45 days (Scale bar = 10 μm).
- Figure 6.14Scanning electron micrographs of CSN1 (a1), AFCSN1250(a2), HFCSN1 (a3), CSN2 (b1), AFCSN2 (b2) and

HFCSN2 (b3), recorded after keeping in PBS ($p^{H}=7.4$) for 45 days (Scale bar = 10 µm).

- Figure 6.15 FT-IR spectra of pure PCL (black) and pure MEH-PPV 250 (red).
- Figure 6.16FT-IR spectra of blended MEH-PPV:PCL electrospun251nanofibers before and after surface functionalizationusing (a) APTES and (b) 1,6-Hexanediamine.
- Figure 6.17FT-IR spectra of core-sheath MEH-PPV:PCL252nanofibers before and after surface functionalizationusing (a) APTES and (b) 1,6-Hexanediamine.
- Figure 6.18 (a) Elemental composition in different blended MEH- 253 PPV:PCL electrospun nanofibers before and after functionalization. Peak deconvolutions of highresolution C1s XPS spectra of (b) SEN1 (c) AFSEN1 and (d) HFSEN1.
- Figure 6.19 (a) Elemental composition in different cores-sheath 256 MEH-PPV:PCL electrospun nanofibers before and after functionalization. Peak deconvolution of high-resolution C1s XPS spectra of (b) CSN1 (c) AFCSN1 and (d) HFCSN1.
- Figure 6.20Probable interaction mechanisms of PCL with APTES259(Scheme I) and MEH-PPV with 1,6-Hexanediamine(Scheme II) based on XPS and FTIR results.
- Figure 6.21 Probable interaction mechanisms of MEH-PPV with 260 APTES (Scheme I) and MEH-PPV with 1,6-Hexanediamine (Scheme II) based on XPS and FTIR results.
- Figure 6.22 Percentage of hemolysis (Mean ± S.D, n=3) shown by 262 the non-functionalized and functionalized (a) blended MEH-PPV:PCL electrospun meshes and (b) core-sheath electrospun meshes as compared to negative control (Phosphate buffer saline, pH= 7.4) and positive control (Triton X 100).

- **Figure 6.23** Percentage cell viability on different blended MEH-PPV:PCL electrospun meshes in direct contact after 24 h of culture as compared to tissue culture plastic (TCP) as a negative control and tert butyl maleate as a positive control. (a) viability of 3T3 fibroblasts and (b) viability of PC12 cells expressed as percentage of negative control. Data were Mean \pm S.D, n=4.^{*} and [#] indicate significance difference at p≤0.01 and p≤0.05 between the functionalized and non-functionalized blended electrospun meshes.
- **Figure 6.24** Percentage cell viability on different electrospun coresheath MEH-PPV:PCL meshes in direct contact after 24 h of culture as compared to tissue culture plastic (TCP) as a negative control and tert butyl maleate as a positive control. (a) viability of 3T3 fibroblasts and (b) viability of PC12 cells expressed as percentage of negative control. Data were Mean \pm S.D, n=4. [#] indicates significance difference at p≤0.01 and p≤0.05 between the functionalized electrospun meshes and their nonfunctionalized counterparts.
- Figure 6.25 Representative confocal images with phase contrast overlay of 3T3 fibroblasts stained with calcein AM (green), EthD-1 (red) and DAPI (blue) during live/dead assay after 24 of culture on control tissue culture plastic (TCP) (a1), electrospun PCL mesh (b1), SEN1 (c1), SEN2 (d1), SEN3 (e1), SEN4 (f1), AFSEN1 (g1), AFSEN2 (h1), AFSEN3 (i1), AFSEN4 (j1), HFSEN1 (k1), HFSEN2 (11), HFSEN3 (m1) and HFSEN4 (n1). Similarly, representative live/dead stained confocal images of 3T3 fibroblasts after 48 of culture on control tissue culture plastic (TCP) (a2), electrospun PCL mesh (b2), SEN1 (c2), SEN2 (d2), SEN3 (e2), SEN4 (f2), AFSEN1 (g2), AFSEN2 (h2), AFSEN3 (i2), AFSEN4

263

(j2), HFSEN1 (k2), HFSEN2 (l2), HFSEN3 (m2) and HFSEN4 (n2) [Scale bar=75 µm].

- Representative confocal images with phase contrast Figure 6.26 overlay of 3T3 fibroblasts stained with calcein AM (green), EthD-1 (red) and DAPI (blue) during live/dead assay after 24 of culture on control tissue culture plastic (TCP) (a1), electrospun PCL mesh (b1), CSN1 (c1), CSN2 (d1), AFCSN1 (e1), AFCSN2 (f1), HFCSN1 (g1) and HFCSN2 (h1). Similarly, representative live/dead stained confocal images of 3T3 fibroblasts after 48 of culture on control tissue culture plastic (TCP) (a2), electrospun PCL mesh (b2), CSN1 (c2), CSN2 (d2), AFCSN1 (e2), AFCSN2 (f2), HFCSN1 (g2) and HFCSN2 (h2) [Scale bar=75 µm].
- Figure 6.27 Quantitative analysis of (a) cell density per field of view, (b) cell area (average area covered by single cell) and (c) percentage of cell spreading on the nonfunctionalized and functionalized blended MEH-PPV:PCL electrospun meshes. Data were presented as Mean \pm S.D, n=6.^{*} and [#] indicate statistically significant difference at $p \le 0.01$ and $p \le 0.05$, respectively.
- Figure 6.28 Quantitative analysis of (a) cell density per field of view, (b) cell area (average area covered by single cell) and (c) percentage of cell spreading on the nonfunctionalized and functionalized electrospun coresheath MEH-PPV:PCL meshes. Data were presented as and [#] indicate statistically Mean \pm S.D, n=6. * significant difference p≤0.01 and p≤0.05, at respectively.
- Scanning electron micrographs of 3T3 fibroblasts after 272 Figure 6.29 3 days culture on SEN1 (a1), SEN2 (b1), SEN3 (c1), SEN4 (d1), AFSEN1 (a2), AFSEN2 (b2), AFSEN3 (c2), AFSEN4 (d2), HFSEN1 (a3), HFSEN2 (b3),

268

HFSEN3 (c3) and HFSEN4 (d3) [Scale bar=20 μ m]. Insets of (a1-d3) show magnified image of green circled region [Scale bar=10 μ m]. Red and yellow arrows indicate the direction of cell alignment and filopodia/lamellipodia like extensions, respectively.

- Figure 6.30 Scanning electron micrographs of 3T3 fibroblasts after 3 days culture on CSN1 (a1), CSN2 (b1), AFCSN1 (a2), AFCSN2 (b2), HFCSN1 (a3) and HFCSN2 (b3) [Scale bar=20 μm]. Insets of (a1-b3) show magnified image of green circled region [Scale bar=10 μm]. Red and yellow arrows indicate the direction of cell alignment and filopodia/lamellipodia like extensions, respectively.
- Figure 6.31 Immunolabelling of beta (III) tubulin in differentiated PC12 cells with DAPI stained nuclei after 7 days of culture on the non-functionalized blended MEH-PPV:PCL electrospun meshes (SEN1, SEN2, SEN3 and SEN4), APTES functionalized blended MEH-PPV:PCL electrospun meshes (AFSEN1, AFSEN2, AFSEN3 and AFSEN4), 1.6-Hexanediamine functionalized blended MEH-PPV:PCL electrospun meshes (HFSEN1, HFSEN2, HFSEN3 and HFSEN4), and collagen coated blended MEH-PPV:PCL electrospun meshes (CSEN1, CSEN2, CSEN3 and CSEN4). White arrows show neuronal cell bodies with at least one neurite formed. Red arrows represent neurons with long branched neurites and/or growth cones. Inset of SEN1 shows confocal images of stained PC12 cells cultured on collagen-coated cover slip for 7 days.
- Figure 6.32 Immunolabelling of beta (III) tubulin in differentiated PC12 cells with DAPI stained nuclei after 7 days of culture on non-functionalized core-sheath electrospun meshes (CSN1 & CSN2), APTES functionalized coresheath electrospun meshes (AFCSN1 & AFCSN2), 1,6-

275

273

276

Hexanediamine functionalized core-sheath electrospun meshes (HFCSN1 & HFCSN2) and collagen coated core-sheath electrospun meshes (CCSN1 & CCSN2). White arrows show neuronal cell bodies with at least one neurite formed. Red arrows represent neurons with long branched neurites and/or growth cones.

- **Figure 6.33** Quantitative analysis of formation and outgrowth in terms of (a) percentage of neurite-bearing cells and (b) neurite length per cell on the non-functionalized, APTES functionalized, 1,6-Hexanediamine functionalized and collagen coated blended MEH-PPV:PCL electrospun meshes along with collagencoated glass.* and [#] indicate statistically significant difference from the non-functionalized electrospun meshes at p \leq 0.01and p \leq 0.05, respectively.
- Figure 6.34 Quantitative analysis of neurite formation and outgrowth in terms of (a) percentage of neurite-bearing cells and (b) neurite length per cell on the non-functionalized, APTES functionalized, 1,6-Hexanediamine functionalized and collagen coated core-sheath MEH-PPV:PCL electrospun meshes along with collagen-coated glass.* and [#] indicate statistically significant difference from the non-functionalized electrospun meshes at p≤0.01 and p≤0.05, respectively.
- Figure 6.35 Scanning electron micrographs of PC12 cells after 7 days cultured on SEN1 (a1), SEN2 (b1), SEN3 (c1), SEN4 (d1), AFSEN1 (a2), AFSEN2 (b2), AFSEN3 (c2), AFSEN4 (d2), HFSEN1 (a3), HFSEN2 (b3), HFSEN3 (c3), HFSEN4 (d3), CSEN1 (a4), CSEN2 (b4), CSEN3 (c4) and CSEN4 (d4). Red arrows show neurite projections on different electrospun meshes. Scale bar = 5 μm.

Figure 6.36 Scanning electron micrographs of PC12 cells after 7 282

277

277

days cultured on pristine CSN1 (a1), CSN2 (b1), AFCSN1 (a2), AFCSN2 (b2), HFCSN1 (a3), HFCSN2 (b3), CCSN1 (a4) and CCSN2 (b4). Red arrows show neurite projections on different electrospun meshes. Scale bar = $5 \mu m$.

- Figure 6.37 (a) Schematic illustration of the electrical stimulation experiment using a custom made electrical stimulation set up; (b) photograph of self made cell culture plate electrospun MEH-PPV:PCL meshes with different (orange colur) fixed on it for electrical stimulation experiment; (c) photograph of the electrical stimulation experiment in situ.
- Figure 6.38 Confocal images with phase contrast overlay of beta (III) tubulin immunostained PC12 cells cultured for 7 days on the various blended electrospun meshes under no electrical stimulation (a1-AFSEN1, b1-AFSEN2, c1-AFSEN3, d1-AFSEN4, e1-HFSEN1, f1-HFSEN2, g1-HFSEN3, h1-HFSEN4, i1-CSEN1, j1-CSEN2, k1-CSEN3 and 11-CSEN4) and under electrical stimulation of 500 mV/cm for 2h/day (a2-AFSEN1, b2-AFSEN2, c2-AFSEN3, d2-AFSEN4, e2-HFSEN1, f2-HFSEN2, g2-HFSEN3, h2-HFSEN4, i2-CSEN1, j2-CSEN2, k2-CSEN3 and l2-CSEN4) [Scale bar = $75 \mu m$].
- Figure 6.39 Confocal images with phase contrast overlay of beta (III) tubulin immunostained PC12 cells cultured for 7 days on the various core-sheath electrospun meshes under no electrical stimulation (a1-AFCSN1, b1-ACSN2, c1-HFCSN1, d1-HFCSN2, e1-CCSN1, f1-CCSN2) and under electrical stimulation of 500 mV/cm for 2h/day (a2-AFCSN1, b2-AFCSN2, c2-HFCSN1, d2-HFCSN2, e2-CCSN1, f2-CCSN2) [Scale bar = $75 \mu m$].
- Figure 6.40 (a) Percentage of neurite bearing cells, (b) Neurite per 286 cell, (c) Neurite length per cell and (d) Median neurite

284

283

length of differentiated PC12 cells on the various blended MEH-PPV:PCL electrospun meshes without electrical stimulation and with electrical stimulation. Data were Mean \pm S.D. ^{*} and [#] indicate statistical significance difference from unstimulated PC12 cells at p≤0.01 and p≤0.05, respectively.

- **Figure 6.41** (a) Percentage of neurite bearing cells, (b) Neurite per cell, (c) Neurite length per cell and (d) Median neurite length of differentiated PC12 cells on the various coresheath MEH-PPV:PCL electrospun meshes above without electrical stimulation and with electrical stimulation. Data were Mean \pm S.D. * and # indicate statistical significance difference from unstimulated PC12 cells at p≤0.01 and p≤0.05, respectively.
- Figure 6.42 Current signal recorded (upto 400 s) during electrical stimulation of PC12 cells through various blended MEH-PPV:PCL electrospun meshes and core-sheath MEH-PPV:PCL electrospun meshes under a constant potential of 500 mV/cm for 2 h, applied in chronoamperometric technique in pulsed mode (pulse duration 1 ms).

291

List of abbreviations

Abbreviation	Meanings
0D	Zero dimensional
1D	One dimensional
2D	Two dimensional
3D	Three dimensional
3T3	3-day transfer, inoculum 3×10^5 cells
AAO	Anodic aluminum oxide
AB	Acid base
Ag	Argentum (Silver)
AO	Acridine orange
Ar	Argon
Au	Aurum (Gold)
APS	Ammonium peroxydisulfate
APTES	(3-Aminopropyl)triethoxysilane
AFCSN1	(3-Aminopropyl)triethoxysilane functionalized core-sheath
	nanofibers: 0.6 mL/h
AFCSN2	(3-Aminopropyl)triethoxysilane functionalized core-sheath
	nanofibers: 1 mL/h
AFSEN1	(3-Aminopropyl)triethoxysilane functionalized solid
	electrospun nanofibers:20:80 (v/v)
AFSEN2	(3-Aminopropyl)triethoxysilane functionalized solid
	electrospun nanofibers:40:60 (v/v)
AFSEN3	(3-Aminopropyl)triethoxysilane functionalized solid
	electrospun nanofibers:50:50 (v/v)
AFSEN4	(3-Aminopropyl)triethoxysilane functionalized solid
	electrospun nanofibers:60:40 (v/v)
BDNF	Brain-derived neurotrophic factor
BOC	<i>tert</i> -butyloxycarbonyl
BSEs	Back scattered electrons
СНО	Aldehyde

CCD	Charge coupled detector
Ch	Chitosan
cm	Centimetre
CO_2	Carbon dioxide
CNT	Carbon nanotubes
CSA	Camphor sulfonic acid
СООН	Carboxyl
СР	Conducting polymer
CSN1	Core-sheath nanofibers: 0.6 mL/h
CSN2	Core-sheath nanofibers: 1 mL/h
DAPI	4',6-Diamidino-2-Phenylindole
DB-PPV	2,3-dibutoxy-1,4-poly(phenylenevinylene)
DC (dc)	Direct current
DO-PPV	2,5-dioctyloxy-l,4-poly(phenylenevinylene)
DPPH	1,1-diphenyl-2-picrylhydrazyl
DNA	Deoxyribonucleic acid
DRG	Dorsal root ganglion
EB	Emeraldine base
ES	Emeraldine salt
EtBr	Ethidium bromide
ECM	Extracellular matrix
eV	Electron volt
FeCl ₃	Ferric chloride
FWHM	Full width at half maxima
FT-IR	Fourier transform infrared spectroscopy
НОМО	Highest occupied molecular orbital
HFCSN1	1,6-Hexanediamine functionalized core-sheath nanofibers: 0.6
	mL/h
HFCSN2	1,6-Hexanediamine functionalized core-sheath nanofibers: 1
	mL/h
HFSEN1	1,6-Hexanediamine functionalized solid electrospun
	nanofibers:20:80 (v/v)
HFSEN2	1,6-Hexanediamine functionalized solid electrospun

	nanofibers:40:60 (v/v)
HFSEN3	1,6-Hexanediamine functionalized solid electrospun
	nanofibers:50:50 (v/v)
HFSEN4	1,6-Hexanediamine functionalized solid electrospun
	nanofibers:60:40 (v/v)
H ₂ O	Dihydrogen monoxide (Water)
HCl	Hydrochloric acid
Hz	Hertz
ICPs	Intrinsically conducting polymers
IUPAC	International Union of Pure and Applied Chemistry
LUMO	Lowest unoccupied molecular orbital
LEB	Leucoemeraldine
MDMO-PPV	Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-
	phenylenevinylene]
MDA-MB-231	M.D. Anderson Metastatic Breast adenocarcinoma
MEH-PPV	Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]
MnO ₂	Manganese dioxide
MO-FeCl ₃	Methyl orange-ferric chloride
MTS	3-(4,5-dimethylthiazol-2-yl)-5-(3- carboxymethoxyphenyl)-2-
	(4-sulfophenyl)-2H-tetrazolium, inner salt)
NH ₂	Amine
N_2	Nitrogen
NA	Nigraniline
NH ₃	Ammonia
NHS	N-hydroxysuccinimide
NIH 3T3	National Institutes of Health
NGF	Nerve growth factor
NMR	Nuclear Magnetic Resonance
NMP	N-methyl pyrrolidone
NT-3	Neurotrophins-3
ОН	Hydroxyl
O_2	Oxygen
O-I	Organic in inorganic

0-0	Organic in organic
PA	Polyacetylene
PADPA	<i>p</i> -aminodiphenylamine
PAni	Polyaniline
PCL	Polycaprolactone
PC12	Pheochromocytoma
PDLLA	Poly-D,L-lactide
PE	Poly(ethylene)
PEB	Protoemeradine
PEDOT	Poly (3,4-ethylenedioxythiophene)
PEG	Poly(ethylene glycol)
PEO	Polyethylene oxide
PHEMA	Polyhydroxyethylmethacrylate
PLA	Poly(lactic acid)
PLGA	Poly(lactic-co-glycolic acid)
PLLA	Poly(L-lactide)
PMAA	Poly(methacrylic acid)
PMAS	Poly(2-methoxyaniline-5-sulfonate)
PMMA	Poly (methyl methacrylate)
PNB	Pernigraniline
PP	Polypropylene
PPP	Poly(p-phenylene)
PS	Polystyrene
РРу	Polypyrrole
PPV	Poly(p-phenylene vinylene)
Pt	Platinum
PT	Polythiophene
PTM	Particle track-etched membranes
PU	Poly(urethane)
PVA	Polyvinyl alcohol
P3MT	Poly(3-methylthiophene)
PVC	Polyvinyl chloride
PET	Polyethylene terephthalate

PTFE	Polytetrafluoroethylene
PVDF	Polyvinylidene fluoride
RBC	Red blood corpuscles
RGC	Retinal ganglion cell
RGD	Arginylglycylaspartic acid (Arg-Gly-Asp)
RNA	Ribonucleic acid
SAM	Self-assembled monolayer
SPR	Surface plasmon resonance
SEM	Scanning electron microscopy
SEN1	Solid electrospun nanofibers:20:80 (v/v)
SEN2	Solid electrospun nanofibers:40:60 (v/v)
SEN3	Solid electrospun nanofibers:50:50 (v/v)
SEN4	Solid electrospun nanofibers:60:40 (v/v)
SEs	Secondary electrons
Si	Silicon
SO ₂	Sulfur dioxide
TEM	Transmission electron microscopy
UV-Vis	Ultra violet visible spectroscopy
V_2O_5	Vanadium pentoxide
XPS	X-ray photoelectron spectroscopy
XRD	X-ray diffraction