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PNFs. 

Figure 4.22 
1
H NMR spectrum of SF-PNFs in presence of Tyrosine 

(S1) in DMSO. Observed peaks are assigned by 

labelling with the help of predicted chemical structure 

of the polymer amino acid complex. 

149 

Figure 4.23 
1
H NMR spectrum of surface functionalized PAni 

nanofibers (SF-PNFs) in presence of Tryptophan (S2) in 

DMSO. Observed peaks are assigned by labelling with 

the help of predicted chemical structure of the polymer 

amino acid complex. 

150 

Figure 4.24 
1
H NMR spectrum of surface functionalized PAni 

nanofibers (SF-PNFs) in presence of Phenylalanine (S3) 

in DMSO. Observed peaks are assigned by labelling 

with the help of predicted chemical structure of the 

polymer amino acid complex. 
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Figure 4.25 Predicted covalent interaction mechanisms between SF-

PNFs and Tyrosine (Scheme I), SF-PNFs and 

Tryptophan (Scheme II) and SF-PNFs and 

Phenylalanine (Scheme III) based on FT-IR and 
1
H 

NMR results. 

153 

Figure 4.26 Fluorescence response of SF-PNFs when exposed to 

different concentrations of (a) Tyrosine, (b) Tryptophan 

and (c) Phenylalanine in PBS at p
H 

= 7.4. The double 

reciprocal curves for the interaction between SF-PNFs 

with (d) Tyrosine (n=2, Adj. R-square = 0.9966), (e) 

Tryptophan (n=2, Adj. R-square = 0.9886) and (f) 

Phenylalanine (n=2, Adj. R-square = 0.9873). 
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Figure 4.27 Fluorescence micrographs of (a) SF-PNFs before and 

after exposure to (b)Tyrosine, (b) Tryptophan and (c) 

Phenylalanine under illumination of 365 nm light 

acquired by Fluorescence microscope model Leica DM 
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300. 

Figure 4.28 Comparative interference studies using different amino 

acids with both PNFs and SF-PNFs in PBS at p
H
 = 7.4. 

The concentration of PNFs and SF-PNFs kept fixed 

throughout the experiment, while the concentration of 

all the amino acids is taken as 30 mM. 

157 

Figure 4.29 Hemolysis activity of PNFs and SF-PNFs in terms of 

percentage of hemolysis in PBS at p
H
7.4 showing a 

comparison of hemolysis activity of drug ascorbic acid. 

Data are expressed as means  SD, n=3; **: P≤0.001, 

values are significantly different from those obtained 

with +ve control. 
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Figure 4.30 Percentage of MDA-MB-231 cell viability on films of 

PNFs and SF-PNFs in direct contact after 24 h of 

culture as compared to tissue culture plastic (TCP) as a 

negative control and tert butyl maleate as a positive 

control. Data were Mean  S.D, n=3.
*
≤0.05. 

159 

Figure 4.31 Acridine orange/ethidium bromide (AO/EtBr) stained 

fluorescence images of MDA-MB-231 cells cultured for 

48 h on (a) glass cover slip, (b) PNFs and (c) SF-PNFs 

(Scale bar = 75m). 

160 

Figure 4.32 Quantitative analysis of (a) cell density per 780 m
2 

area,(b) projected cell area and (c) percent of cell 

spreading, derived from the AO/EtBr stained 

fluorescence images of MDA-MB-231 cells after 48 h 

of culture. Data were expressed as Mean  S.D, 

n=6.
*
indicates statistically significance difference at 

≤0.05. 

161 

Figure 4.33 Scanning electron micrographs of MDA-MB-231 cells 

on PNFs (a1 & a2) and SF-PNFs (b1 & b2) after 48 h of 

culture at lower magnification (a1: 500X, b1:300X) and 

higher magnification (b1 & b2: 900X). 
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Chapter V 

Figure 5.1 Schematic illustration of incorporation of polar 

functional groups (carboxyl and amine) by surface 

functionalization of PAni:Ch nanocomposites for 

improved 3T3 cell adhesion, spreading and 

proliferation. Electrical stimulation of PC12 cells 

through collagen coated PAni:Ch nanocomposites for 

enhanced neurite outgrowth. 

171 

Figure 5.2 Scanning electron micrographs of (a) powdered PAni 

nanofibers, (b) Ch and PAni:Ch nanocomposites with 

(c) 4 wt% and (d) 6wt% of PAni content. 

172 

Figure 5.3 (a) X-ray diffraction patterns of pure Ch and PAni 

nanofibers as labeled; (b) X-ray diffraction patterns of 

PAni:Ch nanocomposites with 4 wt% and 6 wt% of 

PAni content as labeled. 

173 

Figure 5.4 Room temperature (300 K)I-V characteristics of (a) 

GFPAni:Ch-4 wt% (red), (b) GFPAni:Ch-6 wt% (red), 

(c) EFPAni:Ch-4 wt% (red) and (d) EFPAni:Ch-6 wt% 

(red) with comparison to their non-functionalized 

counterparts (black). 

175 

Figure 5.5 Plots of forward I-V data on a log-log scale for (a) 

PAni:Ch-4 wt%, (b) PAni:Ch-6 wt%, (c) GFPAni:Ch-4 

wt%, (d) GFPAni:Ch-6 wt%, (e) EFPAni:Ch-4wt%, and 

(f) EFPAni:Ch-6 wt%. 

177 

Figure 5.6 (a) Stress vs Strain curve and (b) comparison of Young 

Modulus or stiffness constant (E) and ultimate tensile 

strength (UTS) of PAni:Ch nanocomposites before and 

after surface functionalization. Data were expressed as 

Mean  S.D (n=3). 

178 

Figure 5.7 Scanning electron micrographs of (a) PAni:Ch-4 wt%, 

(b) PAni:Ch-6 wt%, (c) GFPAni:Ch-4 wt%, (d) 

GFPAni:Ch-6 wt%, (e) EFPAni:Ch-4 wt% and (f) 

EFPAni:Ch-6wt%recorded after keeping in PBS 
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(pH=7.4) for 15 days (Scale bar = 200 nm). 

Figure 5.8 (a) TGA thermograms and (b) DTG plots of different 

PAni:Ch nanocomposites as labeled. 

181 

Figure 5.9 Vibrational spectra of PAni nanofibers (black) and pure 

Ch (red). 

183 

Figure 5.10 (a) Vibrational spectra of PAni:Ch nanocomposites 

before and after surface functionalization by 

glutaraldehyde; (b) elemental composition PAni:Ch 

nanocomposites before and after functionalization with 

glutaraldehyde. Peak deconvolutions of high-resolution 

C1s XPS spectra of (c) PAni:Ch-4 wt% and (d) 

GFPAni:Ch-4 wt%. 

184 

Figure 5.11 Probable interaction mechanisms of glutaraldehyde with 

PAni:Ch nanocomposites based on XPS and FTIR 

results. 

187 

Figure 5.12 (a) Vibrational spectra of PAni:Ch nanocomposites and 

(b) elemental composition PAni:Ch nanocomposites 

before and after surface functionalization by glycine 

NHS ester. Peak deconvolutions of high-resolution C1s 

XPS spectra of (c) PAni:Ch-4 wt% and (d) EFPAni:Ch-

4 wt%. 

188 

Figure 5.13 Probable interaction mechanisms of glycine NHS ester 

with PAni:Ch nanocomposites based on XPS and FTIR 

results. 
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Figure 5.14 Representative contact angle images of using three 

probe liquids on PAni:Ch-4 wt% (a1:water; c1:ethylene 

glycol; e1:diiodomethane), PAni:Ch-6 wt% (b1:water; 

d1:ethylene glycol; f1:diiodomethane), GFPAni:Ch-4 

wt% (a2:water; c2:ethylene glycol; e2:diiodomethane), 

GFPAni:Ch-6 wt% (b2:water; d2:ethylene glycol; 

f2:diiodomethane), EFPAni:Ch-4 wt% (a3:water; 

c3:ethylene glycol; e3:diiodomethane) and EFPAni:Ch-

6 wt% (b3:water; d3:ethylene glycol; 

192 



 

 xli 

f3:diiodomethane). 

Figure 5.15 Calibration curve to determine the slope. Slope is 

0.00125 mM
-1

 i.e., 3.0 × 10
-3 
mol

-1
 (Since the total 

volume of the solution is 2 mL). 

198 

Figure 5.16 (a) Activity of free urease and immoblized urease on 

non-functionalized and glutaraldehyde functionalized 

PAni:Ch nanocomposites at room temperature (p
H 

= 

7.4). (b) pH stability of the activity of free urease and 

immoblized urease on non-functionalized and 

glutaraldehyde functionalized PAni:Ch nanocomposites. 

199 

Figure 5.17 Reusability of urease immobilized non-functionalized 

and glutaraldehyde functionalized PAni:Ch 

nanocomposites at room temperature (pH=7.4). 

201 

Figure 5.18 Lineweaver-Burk plots of free urease, immobilized 

urease on non-functionalized and glutaraldehyde 

functionalized PAni:Ch nanocomposites. Reactions 

were carried out in PBS (pH=7.4) at room temperature. 
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Figure 5.19 Percentage hemolysis (Mean  S.D, n=4) shown by the 

non-functionalized and functionalized PAni:Ch 

nanocomposites as compared to negative control 

(Phosphate buffer saline, pH= 7.4) and positive control 

(Triton X 100). Inset shows photographs of RBC 

treatment with different materials as labeled. 
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Figure 5.20 Percentage of MDA-MB-231 cell viability on the non-

functionalized and glutaraldehyde functionalized 

PAni:Ch nanocomposites in direct contact after 24 h of 

culture as compared to tissue culture plastic (TCP) as a 

negative control and tert butyl maleate as a positive 

control. Data were Mean  S.D, n=3.
*
≤0.05. 
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Figure 5.21 Fluorescence micrographs of AO/EtBr stained MDA-

MB-231 cells on (a) PAni:Ch-4 wt%, (b) PAni:Ch-6 

wt%, (c) GFPAni:Ch-4 wt% and (d) GFPAni:Ch-6 wt% 

after 48 h of culture. 
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Figure 5.22 Quantitative analysis of (a) cell counts, (b) percentage 

of cell spreading and (c) area per cell on non-

functionalized and functionalized PAni:Ch 

nanocomposites after 48 h of culture. Data were Mean ± 

S.D., n=3.
# 

and 
*
 indicate the statistical significance at 

p≤0.01 and p≤0.05, respectively. 
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Figure 5.23 Scanning electron micrograph of MDA-MB-231 cells 

cultured on (a) PAni:Ch-4 wt% (Scale bar= 50 m), (b) 

PAni:Ch-6 wt% (Scale bar= 20 m), (c) GFPAni:Ch-4 

wt% (Scale bar= 50m) and (d) GFPAni:Ch-6 wt% 

(Scale bar=20 m) after 48 h. 

209 

Figure 5.24 Percentage hemolysis (n = 4, mean  S.D) shown by the 

non-functionalized and glycine NHS ester 

functionalized PAni:Ch nanocomposites as compared to 

negative control (Phosphate buffer saline, pH= 7.4) and 

positive control (Triton X 100). Inset shows 

photographs of RBC treatment with different materials 

as labeled. 
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Figure 5.25 Percentage cell viability after 24 h of culture on glycine 

NHS ester functionalizednanocomposites compared to 

non-functionalized nanocomposites, raw materials (n=4, 

mean  SD) with (a) 3T3 fibroblasts and (b) PC12 cells. 

*Significant differences between negative control and 

test materials at p<0.05; #Significant differences 

between unmodified nanocomposites and modified 

nanocomposites at p<0.05. 
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Figure 5.26 Confocal images of 3T3 fibroblasts after 24 h of culture 

on pure tissue culture plastic (a1-a4), Ch (b1-b4), 

PAni:Ch-4 wt% (c1-c2), PAni:Ch-6 wt% (d1-d4), 

EFPAni:Ch-4 wt% (e1-e4) and EFPAni:Ch-6 wt% (f1-

f4) in direct contact by live/dead staining using EthD-1 

(staining dead cells), calcein AM (staining live cells) 

and DAPI (staining nucleic acid). Live cells were 
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stained with green, dead cells were stained with red, and 

nucleic acids were stained with blue. (Scale bar = 75 

μm). 

Figure 5.27 (a) Representative confocal images of calcein AM 

stained viable cells seeded on different scaffolds 

(labeled in the photographs) for 24 h and 48 h, used for 

analysis of cell morphology(Scale bar = 75 μm). (b) 

Histogram showing area covered by single cell on 

different scaffolds after 24 h and 48 h. c. Histogram of 

percent of cell spreading on different scaffolds after 24 

h and 48 h. 
*
indicates significant differences between 

the non-functionalized and functionalized 

nanocomposites at p≤0.05. 
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Figure 5.28 SEM images of 3T3 cells cultured for 3 days on the 

non-functionalized (a) PAni:Ch-4 wt%, (b) PAni:Ch-6 

wt% and glycine NHS ester functionalized (c) 

EFPAni:Ch-4 wt% and (d) EFPAni:Ch-6 wt%.(Scale 

bar = 20 μm) 
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Figure 5.29 Beta (III) tubulin immunostaining of PC12 cells 

cultured for 7 days on  non-functionalized PAni:Ch-4 

wt% (a1) and PAni:Ch-6 wt% (b1), EFPAni:Ch-4 wt% 

(a2), EFPAni:Ch-6 wt% (b2) and collagen I coated 

PAni:Ch-4 wt% (a3) and PAni:Ch-6 wt% (b3) [Scale 

bar = 75 m]. Inset of a1 shows the immnulabelling of 

PC12 cells cultured on collagen coated glass cover slip. 

Quantitative analysis of differentiated PC12 cells: (c) % 

neurite bearing cells and (d)avg. neurite length per cell. 
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Figure 5.30 Scanning electron micrographs of PC12 cells after 7 

days of culture on collagen coated (a) PAni:Ch- 4wt% 

and (b) PAni:Ch- 6wt%. Red arrows point to the neurite 

projection. Scale bar = 5 m 
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Figure 5.31 (a) Schematic illustration of the electrical stimulation 

experiment using a custom made electrical stimulation 
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set up; (b) photograph of self made cell culture plate 

with PAni:Ch nanocomposites with 4 wt% and 6 wt% 

PAni content (dark blue colur) fixed on it for electrical 

stimulation experiment; (c) photograph of the electrical 

stimulation experiment in situ. 

Figure 5.32 Current signal recorded (upto 50 s) during electrical 

stimulation of PC12 cells through conductive PAni:Ch 

nanocomposites through (a) collagen coated PAni:Ch-4 

wt% and (b) collagen coated PAni:Ch-6 wt%. A 

constant potential of 500 mV/cm for 2 h was applied in 

chronoamperometric technique in pulsed mode (pulse 

duration 1 ms). 

220 

Figure 5.33 Confocal images with phase contrast overlay of beta 

(III) tubulin immunostained PC12 cells cultured for 7 

days under no electrical stimulation (a1-collagen coated 

PAni:Ch-4 wt%, b1-collagen coated PAni:Ch-6 wt%) 

and under electrical stimulation of 500 mV/cm for 

2h/day for 3 cosecutive days (a2-collagen coated 

PAni:Ch-4 wt%, b2-collagen coated PAni:Ch-6 wt%) 

[Scale bar = 75 m]; (c) Percentage of neurite bearing 

cells, (d) Neurite length per cell, (e) Median neurite 

length and (f) Neurite per cell of differentiated PC12 

cells on collagen coated PAni:Ch nanocomposites 

without electrical stimulation and with electrical 

stimulation. Data were Mean  S.D. 
*
indicates statistical 

significance difference from unstimulated PC12 cells at 

p≤0.05. 
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Chapter VI  

Figure 6.1 Schematic illustration of simple and coaxial 

electrospinning of MEH-PPV:PCL nanofibers in 

blended form and core-sheath morphology along surface 

amination by post-surface functionalization by APTES 

and 1,6-hexanediamine for 3T3 fibroblasts adhesion and 
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spreading and neuronal growth of differentiated PC12 

cells under electrical stimulation. 

Figure 6.2 Scanning electron micrographs of electrospun 

nanofibers prepared by simple electrospinning of blend 

of MEH-PPV and PCL at various volume ratios.  a1 & 

a2: SEN1 (20:80), b1 & b2: SEN2 (40:60), c1 & c2: 

SEN3 (50:50) and d1 & d2: SEN4 (60:40). Suffix ‘1’ 

and ‘2’ stand for magnification at 5 K and 50 K, 

respectively. Scale bar: 4 m (a1, b1, c1 & d1) and 400 

nm (a2, b2, c2 & d2). 
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Figure 6.3 Scanning electron micrographs of CSN1 (a1 & a2) and 

CSN2 (b1 & b2), acquired at two different 

magnifications of 5 K and 50 K. Transmission electron 

micrographs of CSN1 (c1) and CSN2 (c2) showing the 

formation of nanofibers with core-sheath morphology. 

Scale bar = 4 m (a1 & b1), 300 nm (a2 & b2) and 500 

nm (c1 & c2). 
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Figure 6.4 X-ray diffraction patterns of (a) SEN1, (b) SEN2, (c) 

SEN3 and (d) SEN4 as labeled along with a Voigtian fit 

of the x-ray profile that best describes the x-ray pattern 

of the blended electrospun nanofibers of MEH-PPV and 

PCL. 

234 

Figure 6.5 X-ray diffraction patterns of (a) CSN1 and (b) CSN2 as 

labeled along with a Voigtian fit of the x-ray profile that 

best describes the x-ray pattern of the core-sheath 

electrospun nanofibers. 

234 

Figure 6.6 (a) TGA thermograms and (b) DTG plots of blended 

and core-sheath MEH-PPV:PCL nanofibers. 
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Figure 6.7 Room temperature (300 K) I-V characteristics of (a) 

blended MEH-PPV:PCL nanofibers and (b) core-sheath 

MEH-PPV:PCL nanofibers. 
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Figure 6.8 Plots of forward I-V data on a log-log scale for (a1) 

SEN1, (b1) SEN2, (c1) SEN3, (d1) SEN4, (a2) 
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AFSEN1, (b2) AFSEN2, (c2) AFSEN3, (d2) AFSEN4, 

(a3) HFSEN1, (b3) HFSEN2, (c3) HFSEN3, and (d3) 

HFSEN4 at room temperature (300 K) showing the 

fitting parameters. 

Figure 6.9 Plots of forward I-V data on a log-log scale for (a1) 

CSN1, (a2) AFCSN1, (a3) HFCSN1, (b1) CSN2, (b2) 

AFCSN2, and (b3) HFCSN2 at room temperature (300 

K) showing the fitting parameters. 
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Figure 6.10 Positive sides of I-V characteristics of (a) non-

functionalized and functionalized blended MEH-

PPV:PCL nanofibers and (b) non-functionalized and 

functionalized core-sheath MEH-PPV:PCL nanofibers 

fitted with Kaiser Equation. 

242 

Figure 6.11 (a) Stress vs Strain curve and (b) comparison of Young 

Modulus or stiffness constant (E) and ultimate tensile 

strength (UTS) of blended MEH-PPV:PCL nanofibers 

prepared by simple electrospinning process before and 

after surface functionalization. Data were expressed as 

Mean  S.D (n=3). 
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Figure 6.12 (a) Stress vs Strain curve and (b) comparison of Young 

Modulus or stiffness constant (E) and ultimate tensile 

strength (UTS) of the core-sheath MEH-PPV:PCL 

nanofibers prepared by coaxial electrospinning process 

before and after surface functionalization. Data were 

expressed as Mean  S.D (n=3). 
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Figure 6.13 Scanning electron micrographs of (a1) SEN1, (a2) 

AFSEN1, (a3) HFSEN1, (b1) SEN2, (b2) AFSEN2, 

(b3) HFSEN2, (c1) SEN3, (c2) AFSEN3, (c3) HFSEN3, 

(d1) SEN4, (d2) AFSEN4 and (d3) HFSEN4 recorded 

after keeping in PBS (pH=7.4) for 45 days (Scale bar = 

10 m). 
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Figure 6.14 Scanning electron micrographs of CSN1 (a1), AFCSN1 

(a2), HFCSN1 (a3), CSN2 (b1), AFCSN2 (b2) and 
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HFCSN2 (b3), recorded after keeping in PBS (p
H
=7.4) 

for 45 days (Scale bar = 10 m). 

Figure 6.15 FT-IR spectra of pure PCL (black) and pure MEH-PPV 

(red). 
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Figure 6.16 FT-IR spectra of blended MEH-PPV:PCL electrospun 

nanofibers before and after surface functionalization 

using (a) APTES and (b) 1,6-Hexanediamine. 
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Figure 6.17 FT-IR spectra of core-sheath MEH-PPV:PCL 

nanofibers before and after surface functionalization 

using (a) APTES and (b) 1,6-Hexanediamine. 

252 

Figure 6.18 (a) Elemental composition in different blended MEH-

PPV:PCL electrospun nanofibers before and after 

functionalization. Peak deconvolutions of high-

resolution C1s XPS spectra of (b) SEN1 (c) AFSEN1 

and (d) HFSEN1. 

253 

Figure 6.19 (a) Elemental composition in different cores-sheath 

MEH-PPV:PCL electrospun nanofibers before and after 

functionalization. Peak deconvolution of high-resolution 

C1s XPS spectra of (b) CSN1 (c) AFCSN1 and (d) 

HFCSN1. 
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Figure 6.20 Probable interaction mechanisms of PCL with APTES 

(Scheme I) and MEH-PPV with 1,6-Hexanediamine 

(Scheme II) based on XPS and FTIR results. 
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Figure 6.21 Probable interaction mechanisms of MEH-PPV with 

APTES (Scheme I) and MEH-PPV with 1,6-

Hexanediamine (Scheme II) based on XPS and FTIR 

results. 
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Figure 6.22 Percentage of hemolysis (Mean  S.D, n=3) shown by 

the non-functionalized and functionalized (a) blended 

MEH-PPV:PCL electrospun meshes and (b) core-sheath 

electrospun meshes as compared to negative control 

(Phosphate buffer saline, pH= 7.4) and positive control 

(Triton X 100). 
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Figure 6.23 Percentage cell viability on different blended MEH-

PPV:PCL electrospun meshes in direct contact after 24 

h of culture as compared to tissue culture plastic (TCP) 

as a negative control and tert butyl maleate as a positive 

control. (a) viability of 3T3 fibroblasts and (b) viability 

of PC12 cells expressed as percentage of negative 

control. Data were Mean  S.D, n=4.
*
 and 

#
 indicate 

significance difference at p≤0.01 and p≤0.05 between 

the functionalized and non-functionalized blended 

electrospun meshes. 
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Figure 6.24 Percentage cell viability on different electrospun core-

sheath MEH-PPV:PCL meshes in direct contact after 24 

h of culture as compared to tissue culture plastic (TCP) 

as a negative control and tert butyl maleate as a positive 

control. (a) viability of 3T3 fibroblasts and (b) viability 

of PC12 cells expressed as percentage of negative 

control. Data were Mean  S.D, n=4.
 #

 indicates 

significance difference at p≤0.01 and p≤0.05 between 

the functionalized electrospun meshes and their non-

functionalized counterparts. 
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Figure 6.25 Representative confocal images with phase contrast 

overlay of 3T3 fibroblasts stained with calcein AM 

(green), EthD-1 (red) and DAPI (blue) during live/dead 

assay after 24 of culture on control  tissue culture plastic 

(TCP) (a1), electrospun PCL mesh (b1), SEN1 (c1), 

SEN2 (d1), SEN3 (e1), SEN4 (f1), AFSEN1 (g1), 

AFSEN2 (h1), AFSEN3 (i1), AFSEN4 (j1), HFSEN1 

(k1), HFSEN2 (l1), HFSEN3 (m1) and HFSEN4 (n1). 

Similarly, representative live/dead stained confocal 

images of 3T3 fibroblasts after 48 of culture on control  

tissue culture plastic (TCP) (a2), electrospun PCL mesh 

(b2), SEN1 (c2), SEN2 (d2), SEN3 (e2), SEN4 (f2), 

AFSEN1 (g2), AFSEN2 (h2), AFSEN3 (i2), AFSEN4 
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(j2), HFSEN1 (k2), HFSEN2 (l2), HFSEN3 (m2) and 

HFSEN4 (n2) [Scale bar=75 m]. 

Figure 6.26 Representative confocal images with phase contrast 

overlay of 3T3 fibroblasts stained with calcein AM 

(green), EthD-1 (red) and DAPI (blue) during live/dead 

assay after 24 of culture on control  tissue culture plastic 

(TCP) (a1), electrospun PCL mesh (b1), CSN1 (c1), 

CSN2 (d1), AFCSN1 (e1), AFCSN2 (f1), HFCSN1 (g1) 

and HFCSN2 (h1). Similarly, representative live/dead 

stained confocal images of 3T3 fibroblasts after 48 of 

culture on control tissue culture plastic (TCP) (a2), 

electrospun PCL mesh (b2), CSN1 (c2), CSN2 (d2), 

AFCSN1 (e2), AFCSN2 (f2), HFCSN1 (g2) and 

HFCSN2 (h2) [Scale bar=75 m]. 
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Figure 6.27 Quantitative analysis of (a) cell density per field of 

view, (b) cell area (average area covered by single cell) 

and (c) percentage of cell spreading on the non-

functionalized and functionalized blended MEH-

PPV:PCL electrospun meshes. Data were presented as 

Mean  S.D, n=6.
*
 and 

#
 indicate statistically significant 

difference at p≤0.01 and p≤0.05, respectively. 
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Figure 6.28 Quantitative analysis of (a) cell density per field of 

view, (b) cell area (average area covered by single cell) 

and (c) percentage of cell spreading on the non-

functionalized and functionalized electrospun core-

sheath MEH-PPV:PCL meshes. Data were presented as 

Mean  S.D, n=6. 
*
 and 

#
 indicate statistically 

significant difference at p≤0.01 and p≤0.05, 

respectively. 
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Figure 6.29 Scanning electron micrographs of 3T3 fibroblasts after 

3 days culture on SEN1 (a1), SEN2 (b1), SEN3 (c1), 

SEN4 (d1), AFSEN1 (a2), AFSEN2 (b2), AFSEN3 

(c2), AFSEN4 (d2), HFSEN1 (a3), HFSEN2 (b3), 
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HFSEN3 (c3) and HFSEN4 (d3) [Scale bar=20 m]. 

Insets of (a1-d3) show magnified image of green circled 

region [Scale bar=10 m]. Red and yellow arrows 

indicate the direction of cell alignment and 

filopodia/lamellipodia like extensions, respectively. 

Figure 6.30 Scanning electron micrographs of 3T3 fibroblasts after 

3 days culture on CSN1 (a1), CSN2 (b1), AFCSN1 (a2), 

AFCSN2 (b2), HFCSN1 (a3) and HFCSN2 (b3) [Scale 

bar=20 m]. Insets of (a1-b3) show magnified image of 

green circled region [Scale bar=10 m]. Red and yellow 

arrows indicate the direction of cell alignment and 

filopodia/lamellipodia like extensions, respectively. 
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Figure 6.31 Immunolabelling of beta (III) tubulin in differentiated 

PC12 cells with DAPI stained nuclei after 7 days of 

culture on the non-functionalized blended MEH-

PPV:PCL electrospun meshes (SEN1, SEN2, SEN3 and 

SEN4), APTES functionalized blended MEH-PPV:PCL 

electrospun meshes (AFSEN1, AFSEN2, AFSEN3 and 

AFSEN4), 1,6-Hexanediamine functionalized blended 

MEH-PPV:PCL electrospun meshes (HFSEN1, 

HFSEN2, HFSEN3 and HFSEN4), and collagen coated 

blended MEH-PPV:PCL electrospun meshes (CSEN1, 

CSEN2, CSEN3 and CSEN4). White arrows show 

neuronal cell bodies with at least one neurite formed. 

Red arrows represent neurons with long branched 

neurites and/or growth cones. Inset of SEN1 shows 

confocal images of stained PC12 cells cultured on 

collagen-coated cover slip for 7 days. 
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Figure 6.32 Immunolabelling of beta (III) tubulin in differentiated 

PC12 cells with DAPI stained nuclei after 7 days of 

culture on non-functionalized core-sheath electrospun 

meshes (CSN1 & CSN2), APTES functionalized core-

sheath electrospun meshes (AFCSN1 & AFCSN2), 1,6-
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Hexanediamine functionalized core-sheath electrospun 

meshes (HFCSN1 & HFCSN2) and collagen coated 

core-sheath electrospun meshes (CCSN1 & CCSN2). 

White arrows show neuronal cell bodies with at least 

one neurite formed. Red arrows represent neurons with 

long branched neurites and/or growth cones. 

Figure 6.33 Quantitative analysis of formation and outgrowth in 

terms of (a) percentage of neurite-bearing cells and (b) 

neurite length per cell on the non-functionalized, 

APTES functionalized, 1,6-Hexanediamine 

functionalized and collagen coated blended MEH-

PPV:PCL electrospun meshes along with collagen-

coated glass.* and 
#
 indicate statistically significant 

difference from the non-functionalized electrospun 

meshes at p≤0.01and p≤0.05, respectively. 
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Figure 6.34 Quantitative analysis of neurite formation and 

outgrowth in terms of (a) percentage of neurite-bearing 

cells and (b) neurite length per cell on the non-

functionalized, APTES functionalized, 1,6-

Hexanediamine functionalized and collagen coated 

core-sheath MEH-PPV:PCL electrospun meshes along 

with collagen-coated glass.* and 
#
 indicate statistically 

significant difference from the non-functionalized 

electrospun meshes at p≤0.01and p≤0.05, respectively. 
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Figure 6.35 Scanning electron micrographs of PC12 cells after 7 

days cultured on SEN1 (a1), SEN2 (b1), SEN3 (c1), 

SEN4 (d1), AFSEN1 (a2), AFSEN2 (b2), AFSEN3 

(c2), AFSEN4 (d2), HFSEN1 (a3), HFSEN2 (b3), 

HFSEN3 (c3), HFSEN4 (d3), CSEN1 (a4), CSEN2 

(b4), CSEN3 (c4) and CSEN4 (d4). Red arrows show 

neurite projections on different electrospun meshes. 

Scale bar = 5 m. 
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Figure 6.36 Scanning electron micrographs of PC12 cells after 7 282 
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days cultured on pristine CSN1 (a1), CSN2 (b1), 

AFCSN1 (a2), AFCSN2 (b2), HFCSN1 (a3), HFCSN2 

(b3), CCSN1 (a4) and CCSN2 (b4). Red arrows show 

neurite projections on different electrospun meshes. 

Scale bar = 5 m. 

Figure 6.37 (a) Schematic illustration of the electrical stimulation 

experiment using a custom made electrical stimulation 

set up ; (b) photograph of self made cell culture plate 

with different  electrospun MEH-PPV:PCL meshes 

(orange colur) fixed on it for electrical stimulation 

experiment; (c) photograph of the electrical stimulation 

experiment in situ. 
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Figure 6.38 Confocal images with phase contrast overlay of beta 

(III) tubulin immunostained PC12 cells cultured for 7 

days on the various blended electrospun meshes under 

no electrical stimulation (a1-AFSEN1, b1-AFSEN2, c1-

AFSEN3, d1-AFSEN4, e1-HFSEN1, f1-HFSEN2, g1-

HFSEN3, h1-HFSEN4, i1-CSEN1, j1-CSEN2, k1-

CSEN3 and l1-CSEN4) and under electrical stimulation 

of 500 mV/cm for 2h/day (a2-AFSEN1, b2-AFSEN2, 

c2-AFSEN3, d2-AFSEN4, e2-HFSEN1, f2-HFSEN2, 

g2-HFSEN3, h2-HFSEN4, i2-CSEN1, j2-CSEN2, k2-

CSEN3 and l2-CSEN4) [Scale bar = 75 m]. 
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Figure 6.39 Confocal images with phase contrast overlay of beta 

(III) tubulin immunostained PC12 cells cultured for 7 

days on the various core-sheath electrospun meshes 

under no electrical stimulation (a1-AFCSN1, b1-

ACSN2, c1-HFCSN1, d1-HFCSN2, e1-CCSN1, f1-

CCSN2) and under electrical stimulation of 500 mV/cm 

for 2h/day (a2-AFCSN1, b2-AFCSN2, c2-HFCSN1, d2-

HFCSN2, e2-CCSN1, f2-CCSN2) [Scale bar = 75 m]. 
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Figure 6.40 (a) Percentage of neurite bearing cells, (b) Neurite per 

cell, (c) Neurite length per cell and (d) Median neurite 
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length of differentiated PC12 cells on the various 

blended MEH-PPV:PCL electrospun meshes without 

electrical stimulation and with electrical stimulation. 

Data were Mean  S.D. 
*
 and 

#
 indicate statistical 

significance difference from unstimulated PC12 cells at 

p≤0.01 and p≤0.05, respectively. 

Figure 6.41 (a) Percentage of neurite bearing cells, (b) Neurite per 

cell, (c) Neurite length per cell and (d) Median neurite 

length of differentiated PC12 cells on the various core-

sheath MEH-PPV:PCL electrospun meshes above 

without electrical stimulation and with electrical 

stimulation. Data were Mean  S.D. 
*
 and 

#
 indicate 

statistical significance difference from unstimulated 

PC12 cells at p≤0.01 and p≤0.05, respectively. 
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Figure 6.42 Current signal recorded (upto 400 s) during electrical 

stimulation of PC12 cells through various blended 

MEH-PPV:PCL electrospun meshes and core-sheath 

MEH-PPV:PCL electrospun meshes under a constant 

potential of 500 mV/cm for 2 h, applied in 

chronoamperometric technique in pulsed mode (pulse 

duration 1 ms). 
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List of abbreviations 

 
Abbreviation Meanings 

0D Zero dimensional  

1D  One dimensional 

2D Two dimensional 

3D Three dimensional 

3T3 3-day transfer, inoculum 3×10
5
 cells 

AAO Anodic aluminum oxide 

AB Acid base 

Ag Argentum (Silver) 

AO Acridine orange 

Ar Argon 

Au Aurum (Gold) 

APS Ammonium peroxydisulfate 

APTES (3-Aminopropyl)triethoxysilane 

AFCSN1 (3-Aminopropyl)triethoxysilane functionalized core-sheath 

nanofibers: 0.6 mL/h 

AFCSN2 (3-Aminopropyl)triethoxysilane functionalized core-sheath 

nanofibers: 1 mL/h 

AFSEN1 (3-Aminopropyl)triethoxysilane functionalized solid 

electrospun nanofibers:20:80 (v/v) 

AFSEN2 (3-Aminopropyl)triethoxysilane functionalized solid 

electrospun nanofibers:40:60 (v/v) 

AFSEN3 (3-Aminopropyl)triethoxysilane functionalized solid 

electrospun nanofibers:50:50 (v/v) 

AFSEN4 (3-Aminopropyl)triethoxysilane functionalized solid 

electrospun nanofibers:60:40 (v/v) 

BDNF Brain-derived neurotrophic factor 

BOC tert-butyloxycarbonyl 

BSEs Back scattered electrons 

CHO Aldehyde 
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CCD Charge coupled detector 

Ch Chitosan 

cm Centimetre 

CO2 Carbon dioxide 

CNT Carbon nanotubes 

CSA Camphor sulfonic acid 

COOH Carboxyl 

CP Conducting polymer 

CSN1 Core-sheath nanofibers: 0.6 mL/h 

CSN2 Core-sheath nanofibers: 1 mL/h 

DAPI 4',6-Diamidino-2-Phenylindole 

DB-PPV 2,3-dibutoxy-1,4-poly(phenylenevinylene) 

DC (dc) Direct current 

DO-PPV 2,5-dioctyloxy-l,4-poly(phenylenevinylene) 

DPPH 1,1-diphenyl-2-picrylhydrazyl  

DNA Deoxyribonucleic acid 

DRG Dorsal root ganglion 

EB Emeraldine base 

ES Emeraldine salt 

EtBr Ethidium bromide 

ECM Extracellular matrix 

eV Electron volt 

FeCl3 Ferric chloride 

FWHM Full width at half maxima 

FT-IR Fourier transform infrared spectroscopy 

HOMO Highest occupied molecular orbital 

HFCSN1 1,6-Hexanediamine functionalized core-sheath nanofibers: 0.6 

mL/h 

HFCSN2 1,6-Hexanediamine functionalized core-sheath nanofibers: 1 

mL/h 

HFSEN1 1,6-Hexanediamine functionalized solid electrospun 

nanofibers:20:80 (v/v) 

HFSEN2 1,6-Hexanediamine functionalized solid electrospun 



 

 lvii 

nanofibers:40:60 (v/v) 

HFSEN3 1,6-Hexanediamine functionalized solid electrospun 

nanofibers:50:50 (v/v) 

HFSEN4 1,6-Hexanediamine functionalized solid electrospun 

nanofibers:60:40 (v/v) 

H2O Dihydrogen monoxide (Water) 

HCl Hydrochloric acid 

Hz Hertz 

ICPs Intrinsically conducting polymers 

IUPAC International Union of Pure and Applied Chemistry  

LUMO Lowest unoccupied molecular orbital 

LEB Leucoemeraldine 

MDMO-PPV Poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-

phenylenevinylene] 

MDA-MB-231 M.D. Anderson Metastatic Breast adenocarcinoma  

MEH-PPV Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] 

MnO2 Manganese dioxide 

MO-FeCl3 Methyl orange-ferric chloride  

MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3- carboxymethoxyphenyl)-2-

(4-sulfophenyl)-2H-tetrazolium, inner salt) 

NH2 Amine 

N2 Nitrogen 

NA Nigraniline 

NH3 Ammonia 

NHS N-hydroxysuccinimide  

NIH 3T3 National Institutes of Health 

NGF Nerve growth factor 

NMR Nuclear Magnetic Resonance 

NMP N-methyl pyrrolidone 

NT-3  Neurotrophins-3 

OH Hydroxyl 

O2 Oxygen 

O-I Organic in inorganic 
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O-O Organic in organic 

PA Polyacetylene 

PADPA p-aminodiphenylamine 

PAni Polyaniline 

PCL Polycaprolactone 

PC12 Pheochromocytoma 

PDLLA Poly-D,L-lactide 

PE Poly(ethylene) 

PEB Protoemeradine  

PEDOT Poly (3,4-ethylenedioxythiophene) 

PEG Poly(ethylene glycol)  

PEO Polyethylene oxide 

PHEMA Polyhydroxyethylmethacrylate 

PLA Poly(lactic acid) 

PLGA Poly(lactic-co-glycolic acid)  

PLLA Poly(L-lactide) 

PMAA Poly(methacrylic acid)  

PMAS Poly(2-methoxyaniline-5-sulfonate) 

PMMA Poly (methyl methacrylate) 

PNB Pernigraniline  

PP Polypropylene 

PPP Poly(p-phenylene) 

PS Polystyrene 

PPy Polypyrrole 

PPV Poly(p-phenylene vinylene) 

Pt Platinum 

PT Polythiophene 

PTM Particle track-etched membranes  

PU Poly(urethane)  

PVA Polyvinyl alcohol 

P3MT Poly(3-methylthiophene)  

PVC Polyvinyl chloride 

PET Polyethylene terephthalate  
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PTFE Polytetrafluoroethylene 

PVDF Polyvinylidene fluoride 

RBC Red blood corpuscles 

RGC Retinal ganglion cell 

RGD Arginylglycylaspartic acid (Arg-Gly-Asp)  

RNA Ribonucleic acid 

SAM Self-assembled monolayer  

SPR Surface plasmon resonance 

SEM Scanning electron microscopy 

SEN1 Solid electrospun nanofibers:20:80 (v/v) 

SEN2 Solid electrospun nanofibers:40:60 (v/v) 

SEN3 Solid electrospun nanofibers:50:50 (v/v) 

SEN4 Solid electrospun nanofibers:60:40 (v/v) 

SEs Secondary electrons 

Si Silicon 

SO2 Sulfur dioxide 

TEM Transmission electron microscopy 

UV-Vis Ultra violet visible spectroscopy 

V2O5 Vanadium pentoxide 

XPS X-ray photoelectron spectroscopy 

XRD X-ray diffraction 

 


