CONTENTS

CHAPTER I: INTRODUCTION

- 1.1 Introduction
- 1.2 Strip type transmission lines.
- 1.3 Microstrip line.
 - (A) Geometry of microstrip transmission lines.
 - (B) Quasi TEM mode of propagation.
 - (C) Characteristic of microstrip transmission lines.

CHAPTER II: DESIGN AND FABRICATION OF MICROSTRIP LINE

- 2.1 Introduction.
- 2.2 Static transverse electromagnetic parameters.
- 2.3 Design equation of microstrip line.
- 2.4 Design parameters for microstrip line

CHAPTER III: MATERIAL SELECTION AND COMPOSITE - PREPARATION TECHNIQUE

- 3.1 Introduction.
- 3.2 Polyethylene.
- 3.2.1 Low density polyethylene
- 3.3 Why LDPE
- 3.4 Some basic properties of the polymers and fillers
- 3.5 weight mixing ratio of dielectric and magnetic composite material
- 3.6 Material preparation technique for LDPE composite
- 3.7 Flowchart for material preparation

CHAPTER IV :MORPHOLOGICAL, PHYSICAL, THERMAL AND IR STUDIES ON THE LDPE-Fe-Ti

POLYMER COMPOSITES

- 4.1 Introduction
- 4.2 Optical micrographs.
- 4.3 XRD studies.
- 4.4 Density and water absorbance studies.
- 4.5 FTIR studies and discussion on FTIR
- 4.6 Thermal conductivity measurement.
- 4.7 Discussion

CHAPTER V: MICROWAVE CHARACTERIZATION

- 5.1 Introduction.
- 5.2 Microwave measurement set up
- 5.2.1 Microwave source
- 5.2.2 Microwave bench
- 5.3 Techniques for Measurement of Complex Permittivity
- 5.3.1 Cavity resonator technique
- 5.3.2 Q factor measurement of the cavity
- 5.3.3 Complex permittivity measurement
- 5.4 Experimental determination of Q and ε' .