List of Figures

1.1	Schematic diagram of (a) LWFA, (b) PBWA, (c) SM-LWFA and (d)	
	resonant laser pulse train. The excited plasma wave potentials and	
	laser intensity envelopes moving towards right are represented by the	
	solid and dashed lines respectively [43]	9
1.2	Schematic diagram of electron heating via resonance absorption pro-	
	$\operatorname{cess} [19]. \ldots \ldots$	11
1.3	Schematic diagram of the fast ignition in inertial confinement fusion	
	after the termination of the pulse which drives the implosion and com-	
	presses the fuel [65]. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	13
1.4	Schematic diagram of ion acceleration by TNSA mechanism [62]	14
1.5	Schematic diagram of ion acceleration by RPA mechanism [100]	18
1.6	Double layer of the laser piston formed by the radiation pressure. a is	
	the laser field amplitude (blue dotted-dashed), I is the laser intensity	
	(brown thin solid), n_e is the electron density (green dashed), $\vec{E_x}$ is the	
	longitudinal electrostatic field (red thick solid), n_i is the ion density	
	(black solid). Ion charge separation layer $(x_i, 0)$ is situated in front of	
	electron sheath $(0, x_e)$ [102]	19
1.7	Schematic diagram of ions accelerated by MVA mechanism [123]	23
1.8	Physical mechanism of Weibel instability induced by two counter-	
	propagating electron beams [136]	24
1.9	Schematic diagram of toroidal magnetic fields generated by the $\nabla T_e \times$	
	∇n_e mechanism [138]	25
1.10	Schematic diagram of potential-well $(V(r) \text{ vs } r)$ distortion (a) tunnel	
	ionization and (b) barrier suppression ionization (BSI) [153]	27

1.11	Figure-eight-orbit of an electron in a linearly polarized plane electro-	
	magnetic wave. \vec{E} , \vec{B} and \vec{k} denote the electric field, magnetic field	
	and the wave propagation vector respectively [160]	28
1.12	Charge distribution at the plasma-vacuum boundary. Plus and minus	
	represents constant positive background charge due to fixed ions and	
	the negative charge due to back and forth electron motion across the	
	boundary respectively [160]	29
1.13	Mathematical grid set into the plasma region in order to measure	
	charge and current densities [170]	30
1.14	A typical cycle, one time step in a particle in a cell (PIC) simulation	
	program [170]	31
1.15	The Yee Cell. The cell vertex labeled (i, j, k) is associated with the	
	components of \vec{E} , \vec{B} and \vec{J} displaced by half a cell width at the loca-	
	tions shown above. The charge q is located at the mesh point [171].	32
1.16	Schematic diagram for the calculation of $tan_{\frac{\theta}{2}}$ [170]	34
1.17	Schematic diagram of the velocity space showing the rotation from \vec{v}_{-}	
	to \vec{v}_+ . The velocities shown are the projections of the total velocities	
	onto the plane perpendicular to \vec{B} [170]	35
1.18	Schematic diagram of leap-frog integration method showing time-centering	r
	of force \vec{F} while advancing \vec{v} , and of \vec{v} while advancing \vec{x} [170]	35
1.19	Particle weighting process to calculate charge densities. (a) A part of	
	the charge cloud which is in the j^{th} cell is interpolated at X_j (fraction	
	(a)), and the part of the cloud which is in the $(j+1)^{th}$ cell is interpo-	
	lated at X_{j+1} (fraction (b)). (b) The grid density $n_j(x_i)$ at point x_i as	
	the particle moves past X_j displaying the effective particle shape $S(x)$	
	[170]	36
2.1	3D-PIC geometry of the simulation box	60
2.2	Proton density distribution in the central YZ plane (X = 10 μ m) for	
	the target of thickness 8 $\mu{\rm m}$ at time (a) 37.63 $T_0,$ (b) 54.47 T_0 and (c)	
	104 T_0 . The proton density n_p is normalized by the critical density	
	$n_c = 1.12 \times 10^{21} \text{ cm}^{-3}$.	62

- 2.4 Proton density distribution (a1-a3) and longitudinal electric field E_z (b1-b3) in the central YZ plane (X = 10 μ m) for targets of thicknesses 3, 2 and 1 μ m at times 54.47 T_0 , 49.52 T_0 and 41.60 T_0 respectively. The proton density n_p is normalized by the critical density $n_c = 1.12 \times 10^{21}$ cm⁻³ and the longitudinal electric field E_z is normalized by the laser electric field E_0 .
- 2.5 Electron density distribution in the XY plane at the rear edge of the target of thickness (a) 8 μ m at Z = 10 μ m and time 54.47 T_0 , (b) 3 μ m at Z = 5 μ m and time 54.47 T_0 , (c) 2 μ m at Z = 4 μ m and time 49.52 T_0 and (c) 1 μ m at Z = 3 μ m and time 41.60 T_0 . The electron density n_e is normalized by the critical density $n_c = 1.12 \times 10^{21}$ cm⁻³. 65

64

- 2.6 Normalized axial momentum $p_z/m_i c$ (a1-a4) and transverse momentum $p_y/m_i c$ (b1-b4) phase space for targets of thicknesses 8, 3, 2 and 1 μ m at times 104 T_0 , 74.28 T_0 , 68.34 T_0 and 61.41 T_0 respectively. . . 66
- 2.8 Proton energy spectrum for the target of thickness 8 μ m (red solid) at time 104 T_0 , 3 μ m (green solid) at time 74.28 T_0 , 2 μ m (blue solid) at time 68.34 T_0 and 1 μ m (black solid) at time 61.41 T_0 . The proton number N is normalized by the total number of protons N_0 in each case. 68
- 2.10 Variation of maximum proton energy with target thickness. 70

2.11	(a) Proton density distribution in the central YZ plane (X = 10 $\mu \rm{m})$	
	and (b) Axial momentum $p_z/m_i c$ phase space when the protons gain	
	maximum energy for the target of thickness 2 $\mu \mathrm{m}$ by a $p\text{-polarized}$	
	laser at time 98.05 T_0 . The proton density n_p is normalized by the	
	critical density $n_c = 1.12 \times 10^{21} \text{ cm}^{-3}$.	71
2.12	Proton energy spectrum for the target of optimum thickness 0.5 $\mu {\rm m}$	
	by a circularly polarized laser (red solid) at time 57.44 T_0 and a $p\text{-}$	
	polarized laser (blue solid) at time 73.29 T_0 . The proton number N is	
	normalized by the total number of protons N_0	72
3.1	Schematic diagram of the cyclotron effects in case of (a) RCP and (b)	
	LCP	79
3.2	3D-PIC geometry of the simulation box	81
3.3	Proton density distribution (a1-a3) and axial electric field (b1-b3) in	
	the central YZ plane (X = 10 μ m) at time 51 T ₀ respectively for B	
	= 0, RCP with B = 50 MG and LCP with B = 50 MG. The proton	
	density n_p is normalized by the critical density $n_c = 1.12 \times 10^{21} \text{ cm}^{-3}$	
	and the axial electric field E_z is normalized by the laser electric field E_0 .	82
3.4	(a) Electron energy spectrum (b) Electron density distribution along	
	Z direction (X = 10 μ m, Y = 10 μ m) at time 51 T ₀ for B = 0 (red	
	solid), RCP with B = 50 MG (green solid) and LCP with B = 50	
	MG (blue solid). The electron density n_e is normalized by the critical	
	density $n_c = 1.12 \times 10^{21} \text{ cm}^{-3}$	83
3.5	Normalized electron axial momentum $p_z/m_e c$ phase space for (a) B =	
	0, (b) RCP with B = 50 MG and (c) LCP with B = 50 MG at time	
	51 T_0	84
3.6	Normalized proton axial momentum $p_z/m_p c$ phase space for (a) B =	
	0, (b) RCP with B = 50 MG and (c) LCP with B = 50 MG at time	
	95 T_0	84
3.7	Proton density distribution in the central YZ plane (X = 10 μ m) for	
	(a) B = 0 at time 98 T_0 , (b) RCP with B = 50 MG at time 101 T_0	
	and (c) LCP with B = 50 MG at time 95 T_0 . The proton density n_p	
	is normalized by the critical density $n_c = 1.12 \times 10^{21} \text{cm}^{-3}$	85

3.8	Proton energy spectrum for $B = 0$ (red solid) at time 98 T_0 , RCP with $B = 50$ MG (green solid) at time 101 T_0 and LCP with $B = 50$ MG at time 95 T_0 (blue solid).	86
3.9	Proton density distribution in the XY plane (Z = 11 μ m) for (a) B = 0 at time 98 T_0 , (b) RCP with B = 50 MG at time 101 T_0 and (c) LCP with B = 50 MG at time 95 T_0 . The proton density n_p is normalized by the critical density $n_c = 1.12 \times 10^{21}$ cm ⁻³ .	87
3.10	Variation of maximum proton energy with target thickness for for B = 0 (red solid), RCP with B = 50 MG (green solid) and LCP with B = 50 MG (blue solid). $\dots \dots \dots$	88
3.11	Electron density distribution (a-c) in the central YZ plane (X = 10 μ m) and axial electric field (a1-c1) in the XY plane (Z = 7 μ m) at time 60 T_0 respectively for B = 0, RCP with B = 50 MG and LCP with B = 50 MG. The electron density n_e is normalized by the critical density $n_c = 1.12 \times 10^{21}$ cm ⁻³ and the axial electric field E_z is normalized by the laser electric field E_0 .	89
3.12	Normalized proton axial momentum $p_z/m_i c$ vs Z (μ m) phase space for B = 0 (a,b and c), RCP with B = 50 MG (a1,b1 and c1), LCP with B = 50 MG (a2,b2 and c2) at times 50 T_0 , 60 T_0 and 75 T_0 respectively.	90
3.13	Proton energy spectrum at (a) 50 T_0 , (b) 60 T_0 and (c) 75 T_0 for B = 0 (red solid), RCP with B = 50 MG (green solid) and LCP with B = 50 MG (blue solid).	91
4.1	3D-PIC geometry of the simulation box.	100
4.2	Proton density distribution (a1-a5) and axial electric field (b1-b5) in the central YZ plane (X = 7 μ m) at time 101 T_0 respectively for (a1,b1) CP with B = 0 G, (a2,b2) RCP with B = 50 MG, (a3,b3) LCP with B = 50 MG, (a4,b4) LP with B = 0 G and (a5,b5) LP with B = 50 MG. The proton density n_p is normalized by the critical density $n_c = 1.12 \times 10^{21}$ cm ⁻³ and the axial electric field E_z is normalized by	
	the laser electric field E_0	102

- 4.3 Normalized proton axial momentum p_z/m_ic phase space for (a) CP with B = 0 G, (b) RCP with B = 50 MG, (c) LCP with B = 50 MG,
 (d) LP with B = 0 G and (e) LP with B = 50 MG at time 101 T₀. . . 103
- 4.4 Proton density distribution (a1-a5) in the central YZ plane (X = 7 μ m) and normalized proton axial momentum $p_z/m_i c$ phase space (b1b5) at time 147 T_0 respectively for (a1,b1) CP with B = 0 G, (a2,b2) RCP with B = 50 MG, (a3,b3) LCP with B = 50 MG, (a4,b4) LP with B = 0 G and (a5,b5) LP with B = 50 MG. The proton density n_p is normalized by the critical density $n_c = 1.12 \times 10^{21}$ cm⁻³. 104
- 4.5 Normalized proton momentum phase space (a1-a5) $p_y/m_i c$ vs Z (μ m) and (b1-b5) $p_y/m_i c$ vs $p_z/m_i c$ at time 147 T_0 respectively for (a1,b1) CP with B = 0 G, (a2,b2) RCP with B = 50 MG, (a3,b3) LCP with B = 50 MG, (a4,b4) LP with B = 0 G and (a5,b5) LP with B = 50 MG.105
- 4.6 Proton density distribution in the XY plane (Z = 23.6 μ m) for (a) RCP with B = 50 MG at time 147 T_0 , (b) LCP with B = 50 MG at time 150 T_0 and (c) LP with B = 50 MG at time 154 T_0 . The proton density n_p is normalized by the critical density $n_c = 1.12 \times 10^{21}$ cm⁻³. 106

5.4	Current density distribution along Z direction J_z (kA/ μ m ²) in the XY plane (Z = 6 μ m) at time 107.72 T_0 for $\theta = 0^0$	120
5.5	Axial intensity I vs Z (μ m) for $\theta = 0^0$ at times 75.40 T_0 (red solid), 82.58 T_0 (green dashed) and 89.77 T_0 (blue dotted). The intensity is	120
	normalized by the fundamental laser intensity I_0	120
5.6	Electron density distribution in the XY plane at the plasma surface (Z	
	= 2 μ m) for (a) θ = 30 ⁰ and (b) θ = 60 ⁰ at time 75.40 T_0 . The electron	101
F 7	density n_e is normalized by the critical density $n_c = 1.12 \times 10^{21}$ cm ⁻³ .	121
5.7	Electron phase space $p_z/m_e c$ vs Z(μ m) for $\theta = 60^0$ at time (a) 64.63 T_0 and (b) 68.22 T_0	122
5.8	Electron phase space $p_z/m_e c$ vs Z (μ m) for (a1) $\theta = 30^{\circ}$, (a2) $\theta = 60^{\circ}$	122
0.0	and electron phase space $p_z/m_e c$ vs Z (µm) for (a1) $\theta = 30^{\circ}$, (a2) $\theta = 60^{\circ}$ and electron phase space $p_z/m_e c$ vs Y (µm) for (b1) $\theta = 30^{\circ}$, (b2)	
	$\theta = 60^{\circ}$ at time 75.40 T_0	123
5.9	Current density along (a1 and a2) Y direction J_y (kA/ μ m ²), (b1 and	
	b2) Z direction J_z (kA/ μ m ²) for $\theta = 30^0$ and 60^0 respectively and	
	magnetic field along (c1 and c2) Y direction B_y , (d1 and d2) Z direction	
	B_z for $\theta = 30^0$ and 60^0 respectively at time 75.40 T_0 at the plasma	
	surface (Z = 2 μ m) in the XY plane. The magnetic field B_y and B_z	
	are normalized by the laser magnetic field B_0	124
5.10	Current density along (a1 and a2) Z direction J_z (kA/ μ m ²) in the XY	
	plane at Z = 4 μ m for θ = 30 ⁰ and 60 ⁰ respectively and magnetic field	
	along (b1 and b2) X direction B_x in the central YZ plane (X = 5 μ m) for $\theta = 30^{\circ}$ and 60° respectively at time 80.77 T. The magnetic field	
	for $\theta = 30^{\circ}$ and 60° respectively at time 89.77 T_0 . The magnetic field B_x is normalized by the laser magnetic field B_0 .	125
5 11	Normalized magnetic energy (B^2/B_0^2) vs Time (T_0) for $\theta = 0^0$ (red	120
0.11	solid), $\theta = 30^{\circ}$ (green dashed) and $\theta = 60^{\circ}$ (blue dotted)	126
6.1	Schematic of second harmonic generation process by an obliquely in-	101
	cident s-polarized laser.	134
6.2	Modified relativistic factor γ as a function of normalized electric field	
	amplitude a_0 and applied magnetic field b at $\omega_p^2/\omega^2 = 0.1$, $\theta = 70^0$ and $\omega = 1.88 \times 10^{14}$ Hz	1/1
	$\omega = 1.00 \times 10 \text{Hz}. \ldots \ldots$	141

- 6.3 Conversion efficiency η as a function of applied magnetic field b and angle of incidence θ at $a_0 = 1$, $\omega_p^2/\omega^2 = 0.1$ and $\omega = 1.88 \times 10^{14}$ Hz. 142