Chapter	Figure	Figure legends	Page
	No.		No.
I	1.1	Water distributions on earth surface	1
	1.2	Redox potential (Eh)-pH graph for arsenic-water system	8
	1.3	As (III) and As (V) species present at different pH conditions	8
	1.4	Geochemical cycle of arsenic	9
	1.5	Arsenic endemic states in India	11
	1.6	Chemical structure of Starch	20
	1.7	Chemical structure of chitosan	21
	1.8	Different parts of water hyacinth	22
	1.9	Chemical structure of Glutaraldehyde, Citric acid and CTAB	30
Ш	3.1.1	FT-IR spectra of (a) CT, (b) MMT, (c) Ct/Glu and (d) MMT/Ct/Glu	3
	3.1.2	FT-IR spectra of MMT/Ct/Glu (a) before & (b) after adsorption of As(V)	4
	3.1.3	XRD spectra of (a) MMT (b) CT (c) Ct/Glu & (d) MMT/Ct/Glu	5
	3.1.4	TEM images (a) of Ct/Glu and (b, c) MMT/Ct/Glu and SEM images of MMT/Ct/Glu (d-e) before and (f) after arsenic adsorption	6
	3.1.5	Effect of (A) material dose, (B) Treatment time and (C), (D) initial ion concentration on removal rate of As(V)	7
	3.1.6	Effect of (A) pH on percent removal of As(V), (B) Zero point charge curve	9

3.1.7	Langmuir isotherm for (A) Ct/Glu & (B) MMT/Ct/Glu, Freundlich isotherm for (C) Ct/Glu & (D) MMT/Ct/Glu and Qe vs Ce graph for (E) Ct/Glu & (F) MMT/Ct/Glu	12
3.1.8	First order kinetics for (A) Ct/Glu & (C) MMT/Ct/Glu, second order kinetics for (B) Ct/Glu & (D) MMT/Ct/Glu and time evolution of Qt for (E) Ct/Glu & (F) MMT/Ct/Glu	15
3.1.9	Reusability after cyclic run of MMT/Ct/Glu (Arsenate concentration: 0.4 mg/L)	17
3.2.1	(A) FT-IR spectra of (a) CTN, (b) FeN and (c) CT and (B) XRD spectra of (a) CT, (b) FeN and (c) CTN.	20
3.2.2 (A)	Thermal degradation pattern of (a) CT, (b) CTN, (c) FeN,	21
3.2.2 (B)	Susceptibility vs temperature of (a) FeN (b) CTN, & First derivative of susceptibility vs temperature (a) FeN (b) CTN	22
3.2.3	(A) SEM micrographs of (a) CT,(b) FeN, (c) CTN,(B) Elemental compositions of (a) FeN, (b) CTNbefore adsoption and (c) CTN after adsorption	23
3.2.4	Effect of (A) adsorbent dose and (B) Agitation time on removal rate (%) of As(V)	24
3.2.5	Hydrodynamic diameters of FeN and CTN particles	25
3.2.6	Effect of (A) initial ion concentration, (B) pH on removal rate of As(V)	26
3.2.7	First order (A) and Second order kinetic model for sorption of As(V) on CTN	28
3.2.8	(A) Oe vs Ce curve and (B) Ot vs t curve for the	29

	sorption of As(V) on CTN	
3.2.9	(A) Langmuir (B) Freundlich isotherm models for sorption of As(V) on CTN	30
3.2.10	A) Effect of co-ions on removal rate B) Reusability after cyclic run of CTN (Arsenate concentration: 0.6 mg/L)	32
3.3.1	FTIR spectra of A-(a) UTi, (b) CTAB, (c) CMT and B-(a) starch, (b) SPC and (c) ATC	3
3.3.2	SEM images of (a) UTi, (b) CMT, (c) SPC, (d)ATC, (e) SPC/4 (f) CMT/4	4
3.3.3	EDX spectra of (a), UTi,(b) CTAB, (c), CMT,(d) SPC, (e) AMT and (f) ATC	5
3.3.4	A-TGA curves for (a) Starch, (b) UTi, (c) CMT,(d) SPC and B-XRD spectra of (a) Starch, (b) UTi, (c) CMT,(d)SPC	6
3.3.5	Efficacy of UTi, CMT and SPC for As(V) removal	7
3.3.6	Effect of material dose on As(V) removal	8
3.3.7	Effect of treatment time on removal of As(V)	9
3.3.8	Effect of initial ion concentration on removal rate of $As(V)$	9
3.3.9	q_t vs t curve for sorption of As(V) for (A) SPC and (B) CMT	10
3.3.10	First order (A-B) and second order (C-D) kinetic models for sorption of As(V) on SPC and CMT	11
3.3.11	$q_e \ vs \ C_e$ curves for sorption of $As(V)$ on SPC and CMT	13
3.3.12	Comparison of a) reusability, b) weight left for CMT and SPC after reuse	15

3.3.13	Effect of PO ₄ ³⁻ and SO ₄ ²⁻ on Removal of As(V) by SPC	16
3.4.1	FTIR spectra of (a) starch, (b)St-g-GMA, (c) AmS, (d) nanoclay(OMMT), (e) SIC, (f)SICC and (g)ATC	19
3.4.2	Optimized geometries for different reactants and complexes	22
3.4.3	TGA curves of (a) St-g-GMA, (b) AmS, (c) SIC, (d) SICC/5 e) SICC/10, f) SICC/20 and XRD spectra for g) starch (h) Ams, (i) OMMT, (j) iron oxyhydroxidek) SIC and (l) SICC/10	24
3.4.4	(a-e) SEM images and (f-j) EDX spectra of St-g-GMA, AmS, SIC, SICC and ATC.	25
3.4.5	Effect of material dose (a) treatment time and initial arsenic concentration at 303, 308 and 313 K (b-d) on removal efficiency of As(III)	28
3.4.6	a) Arrhenius plot and b) Thermodynamic plot of sorption of As (III) on SICC	30
3.4.7	First order (a-c) and second order (d-f) kinetic models for sorption of arsenic at 30, 35 and 35 °C	31
3.4.8	Ce vs qe plot of sorption of As (III) on SICC at three different temperatures	32
3.5.1	FTIR spectra of (a) WHRP (b) CARB (c) RP (d) As/RP	2
3.5.2	Thermal degradation pattern of (a) RP, (b) CARB and (c) WHRP	3
3.5.3	SEM images of a) RP, b) As/RP, c) As/1/RP and d) As/4/RP, EDX spectra of e) RP and f) As/RP	4
3.5.4	Effect of material dose (A), treatment time (B) and	6

	initial ion concentration (C) on	
	Removal efficiency of Arsenic	
3.5.5	Effect of treatment time on removal of As(V)	7
3.5.6	Effect of initial ion concentration on removal rate and removal capacity	7
3.5.7	Effect of pH on removal efficiency and Δ pH vs pH for zero point charge	8
3.5.8	Kinetics of sorption of arsenic on RP/10CA	9
3.5.9	Time evolution of Q_e vs t and B) Freundlich isotherm model for sorption of arsenic on Rp/10CI	11
3.5.10	Reusability test for sorption of arsenic on RP and RP/10CI	12
3.6.1	FT-IR spectra of a) CT b)WHRP c) CTRB d) CT:RP/1:2 e) CT:RP/1:2-As,	15
3.6.2	Optimized geometries for different reactants and complexes formed with the polymers	17
3.6.3	TGA thermograms of a) CT b)WHRP c) CTRB d) CT:RP/1:2	19
3.6.4	SEM images of a) CT b) WHRP c) CTRP d) CTRP-As and EDX spectra of e) CTRP f) CTRP-As	21
3.6.5	Effect of a) material dose on removal rate b) treatment time c) initial ion concentration on sorption efficiency	22
3.6.6	Effect of treatment time on removal rate of Arsenic by	23
3.6.7	Effect of initial ion concentration on removal rate and removal capacity of arsenic	24
3.6.8	(a-c) Q_t vs t curve and kinetic models, (d-f) Isotherm models for sorption of As(III) on CT:RP/1:2	25