LIST OF FIGURES

	Figures in Chapter 1	Page
		no.
Figure 1.1	Pictorial representations of 2D and 3D porous polymeric networks	2
Figure 1.2	Synthesis of first two COFs (COF-1 and COF-5) by condensation of 1,4-diboronic acid	4
Figure 1.3	Different type of covalent linkages (in red) associated in the reversible reactions between building units during COF synthesis	5
Figure 1.4	3D COF-320 constructed on the surface of functionalized ceramic α -Al ₂ O ₃ (a) and the interpenetration of the diamondoid net (b) of COF synthesized	6
Figure 1.5	Single crystals of three covalent nitroso polymer networks obtained by polymerization of tetrakis(4-nitrosophenyl)methane (a), tetrakis(4-nitrosophenyl)silane (b) and 1,3,5,7-tetrakis(4- nitrosophenyl)adamantane (c) building units and the corresponding crystal structures (d, e, f)	6
Figure 1.6	Synthesis of first CTF with the hexagonal columnar pores	7
Figure 1.7	Representation of anion template PAF with tuned pore sizes	9
Figure 1.8	Various types of linkages and/or building units used in the preparation of MOPs	10
Figure 1.9	Synthesis of different CMPs via Buchwald-Hartwig (BH) C–N coupling reaction	11
Figure 1.10	Schematic representation of COF synthesized using mechanochemical grinding techniques	13
Figure 1.11	Synthesis of COF-5 on the surface of graphene sheet employing solvothermal technique	14
Figure 1.12	FT-IR spectra of building units and synthesized COF (a), ^{13}C	15

ssNMR spectrum of monomeric unit (b) and the high resolution TEM images (c to f) of COF synthesized mechanochemically

Figure 1.13 Single crystal structure of the molecular unit in COF-320 (a) and 17 the diamondoid network with columnar rectangular channel in it (b) obtained by employing RED technique Figure 1.14 (a) Nitrogen adsorption-desorption isotherm, type-I and (b) argon 17 adsorption desorption isotherm (type-I and type-IV) exhibited by COFs 19 Figure 1.15 Schematic representation of benzobisoxazole (BBO) that exhibits excellent activity toward CO₂ absorption Figure 1.16 Selective adsorption of ethylene over ethane by PAF through π -20 complexation between ethylene and the framework Figure 1.17 Schematic representation of TPE-Ph COF having dual pore frame 20 (a) and its fluorescence image (b) that acts as robust sensor for NH₃ detection Figure 1.18 Inclusion of comonomer dopant to tune the photophysical 21 properties of CMPs acting as fluorescence sensor for volatile organic compounds Figure 1.19 22 Displaying electropolymerization of poly(3,4ethylenedioxythiophene), (PEDOT) into the pores of 2D COF 2,6diaminoanthraquinone-2,4,6-triformylphloroglucinol (DAAQ-TFP) Figure 1.20 Sulfonic acid functionalized POP exhibiting proton conduction 23 better than that exhibited by Nafion Figure 1.21 Micrographs of MCOP under irradiation with an 808 nm laser at 24 constant time interval (a); Photothermal images of the whole mice after intratumoral injection of MCOP (b); Monitoring of temperature (c) and Representative photostability test (d) of MCOP; Photographs of tumors (e) and mice (f) under different treatment conditions Figure 1.22 Schematic representation of Pd loaded 2D COF (Pd/COF-LZU1) 26

	as catalyst for Suzuki-Miyaura coupling	
Figure 1.23	Visible light promoted photocatalytic selective bromination of	26
	electron rich aromatic compounds using MOPs	
Figure 1.24	Schematic presentation of composite material from graphene and	26
	pyrimidine based POP as host for encapsulation of hemoglobin	
	(red) and its catalytic activity toward reduction of oxygen	
	Figures in Chapter 2	
Figure 2.1	Comparison of FT-IR spectra of building units and the synthesized	41
	POP-Am reveals the formation of carboxamide (amide C=O in	
	circle) linkage in POP-Am (a) and PXRD pattern evidencing	
	microcrystalline nature of POP-Am having an ordered layered	
	structure (b)	
Figure 2.2	TGA plot displaying the stability of POP-Am at various conditions	42
	(a) and FT-IR spectra displaying the stability of POP-Am at	
	various environments (b)	
Figure 2.3	The cross polarization magic angle spinning (CP-MAS) ¹³ C-NMR	42
	spectrum rendering the chemical environment of POP-Am	
Figure 2.4	Nitrogen adsorption-desorption isotherm at 77 K displaying the	43
	type-II adsorption isotherm of POP-Am (a) and its BET surface	
	area plot from which the surface is calculated to be 65 $m^2g^{-1}\left(b\right)\ldots$	
Figure 2.5	Structure optimization of a single ring in POP-Am by fixing the	44
	extended networking site of the polymer via hydrogen atom	
	displaying nearly planar shape of POP-Am	
Figure 2.6	SEM images (a,b) and HR-TEM images (c,b) of POP-Am	44
Figure 2.7	Solid UV-Vis spectra (a) and the difference in energy band gap	45
	between (b) POP-Am (blue) and its monomeric unit, N-phenyl	
	benzamide (red)	
Figure 2.8	Bar diagram representing the yield % of p -methyl benzaldehyde in	51
	the catalytic reusability of POP-Am (a) and identical PXRD	
	pattern (b) of POP-Am after 4 th cycle (blue) to that of the as	

synthesized pattern (black) displays the stability of POP-Am

- Figure 2.9 Plausible interactions between catalyst, oxidant and reactant 52 molecules during catalytic oxidation process. (A) POP-Am + TBHP, (B) POP-Am + H₂O₂, (C) POP-Am + H₂O₂ + benzyl alcohol, (D) product formation with the liberation of 2 waters
- Figure 2.10 Stepwise formation of benzaldehyde from benzyl alcohol in 52 presence of TBHP supported by POP-Am as catalyst

Figures in Chapter 3

- Figure 3.1 Comparison of FT-IR spectra of POP-Am1 and the building units 67 signify the occurrence of amide functionality in POP-Am1 (a) and FTIR spectra comparison indicates retention of structural integration of POP-Am1 upon impregnation of Cu(II) to afford Cu@POP-Am1
- Figure 3.2 ¹³C cross-polarization magic angle spinning (¹³C CP-MAS) 68 ssNMR spectroscopy shows chemical shift environments of various carbon centers of POP-Am1
- Figure 3.3 TGA plot of (a) as synthesized POP-Am1 indicates inclusion of 69 guests into the pores and (b) confirms thermal stability of Cu@POP-Am1 up to 400 ^oC
- Figure 3.4 (a) Sharp crystalline peak in PXRD pattern of as synthesized POPAm1 indicates the trapping of triethylammonium chloride salt in the cavities (inset: PXRD pattern of triethylammonium chloride salt retrieved from literature) and (b) PXRD pattern of activated POP-Am1 and Cu@POP-Am1 signifying the intact structure of bare POP-Am1 upon metal impregnation
- Figure 3.5 The reversible nitrogen adsorption-desorption isotherm recorded at 70 77 K (a) and the pore size distribution curve displaying microporous nature (b) of POP-Am1
- Figure 3.6 FE-SEM images (a,b) and HR-TEM images (c,d) of activated 70 POP-Am1
- Figure 3.7 TEM images of Cu@POP-Am1 collected after immobilization of 72

	copper acetate onto POP-Am1			
Figure 3.8	Elemental mapping showing dispersion of C (a), oxygen (b),	72		
	nitrogen (c) and homogeneous fine dispersion of Cu (d) in			
	Cu@POP-Am1			
Figure 3.9	EDS spectrum displaying the presence of Cu in Cu@POP-Am1	73		
Figure 3.10	UV-visible absorption spectra depicting the reduction of 4NP to	74		
	4AP upon using reduced Cu@POP-Am1 (a) and the concentration			
	change of 4NP and 4AP with respect to time as the reaction			
	progress (b)			
Figure 3.11	UV-visible spectra of reduction of 4NP with time employing in-	75		
	situ generated reduced Cu@POP-Am1 using NaBH4 displays			
	longer time for completion of 4NP reduction (a), change in			
	concentration of 4NP and 4AP with respect to time during the			
	progress of reaction (b)			
Figure 3.12	UV-visible spectra screening the reduction of p -NA (a) and m -NA	76		
	(b) to the corresponding phenylenediamine			
Figure 3.13	UV-vis spectra of reaction mixture of m-NA displaying no	76		
	progress in its reduction			
Figure 3.14	Displaying the conversion % of reduction of 4-nitrophenol to 4-	77		
	aminophenol at each catalytic cycle			
Figure 3.15	XPS spectrum of (a) Cu@POP-Am1 and (b) Cu 2p of Cu@POP-	78		
	Am1 revealing the presence of Cu in +2 oxidation state			
Figure 3.16	PXRD pattern of reused Cu@POP-Am1 clearly displays the	78		
	structural integrity degradation of Cu loaded POP-Am1 after 5 th			
	catalytic cycle			
Figures in Chapter 4				
Figure 4.1	(a) FT-IR spectra comparison of POP-Am2 with its building units,	92		
	(b) TGA plot displaying the stability and inclusion of guest			
	molecules in the pores of POP-Am2			
Figure 4.2	$^1\mathrm{H}$ NMR (a) and $^{13}\mathrm{C}$ NMR (b) spectrum of TAPT recorded in	93		
	DMSO- <i>d</i> ₆			

Figure 4.3	(a) PXRD pattern of synthesized POP-Am2 displaying the	95
	inclusion of triethylammonium chloride salt in its cavities that	
	releases upon thermal activation signifying amorphous nature. (b)	
	¹³ C ssNMR spectrum and the chemical environments of POP-	
	Am2	
Figure 4.4	Nitrogen adsorption-desorption isotherm (a) and pore size	95
	distribution curve (b) of POP-Am2	
Figure 4.5	FE-SEM (a) and TEM (b) image of POP-Am2	96
Figure 4.6	(a) Catalytic reusability test of POP-Am2 in oxidation of styrene.	100
	(b) PXRD pattern of reused POP-Am2 recorded after 4 th cycle and	
	compared to its initial pattern reveals intact structural integrity of	
	POP-Am2 even after catalytic pathways	
Figure 4.7	Optimized geometry of the trimeric unit in POP-Am2 and the	101
	incoming oxidant, TBHP displaying the H-bond interaction with π -	
	cloud of the catalyst	
Figure 4.8	QTAIM analysis attributing the weak interaction between H-atom	102
	of TBHP and π -cloud of the central ring of the trimer (a) and NCI	
	calculation revealing the interaction zone between TBHP and the	
	π -cloud of the catalyst (b)	
Figure 4.9	Generation of the free radicals mediated by the trimer unit of POP-	103
	Am2	
Figure 4.10	Gibbs free energy changes during the radical initiated product	104
	formation during styrene oxidation to aldehyde stimulated by POP-	
	Am2	
	Figures in Chapter 5	
Figure 5.1	(a) Comparison of IR spectrum of Cu@POP-Am2 and POP-Am2.	116
	(b) TGA plot exhibiting the thermal stability of Cu@POP-Am2 up	
	to 400 °C (b)	
Figure 5.2	(a) PXRD pattern of Cu@POP-Am2 laid over bare POP-Am2	116
	reveals the perseverance of structural integrity of POP-Am2 upon	
	loading with copper. (b) EDS spectrum confirms the existence of	

Cu in Cu@POP-Am2 Figure 5.3 Nitrogen adsorption-desorption isotherm (a) and pore size 117 distribution curve (b) of Cu@POP-Am2 Figure 5.4 FE-SEM image of POP-Am2 (a) and SEM image of Cu@POP-117 Am2 (b) Figure 5.5 XPS spectra of (a) POP-Am2 (black) and Cu@POP-Am2 (red); (b) 118 Cu 2p of Cu@POP-Am2; (c) N 1s and (d) O 1s spectra revealing the presence of Cu(II) and its interaction with N of POP-Am2 Figure 5.6 120 Temperature optimization vs conversion % in oxidation of oluene via sp³ C–H activation Figure 5.7 Conversion % of toluene vs no. of cycle revealing the reusable 123 efficiency of Cu@POP-Am2 Figure 5.8 Stacked IR spectra (a) and PXRD patterns (b) of fresh and reused 123 Cu@POP-Am2 upto 4th catalytic cycle **Figures in Chapter 6** Figure 6.1 POP-Am has been used as metal free catalyst in selective oxidation 134 of benzyl alcohols Figure 6.2 Cu@POP-Am1 used as heterogeneous catalyst in reduction of 135 nitroarenes Figure 6.3 POP-Am2 with enrich π -electrons acting as organic catalyst in 136 performing a peculiar Wacker-type oxidation of olefins accomplishing C=C bond cleavage Figure 6.5 Pictorial representation of the overall thesis 137 Figure 6.6 Representing the future prospects in the synthesis of POPs with 138 tuned properties and their targeted applications in various fields....