Chapter 2

Diastereoselective Synthesis of trans-4-Arylchroman-3-ols via Ar-C Bond-Forming Intramolecular Friedel-Crafts EpoxideArene Cyclization Reaction and Its Applications in the Synthesis of cis-4-Arylchroman-3-ols and Chroman-Fused 2,3Dihydrobenzofuran

Work of this Chapter has resulted in the following two publications:

1. Devi, R., Kalita, T., and Das, S. K. Brønsted acid-catalysed intramolecular ring opening of 2-(aryloxymethyl)-3-aryloxiranes leading to trans-4-arylchroman-3-ols: scope and limitation. RSC Advances, 5:39692-39696, 2015. (communication)
2. Devi, R., Gogoi, D., Bora, P., and Das, S. K. Synthesis of diverse catechin congeners via diastereoselective intramolecular epoxy-arene cyclization. Tetrahedron, 72(32):48784888, 2016. (full paper)

2.1. Introduction

Chroman-3-ol 1 (Figure 2.1) is a ubiquitous structural unit in a large number of biologically important natural products and synthetic compounds - selected examples being flavon-3-ols 2 [1], 4-arylflavan-3-ols 3 [1], 6a-hydroxypterocarpans such as variabilin 4 [2], and compound 5 (a selective $5-\mathrm{HT}_{2}$ receptor agonist) [3]. Compounds bearing the chroman-3-ol structural unit exert a broad spectrum of biological activities; some of them essentially very much important, such as antioxidant, anticancer, antifungal, antiarteriosclerotic, and antibacterial effects [4]. One of the important structural features of flavon-3-ols 2 , as evidenced by their representative members catechin 2a, epicatechin 2b, gallocatechin 2c, and epigallocatechin 2d, is that they all bear highly electron-rich aryl rings. Another common feature of these molecules is that they all undergo oxidative oligomerization in vivo through the 4-position of the chroman ring, and hence potential bioaccessibility of the parent flavon-3-ols is reduced [4]. Along this line, we hypothesized that with the congeneric 4 -arylchroman-3-ols 4 (Figure 2.1), oxidative oligomerization would be suppressed, and the relevant biological activities might be retained/improved. To the best of our knowledge, 4-arylchroman-3-ols have never been isolated from nature although there has been a recent report of isolation of their derivatives [5]. We believed that synthesis of all stereoisomers of this class of molecules would benefit in their evaluation as bioactive scaffolds. An equally enthralling inspiration for their synthesis lied in their probable application in the synthesis of chroman-based polycyclic molecules (vide infra).

Figure 2.1. General structures of chroman-3-ol, flavon-3-ols, 4-arylflavan-3-ols, and 4-arylchroman -3-ols and representative examples of biologically important chroman-3-ols

2.2. Literature Known Methods to Access 4-Arylchroman-3-ols

In sharp contrast to the well-explored chemistry and biology of $\mathbf{2}$, the synthetic and bio-evaluation studies of $\mathbf{4}$ has not yet been explored systematically. As shown in Scheme 2.1, racemic and enantiomerically pure trans-4-arylchroman-3-ols $\mathbf{8}$ have been synthesized via intramolecular Friedel-Crafts epoxide-arene cyclization (IFCEAC) of trans-2-aryl-3-(aryloxymethyl)oxiranes 7 (for details, see Chapter 1, Section 1.7.1.1).

Scheme 2.1. Summary of previous efforts on the synthesis of trans-4-arylchroman-3-ols by IFCEAC
Finet et al. reported the synthesis of three cis-4-arylchroman-3-ols as intermediate compounds while synthesizing a series of neoflavenes [6]. In their approach, reaction of 4-benzyloxycarbonyl-2H-1-benzopyran-3(4H)-ones 9 with 1.1 molar equivalent of aryllead(IV) triacetates $\mathbf{1 0}$ in the presence of 3 molar equivalents of pyridine in anh. chloroform at $60^{\circ} \mathrm{C}$ afforded chroman derivatives 11 in $55-92 \%$ yields (Scheme 2.2). Subsequently, decarboxylative hydrogenolysis of $\mathbf{1 1}$ provided 4-arylchroman-3-ones $\mathbf{1 2}$ in $75-91 \%$ yields.

Scheme 2.2. Diastereoselective synthesis of cis-4-arylchroman-3-ols by Finet et al.

Finally, they converted only three of the synthesized 4-arylchroman-3-ones into the corresponding cis-4-arylchroman-3-ols $\mathbf{1 3}$ by a completely diastereoselective NaBH_{4} reduction in THF and water.

2.3. Background and Objectives

Before we discuss about drawbacks of these known methods of synthesizing trans-4-arylchroman-3-ols $\mathbf{8}$ from the corresponding trans-2-aryl-3-(aryloxymethyl)oxiranes $\mathbf{7}$ (Scheme 2.1), it is worth mentioning the synthetic challenges associated with this transformation. On the basis of the literature precedence, one can envision four different reaction pathways from trans-2-aryl-3-(aryloxymethyl)oxiranes 7 in the presence of a Brønsted/Lewis acid catalyst/promoter (Scheme 2.3).

Scheme 2.3. Possible reaction pathways of trans-2-aryl-3-(aryloxymethyl)oxiranes
The epoxide ring of 7 can experience an intramolecular nucleophilic attack by the tethered arene to furnish desired 8 via a 6-(arene-endo)-endo-epoxide cyclization (Scheme 2.3 , route a). For such a reaction, the tethered arene ring must be sufficiently electron rich. Alternatively, with an electron poor tethered arene group, ligand from the Lewis acid or conjugate base of the Brønste acid may force 7 to undergo intermolecular epoxide ring-opening reaction to yield $\mathbf{1 4}$ (Scheme 2.3 , route b), or furnish the corresponding ketones 15 via a semi-pinacol rearrangement (Scheme 2.3, route c).

Ketones 15 might also undergo in situ cyclodehydration reaction to afford the corresponding 2,3-dihydrobenzofurans 16 (Scheme 2.3, route d).

As discussed in the Section 2.2, it is clear that transition metal-based Lewis acid catalysts can be efficiently used to obtain trans-4-arylchroman-3-ols 8 from the corresponding trans-2-aryl-3-(aryloxymethyl)oxiranes 7. However, one of the drawbacks of transition metal-based catalysts is the requirement of strict anh. conditions. This necessitates the inclusion of some special attention to handle very small amount of the catalyst used in the synthetic procedures, and hence carrying these reaction on largescale applications may be wearisome. In this regard, identification of transition-metalfree conditions is important because such procedures generally have other obvious advantages in terms of cost, nontoxicity and environmental compatibility.

These limitations have recently been overcome successfully with the use of HFIP as a reaction medium in the IFCEAC reaction (vide supra) - however, the use of a specialized and expensive Brønsted acid like this particular fluorinated alcohol can be considered as an obstacle for the extensive use of this method. We postulated that this issue could potentially be overcome by the use of easily accessible Brønsted acids involving transition-metal-free condition. Another notable feature of these reported methods is that the Ar^{2} ring of synthesized trans-4-arylchroman-3-ols typically has been limited to only phenyl and 4-bromophenyl rings, thus significantly limiting the application of this method in organic synthesis. Moreover, until now there has been no report of the synthesis of this class of molecules with free phenolic-OH group on both the aryl rings $\left(\mathrm{Ar}^{1}\right.$ and $\left.\mathrm{Ar}^{2}\right)-$ an important requirement for displaying relevant biological activity, and further structural elaboration toward more complex molecules. On the other hand, although synthetic route developed by Finet and co-workers could provide cis-4-arylchroman-3-ols efficiently (Scheme 2.2), no asymmetric version of this methodology has yet been developed.

The above-described drawbacks prompted us to initiate a systematic study on the synthesis of 4-arylchroman-3-ols using an alternative catalyst system. In particular, the aims of the research work described in this chapter were:
(i) to synthesize diverse trans-4-arylchroman-3-ols by a Brønsted acid catalyzed and operationally simple method under transition-metal-free conditions,
(ii) to develop new route to access cis-4-arylchroman-3-ols, and
(iii) to utilize trans/cis-4-arylchroman-3-ols to construct chroman-based tetracyclic molecules.

2.4. Results and Discussion

2.4.1. Synthesis of trans-2-Aryl-3-(aryloxymethyl)oxirane)

To assemble a series of trans-2-aryl-3-(aryloxymethyl)oxiranes 7 required for the study, first we synthesized four racemic trans-3-arylglycidols 20a-d following wellestablished literature procedures (Scheme 2.4). Thus, Horner-Wadsworth-Emmons (HWE) olefination of benzaldehydes 17b-d with triethyl phosphonoacetate and NaH in THF followed by DIBAL-H reduction of the resulting trans-ethyl cinnamates 18b-d in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ produced the corresponding trans-cinnamyl alcohol 19b-d. Next, epoxidation of 19a-d (19a was procured from commercial source) with m - CPBA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ furnished trans-3-arylglycidols 20a-d which were then tosylated with TsCl in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the corresponding epoxy tosylates 21a-d.

Scheme 2.4. Synthesis of tosylates of trans-3-arylglycidols

With epoxy tosylates 21a-d in hand, we next conducted alkylation of different phenols/naphthols (1.0 equiv) with 21a-d (1.05 equiv) in the presence of NaH (1.5 equiv) in anh. DMF to obtain trans-2-aryl-3-(aryloxymethyl)oxiranes 7a-x (Table 2.1). These reactions were very much clean, furnishing the desired products in high isolated yields.

2.4.2. Screening of Reaction Conditions for the IFCEAC Reaction

Our optimization study commenced with the IFCEAC of 7a in the presence of readily available Brønsted acids (Table 2.2). Thus, a solution of $\mathbf{7 a}$ in AR grade MeCN
containing $20 \mathrm{~mol} \%$ of p-toluenesulfonic acid monohydrate $\left(\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}\right)$ as Brønsted acid catalyst was heated at $70^{\circ} \mathrm{C}$ for 30 min in an open atmosphere.

Table 2.1. Synthesis of trans-2-aryl-3-(aryloxymethyl)oxiranes ${ }^{a, b}$

${ }^{a}$ Reaction conditions: phenol/naphthol (1.0 mmol), $21(1.05 \mathrm{mmol})$ and $\mathrm{NaH}(1.5 \mathrm{mmol})$ in 3 mL anh. DMF. ${ }^{b}$ The percentage values shown in parentheses indicate the respective isolated yields after column chromatography

The desired product, trans-5,7-dimethyl-4-phenylchroman-3-ol 8a, was obtained in 80% isolated yield (Table 2.2, entry 1). A comparable product yields (76-78\%; entries 2-4) were obtained upon changing the catalyst from $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ to methanesulfonic acid
$(\mathrm{MsOH}),(\pm)$-camphorsulfonic acid (CSA) or 2,4-dinitrobenzenesulfonic acid (DNBSA). However, when stronger Brønsted acids like TFA, $\mathrm{H}_{2} \mathrm{SO}_{4}$, TfOH and $\mathrm{Tf}_{2} \mathrm{NH}$ were tested, lower yields of $60-65 \%$ were obtained (entries 5-8). On the other hand, employment of $\mathrm{HBF}_{4} \cdot \mathrm{OMe}_{2}$ gave a yield of 76% (entry 9) in this transformation.

Table 2.2. Survey of common Brønsted acid catalysts for the IFCEAC of 7a ${ }^{a}$

${ }^{a}$ Reaction conditions: $\mathbf{7 a}(0.4 \mathrm{mmol})$, acid catalyst ($20 \mathrm{~mol} \%$), $\mathrm{MeCN}(10 \mathrm{~mL})$ at $70{ }^{\circ} \mathrm{C}$.
${ }^{b}$ Isolated yields after column chromatography. ${ }^{c} 50 \mathrm{mg}$ of the catalyst was used
While low yield (50\%) was also observed with $\mathrm{H}_{3} \mathrm{PO}_{4}$ (entry 10), the reaction failed to provide 8a when we conducted the reaction with much weaker acid AcOH (entry 11) or phenol (entry 12), even after running it for a longer period of time. It is noteworthy that use of heterogeneous Brønsted acid Amberlite IR 120 was also ineffective (entry 13). Predictably, the reaction did not proceed in the absence of a catalyst (entry 14).

Although the optimization studies revealed an almost equal efficiency of sulfonic acids $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{MsOH},(\pm)$-CSA and DNBSA, we picked $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ as the Brønsted acid catalyst, due to its low cost and ease in handling, for further optimization of the reaction conditions.

Subsequently, we examined the effect of solvents, catalyst loading and temperature on the IFCEAC of 7a leading to 8a using $20 \mathrm{~mol} \%$ of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ as catalyst (Table 2.3). We found that all these factors influence the efficiency of the cyclization. For example, use of THF and 1,4-dioxane as reaction medium failed to provide $\mathbf{8}$ (Table 2.3, entries 1 and 2) while halogenated solvents like CHCl_{3} and $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ (DCE) furnished relatively lower yields of $\mathbf{8}$ (entries 3 and 4) in comparison to that obtained in MeCN . However, same yield was obtained when the reaction was carried in MeNO_{2} (entry 5). But toluene provided significantly higher yield (entry 6) compared to MeCN or MeNO_{2}. Use of toluene/DCE mixture (4:1) resulted in better yield (entry 7); but lower than that obtained in toluene. Interestingly, when we conducted the reaction in toluene/ MeCN (4:1), the result was an enhanced yield of 94% (entry 8). This superior outcome might be due to the increased solubility of TsOH in toluene/ MeCN compared to that in toluene alone. Use of anh. toluene/ MeCN (4:1) in the presence of $4 \AA$ molecular sieves under an argon atmosphere did not improve the yield (entry 9). So maintenance of strict anh. conditions was not necessary for our protocol.

Moreover, with toluene/ MeCN (4:1) as a reaction medium, the screening of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ loading indicated that yield of the reaction was diminished when it was used in less than $20 \mathrm{~mol} \%$ (Table 2.3, entries 10-12). Interestingly, stoichiometric amount of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in the same solvent system generated uncharacterizable side-products (none of which was detected with $20 \mathrm{~mol} \%$ catalyst loading) possibly through the decomposition, oligomerization or polymerization of the starting material, lowering the yield significantly (entry 13). Additionally, we found that the reaction was also influenced by temperature. Using $20 \mathrm{~mol} \%$ of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ as catalyst and toluene/ MeCN (4:1) as a reaction medium, the reaction was poor yielding at rt (Table 2.3, entry 14). On the other hand, when we carried out the reaction at $82^{\circ} \mathrm{C}$ instead of $70{ }^{\circ} \mathrm{C}$, yield was slightly diminished (entry 15). Based on the above results, it was evident that this transformation was best carried out using $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mol} \%)$ as catalyst in toluene $/ \mathrm{MeCN}(4: 1)$ at $70{ }^{\circ} \mathrm{C}$ for 30 min . It is noteworthy to mention that this transformation was regio- and stereoselective because only diastereomerically pure trans
isomer 8a was isolated. The molecular structure was confirmed by comparing the NMR data of $\mathbf{8 a}$ with the reported data $[7,8]$.

Table 2.3. Influence of solvent, catalyst loading and temperature on the IFCEAC of 7a leading to the formation of $\mathbf{8} a^{a}$

entry	solvent	cat (mol\%)	temp $\left({ }^{\circ} \mathrm{C}\right)$	time (min)	yield (\%) ${ }^{b}$
1	THF	20	70	120	0
2	$1,4-$ dioxane	20	70	120	0
3	CHCl_{3}	20	70	30	55
4	DCE^{2}	20	70	30	66
5	MeNO $_{2}$	20	70	30	80
6	toluene	20	70	30	90
7	toluene/DCE (4:1)	20	70	30	84
8^{b}	toluene/MeCN (4:1)	$\mathbf{2 0}$	$\mathbf{7 0}$	$\mathbf{3 0}$	$\mathbf{9 4}$
9^{c}	toluene/MeCN (4:1)	20	70	30	94
10	toluene/MeCN (4:1)	1	70	360	15
11	Toluene/MeCN (4:1)	5	70	120	50
12	toluene/MeCN (4:1)	10	70	60	75
13	toluene/MeCN (4:1)	100	70	30	85
14	toluene/MeCN (4:1)	20	rt	30	10
15	toluene/MeCN (4:1)	20	82	30	91

${ }^{a}$ Reaction conditions: 7a (0.4 mmol), Brønsted acid catalyst ($20 \mathrm{~mol} \%$), AR grade solvent (10 mL), open atmosphere. ${ }^{b}$ Isolated yields after silica gel column chromatography. ${ }^{c}$ The entry highlighted in bold indicates the optimal reaction conditions. ${ }^{c}$ Dried (anh.) solvents were employed in the presence of $4 \AA$ MS under argon atmosphere.

2.4.3. $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-Catalyzed IFCEAC of trans-2-Aryl-3-(aryloxymethyl)oxiranes

7b-x Leading to the Formation of (\pm)-trans-4-Phenylchroman-3-ols 8b-x

Upon the establishment of viable reaction conditions, we next sought to determine the scope of the reaction in terms of demonstrating the impact of the electronic nature of the
Ar^{1} group while keeping the Ar^{2} group as the unsubstituted phenyl group $\left(\mathrm{Ar}^{2}=\right.$ phenyl $)$. Thus, we subjected trans-2-aryl-3-(aryloxymethyl)oxiranes 7b-n to the IFCEAC under the optimized reaction conditions. The result is summarized in the Table 2.4.

Table 2.4. TsOH• $\mathbf{H}_{2} \mathrm{O}$-catalyzed IFCEAC of trans-2-aryl-3-(aryloxymethyl) oxiranes 7b-n leading to the formation of (\pm)-trans-4-arylchroman-3-ols $8 \mathrm{~b}-\mathrm{n}^{a, b}$

8b (from 7b)

8h (from 7h) 87\%

$8 \mathbf{i}$ (from 7i)
74\%

8j (from 7j)
75\%

8k (from 7k)
59\%

54\%

5\%
${ }^{a}$ All reactions were conducted by heating a solution of $7 \mathbf{b - n}(0.4 \mathrm{mmol})$ and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mol} \%)$ in a mixture of toluene $(8 \mathrm{~mL})$ and $\mathrm{MeCN}(2 \mathrm{~mL})$ at $70{ }^{\circ} \mathrm{C}$ for 30 min . ${ }^{b}$ The percentage values indicate the respective isolated yields after column chromatography.

It clearly indicates that substrates 7b-f with methoxy-substituted phenyl groups such as

3,5-dimethoxyphenyl, 3,4,5-trimethoxyphenyl, 3,4-dimethoxyphenyl, 2methoxyphenyl, and 4-methoxyphenyl groups underwent the diastereoselective IFCEAC to give products $\mathbf{8 b} \mathbf{- f}$ in good to high yields (Table 2.4, list of products, first row). Noteworthy is that, owing to the presence of higher nucleophilic site on the 3,5-
dimethoxyphenyl group (Ar^{1} ring), the cyclization of $\mathbf{7 b}$ was high yielding (92%) compared to other methoxy-substituted phenyl ring (Ar^{1} ring) bearing starting materials 7c-f.

Although the reactions leading to $\mathbf{8 b} \mathbf{- f}$ were satisfactory, removal of the methyl groups would be required to access biologically relevant trans-4-arylchroman-3-ols with free phenolic- OH group(s) on the Ar^{1} ring. To avoid the potentially harsh Lewis or Brønsted acidic conditions (e.g., $\mathrm{BBr}_{3}, \mathrm{HBr}$ etc.), which are commonly used for demethylation of -OMe group, suitable protecting group for phenolic-OH group(s) must be introduced (on the Ar^{1} ring) which must not interfere with the IFCEAC but must be sufficiently stable and easily removable at the end. Toward that objective, we synthesized and subjected two benzyloxy-substituted phenyl ring containing substrates $\mathbf{7 g}$ and $\mathbf{7 h}$ for this transformation (Table 2.4). To our delight, both of them gave good yields of expected products. This is in sharp contrast to a previous report on IFCEAC [9] in which the metal-based Lewis acid catalysts were very sensitive to -OBn group, resulting in decomposition of glycidyl ether substrates possibly through strong coordination of metal-based Lewis acid catalysts to benzyloxy group. To overcome this difficulty, suitable thiourea derivative was introduced which could moderate the Lewis acidity, thus enabling the product formation in good yields.

Meanwhile, substrates 7i and 7j bearing alkyl-substituted Ar^{1} groups also provided the corresponding products in good yields. However, substrate $7 \mathbf{k}$ with the unsubstituted phenyl group $\left(\mathrm{Ar}^{1}=\right.$ phenyl) furnished $\mathbf{8 k}$ in the low yield of 59%. Similar poor yield was observed in the reactions with substrate 71 bearing a 4-bromophenyl substituent as the Ar^{1} ring, furnishing product 81. Consequently, the reaction with substrates bearing electron poorer Ar^{1} rings, such as 4-chlorophenyl and 4-fluorophenyl, were not investigated. Nonetheless, naphthalyl group bearing substrates 7 m and 7 n provided products $\mathbf{8 m}$ and $\mathbf{8 n}$, respectively in satisfactory yields.

The poor yields with the substrates bearing less nucleophilic Ar^{1} fragments might be proposed to occur from the undesired side-reactions as described in Scheme 2.3. However, keeping in mind the electron-rich nature of Ar^{1} ring in naturally occurring 3chromanols and their derivatives, it is evident that this method of synthesizing trans-4-arylchroman-3-ols containing electron-rich Ar^{1} group is a fairly good method. Moreover, all reactions were carried out in open air with AR-grade toluene and MeCN , making this transformation very reliable and operationally simple. Therefore, this procedure should favorably complement the existing ones.

We next inspected the feasibility of the reaction on substrates 70-x encompassing the Ar^{2} as a halophenyl ring (Table 2.5). Under the optimized reaction conditions, substrates 7o-v encompassing an ortho/para-bromophenyl moiety as the Ar^{2} group successfully produced the desired products $8 \mathbf{8}-\mathbf{v}$ (Table 2.5).

Table 2.5. TsOH• $\mathbf{H}_{2} \mathrm{O}$-catalyzed IFCEAC of trans-2-aryl-3-(aryloxymethyl) oxiranes 7o-x leading to the formation of (\pm)-trans-4-arylchroman-3-ols 80-x ${ }^{a, b}$

${ }^{a}$ Unless otherwise noted, all the reactions were conducted by heating a solution of 70-x $(0.4 \mathrm{mmol})$ and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mol} \%)$ in a mixture of toluene $(8 \mathrm{~mL})$ and $\mathrm{MeCN}(2 \mathrm{~mL})$ at $70{ }^{\circ} \mathrm{C}$ for 30 min . ${ }^{b}$ The percentage values indicate the respective isolated yields after column chromatography. ${ }^{c}$ Reactions were run for 1 h instead of 30 min .
trans-4-Arylchroman-3-ols $\mathbf{8 0}$ and $\mathbf{8 p}$ were obtained from the corresponding substrates in 80 and 78% yields, respectively. Substrates $7 \mathbf{q}$ and $7 \mathbf{r}$ also furnished the corresponding products in satisfactory yields of 69 and 72% yields, respectively. The presence of an inductively electron-withdrawing ortho-bromo-substituent on the Ar^{2} ring undoubtedly created a noticeable decrease in yields; although the desired regio- and stereoselectivity was uninterrupted. Notably, these products have not been reported in the literature by previously reported synthetic procedures for this IFCEAC or any other synthetic methodologies. As expected, substrates 7s-v containing a para-bromophenyl
moiety exhibited better results compared to their ortho counterparts. For example, the product yield from substrate $7 \mathbf{7}$ was 80% whereas substrate 7 s offered 87% yield. It is worthwhile to mention that the products with bromine substituent could be potentially used to introduce additional functionalities and generate molecular complexity and diversity. Next we turned our attention to ortho-fluorophenyl containing substrates 7w and $\mathbf{7 x}$. However, with these two substrates, reaction rate decreased substantially and reactions were incomplete within 30 min , although they proceeded to completion after 1 h with decreased yields, presumably due to the much stronger electron-withdrawing effect of the ortho-fluoro substituent.

2.4.4. Upscaling of the Reaction: Gram-Scale Synthesis of 8a

Until now, syntheses of trans-4-arylchroman-3-ols were carried out with only small amounts of substrates. To show the practical utility of this protocol, an upscale to the gram-level was essential. In this aspect, the gram-scale synthesis of trans-4-arylchroman-3-ol 8a was examined. As shown in Scheme 2.5, the reaction of 2.5 g of $7 \mathbf{a}$ under the optimized reaction conditions proceeded smoothly and delivered the corresponding product $\mathbf{8 a}$ in 84% yield without a significant loss of efficiency (yield on small scale: 94%, Table 2.3, entry 8). Successful upscaling of the reaction at gram scale demonstrated its synthetic practicality.

Scheme 2.5. Gram-scale synthesis of racemic 8a

2.4.5. Synthesis of trans-4-Arylchroman-3-ol with Free Phenolic-OH Groups on Ar ${ }^{1}$ and Ar 2 Rings

Our next effort was to apply the present methodology to the synthesis of trans-4-arylchroman-3-ol containing phenolic-OH substituted- Ar^{1} ring. However, execution of this plan was not as straightforward as it might appear at first glance. trans-3Arylglycidols derived from parent E-cinnamyl alcohol or electron-withdrawing groupsubstituted E-cinnamyl alcohols can be readily synthesized and are stable-but those from ortholpara-alkoxy-substituted cinnamyl alcohols are difficult to prepare or are
unstable due to intermolecular epoxide ring-opening by the in situ generated m chlorobenzoic acid under m-chloroperbenzoic acid (m-CPBA)-mediated epoxidation condition [10]. The scenario is not much different with the popular Sharpless asymmetric epoxidation or any other common epoxidation methods [10]. During efforts to address this, it occurred to us that the ortho/para-tosyloxy-substituted E-cinnamyl alcohols could be epoxidized efficiently [11], enabling the introduction of -OH or -OR substituent on the aryl Ar^{2} ring. Thus, following a literature procedure, vanillin 22 was converted to E allylic alcohol 25 via a three-step reaction sequence involving sequential tosylation, HWE olefination and DIBAL-H reduction (Scheme 2.6) [11]. Next, m-CPBA-mediated epoxidation of $\mathbf{2 5}$ produced epoxy alcohol 26, which after tosylation, was subjected to NaH -mediated etherfication with 4-benzyloxy-3-methoxyphenol to produce glycidyl ether 27. Compound 27 was then subjected to IFCEAC under the optimized reaction conditions to obtain compound $\mathbf{2 8}$ in 85% yield. Finally, a two-step reaction sequence of detosylation of 28 with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in refluxing methanol and subsequent debenzylation of the resulting product with $\mathrm{Pd}-\mathrm{C}$ and H_{2} gas provided trans-4-arylchroman-3-ol 30 bearing free phenolic -OH on both Ar^{1} and Ar^{2} rings.

Scheme 2.6. Synthesis of trans-4-arylchroman-3-ol with free phenolic -OH groups

2.4.6. Asymmetric Version of the Developed Methodology

Next, we turned our attention to develop an asymmetric version of the developed IFCEAC. Thus, enantiomerically enriched epoxy alcohol ($\mathbf{2 R}, \mathbf{3 R}$)-20a was synthesized using Sharpless asymmetric epoxidation ((-)-DET, $\left.\mathrm{Ti}(\mathrm{OiPr})_{4}, \mathrm{TBHP}\right)$ as the source of chirality (Scheme 2.7). Next, compound ($\mathbf{2 R}, \mathbf{3 R}$)-20a was converted into epoxy tosylate $(\mathbf{2 R}, \mathbf{3 R})-\mathbf{7 b}$ following the steps described in 2.4 . IFCEAC reaction of $(\mathbf{2 R}, \mathbf{3 R}) \mathbf{- 7 b}$ under the optimized reaction conditions furnished $(\mathbf{3 S}, \mathbf{4 R}) \mathbf{- 8 b}$. The stereospecific nature of this reaction was confirmed by comparison of the specific rotation values of compound $\mathbf{(3 S , 4 R}) \mathbf{- 8 b}$ with literature value (see the Experimental Section for more details).

Scheme 2.7. Confirmation of the enantiospecific nature of the developed IFCEAC

2.4.7. Proposed Reaction Mechanism

A mechanistic rationalization for the formation of the trans-4-arylchroman-3-ols via $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ catalyzed IFCEAC of trans-2-aryl-3-(aryloxymethyl)oxiranes, which was in agreement with our observations is proposed in Scheme 2.8. The first step, unquestionably, must be the activation of epoxide 7 through protonation to give protonated epoxide \mathbf{I}. Subsequent nucleophilic attack of the Ar^{1} group to \mathbf{I} could happen in a concerted process or step-wise manner. As suggested by Qu et al. [8], trans-4-arylchroman-3-ol 8 could be obtained from 7 via 6-(arene-endo)-endo-tet-epoxide cyclization (cycle a, Scheme 2.8) through the concerted process. This concerted epoxidering opening might be more operational with substrates with electron-drawing group on the ortho or para position of the Ar^{2} ring. Simultaneously, we hypothesized that in the presence of acid catalyst, I could also experience ring-opening to form more stable benzylic carbocation intermediate II (cycle b). This should be more realistic with
substrates bearing electron-donating group on the ortho and/or para position of the Ar^{2} ring.

Scheme 2.8. Proposed mechanisms for the trans-diastereoselectivity in the $\mathbf{T s O H} \cdot \mathbf{H}_{2} \mathrm{O}$ catalyzed IFCEAC of trans-2-aryl-3-(aryloxymethyl)oxiranes

Four conformers IIa-c are possible for the intermediate carbocation II, and among them the conformer IIc has all substituents in the pseudoequatorial positions and hence
might predominate over others [12]. Subsequent cyclization by a 6 -exo-trig mode could afford trans-4-arylchroman-3-ol 8.

2.4.8. Application of trans-4-Arylchroman-3-ols: Synthesis of cis-4-Arylchroman-3ols from the Corresponding trans-Isomers

trans-4-Arylchroman-3-ols derived from IFCEAC have not been converted previously to the corresponding cis isomers. We turned our attention to develop a methodology for this transformation with selective substrates 8a and 8w. Classical Mitsunobu inversion was not effective to achieve this purpose. Delightfully, however, Dess-Martin oxidation of $\mathbf{8 a}$ and $\mathbf{8 w}$ followed by simple NaBH_{4} reduction of the resulting chromanones (30a and 30b, respectively) furnished cis-4-arylchroman-3-ols 31a and 31b, respectively, with complete diastereoselectivity (Scheme 2.9) [6]. The reduction processes appeared to be very fast and clean (showed only one spot on TLC from the crude reaction mixture), yielding the corresponding products in very high yields. Further TLC analysis indicated that, the trans-isomer 8a (Table 2.3, entry 8) and the corresponding cis-isomer 31a (obtained from this reduction process, Scheme 2.9) showed small but definite difference in R_{f} values, with the cis-isomer being less polar. From the synthesis point of view, this two-step epimerization process appeared to be very much attractive because of complete diastereoselectivity and high overall yield.

Scheme 2.9. Two-step epimerization of trans-4-arylchroman-3-ols 8a and 8w

2.4.9. Application of cis-4-Arylchroman-3-ols: Synthesis of a Chroman-Fused 2,3Dihydrobenzofuran System

Finally, to demonstrate the synthetic utility of 4-arylchroman-3-ols in the synthesis of chroman-based polycyclic molecules, we treated trans-4-arylchroman-3-ol 8w with KOBu^{t} in THF under reflux condition (Scheme 2.10). Unfortunately, it resulted in the recovery of unreacted starting material, and the corresponding polycyclic product $\mathbf{3 2}$ was not obtained. The failure to access compound $\mathbf{3 2}$ by this transformation involving an $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ mechanism might be due to the unfavorable trans stereochemistry at the 6,5 -ring junction. A confirmation of this assumption came from the next experiment. When the corresponding cis-isomer 31b was subjected to this intramolecular $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ under the above-mentioned reaction conditions, we could successfully obtain chroman-fused 2,3dihydrobenzofuarn 33 having a cis stereochemistry at the 6,5-ring junction.

Scheme 2.10. Synthesis of a chroman-fused 2,3-dihydrobenzofuran 33

2.5. Conclusion

In summary, a systematic synthetic study of diverse trans-4-arylchroman-3-ols was made via $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ($20 \mathrm{~mol} \%$)-catalyzed diastereoselective intramolecular FriedelCrafts epoxide-arene cyclization. The protocol involved conducting reactions in ARgrade toluene $/ \mathrm{MeCN}$ under open air, did not require strict anh. conditions, and avoided the use of expensive Lewis/ Brønsted acids. Remarkably, exposure of arylglycidyl ethers to a strong Brønsted acid like $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in AR-grade toluene $/ \mathrm{MeCN}$ did not generate the corresponding diols through hydrolysis, or the resulting trans-4-arylchroman-3-ols did not suffer from dehydration to the corresponding chromene derivatives. The exact
nature of this fundamentally unique reaction (stepwise vs concerted) could vary depending on the substrate; however, the synthetic effectiveness was clearly evident, with trans-4-arylchroman-3-ols being prepared in moderate to high yields with complete regio- and diastereoselectivity. This method also allowed scale-up from milligram- to gram-scale. Furthermore, this methodology was suitable for the introduction of phenolicOH groups on both the aromatic rings, thereby creating opportunities for the synthesis of complex molecules. Finally, we could develop a methodology to convert trans-4-arylchroman-3-ols to their corresponding cis-isomers, and demonstrated the potential for further transformations by synthesizing a chroman-fused 2,3-dihydrobenzofuran derivative. Such a combination of two privileged structural motifs is highly relevant for drug discovery and development.

2.6. Experimental Section

2.6.1. General Remarks

All dry reactions were carried out under nitrogen in oven-dried glassware using standard gas-light syringes, cannulas, and septa. Commercial reagents were used without further purification unless otherwise stated. Progress of reactions was monitored by TLC on pre-coated Merck silica gel plates (60F-254). Visualization of reactants and products was accomplished with UV light. Column chromatography was performed over silica gel (60-120 mesh) procured from Merck using freshly distilled solvents. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were run on a JEOL 400 MHz spectrometer in CDCl_{3} as solvent. Tetramethylsilane (0.00 ppm) served as an internal standard in ${ }^{1} \mathrm{H} \mathrm{NMR}$ and CDCl_{3} (77.0 ppm) in ${ }^{13} \mathrm{C}$ NMR. All spectra were recorded at $25^{\circ} \mathrm{C}$. Coupling constants (J values) are given in hertz (Hz). Chemical shifts are expressed in parts per million (ppm). Optical rotations were measured by a Rudolph Autopol V polarimeter. Elemental analyses were carried out with a Perkin-Elmer CHN analyzer. Melting points were measured on a Büchi 535 melting point apparatus. The values are not corrected.

2.6.2. Preparation of Compounds

Synthesis of trans-3-Arylglycidyl Tosylates (Scheme 2.4)

General procedure A: synthesis of trans-ethyl cinnamates 18b-d from benzaldehydes 17b-d by Horner-Wadsworth-Emmons (HWE) olefination

Triethylphosphonoacetate ($11.9 \mathrm{~mL}, 60 \mathrm{mmol}$) was added to a stirred suspension of $\mathrm{NaH}(2.5 \mathrm{~g}, 65 \mathrm{mmol})$ in anh. THF (70 mL) at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The mixture was allowed to warm to rt, and after 30 min was re-cooled to $0^{\circ} \mathrm{C}$. A solution of an appropriate aromatic aldehyde (50 mmol) in THF $(70 \mathrm{~mL})$ was added to the reaction mixture, and the resulting mixture was stirred at rt for 1 h . The reactant mixture was quenched by aq. saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL), and diluted with diethyl ether (100 $\mathrm{mL})$. The organic layers was separated and then washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The resulting crude product was purified by a silica gel column chromatography ($0-5 \%$ EtOAc in hexanes).

(E)-Ethyl 3-(2-bromophenyl)acrylate(18b):

18b
Following general procedure A, 2-bromobenzaldehyde 17b ($9.25 \mathrm{~g}, 50 \mathrm{mmol}$) was subjected to the HWE olefination reaction. The crude product was purified by a silica gel column chromatography ($0-5 \% \mathrm{EtOAc}$ in hexanes) to obtain compound 18b as a colorless oil. Yield: $95 \%(12.11 \mathrm{~g})$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04$ (d, $J=15.9 \mathrm{~Hz}$, 2 H), 7.62-7.58 (m, 2H), 7.31-7.21 (m, 2H), $6.38(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.35(\mathrm{q}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.3,142.8,134.5$, $133.4,131.1,127.7,127.6,125.2,121.1,60.6,14.2$. Spectral data were consistent with the literature data [13].

(E)-Ethyl 3-(4-bromophenyl)acrylate (18c):

18c

Following general procedure A, 4-bromobenzaldehyde 17c (9.25 g, 50 mmol) was subjected to the HWE olefination reaction. The crude product was purified by a silica gel column chromatography ($0-5 \% \mathrm{EtOAc}$ in hexanes) to obtain compound 18c as a colorless oil. Yield: $92 \%(11.73 \mathrm{~g})$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57$ (d, $J=15.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35-7.51(\mathrm{~m}, 4 \mathrm{H}), 6.38(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=$
$7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.7,143.2,133.4,132.1,129.5,124.5$, $119.0,60.7,14.4$. Spectral data were consistent with the literature data [13].

(E)-Ethyl 3-(2-fluorophenyl)acrylate (18d):

18d
Following general procedure A, 2-fluorobenzaldehyde $\mathbf{1 7 d}(6.205 \mathrm{~g}, 50 \mathrm{mmol})$ was subjected to the HWE olefination reaction. The crude product was purified by a silica gel column chromatography ($0-5 \% \mathrm{EtOAc}$ in hexanes) to obtain compound 18d as a colorless oil. Yield: $94 \%(9.59 \mathrm{~g})$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81$ (d, $J=16.2 \mathrm{~Hz}, 1$ H), 7.53 (dd, $J=7.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 166.7,161.2(\mathrm{~d}, J=252.3 \mathrm{~Hz}), 137.1(\mathrm{~d}, J=2.92 \mathrm{~Hz}), 131.5(\mathrm{~d}, J=8.7 \mathrm{~Hz})$, 128.9 (d, $J=2.9 \mathrm{~Hz}), 124.3(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 122.4(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 120.7(\mathrm{~d}, J=6.6 \mathrm{~Hz})$, $116.1(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 60.5,14.2$. Spectral data were consistent with the literature data [14].

General procedure B: DIBAL-H reduction of trans-ethyl cinnamates 18b-d

To a stirred solution of an appropriate trans-unsaturated ester (1.0 equiv, 19.6-25.74 $\mathrm{mmol})$ in anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under nitrogen atmosphere was added DIBALH (1.0 M in heptane, 2.2 equiv) dropwise. The resulting solution was then allowed to slowly warm to $0{ }^{\circ} \mathrm{C}$ and stirred for 2 h at this temperature. The reaction was quenched by careful addition of small amount of methanol and then allowed to warm to room temperature. Saturated aq. potassium sodium tartrate (50 mL) and EtOAc (100 mL) were added and the mixture was stirred vigorously for 1 hour. The phases were then separated and the aqueous phase was extracted with $\operatorname{EtOAc}(50 \times 2 \mathrm{~mL})$. The combined organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The resulting crude product was purified by a silica gel column chromatography (5-15\% EtOAc in hexanes).

(E)-3-(2-Bromophenyl)prop-2-en-1-ol (19b):

19b
Following general procedure B, compound $\mathbf{1 8 b}(5.0 \mathrm{~g}, 19.6 \mathrm{mmol})$ was reduced by DIBAL-H. The crude product was purified by a silica gel column chromatography (5$15 \%$ EtOAc in hexanes) to obtain compound 19b as a colorless gum. Yield: 94\% (3.92 g); $\mathrm{R}_{f:} 0.23$ (silica gel, 25% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{td}, J=7.6$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dt}, J=16.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.48 (br s, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.6,133.0,131.7,129.6$, $129.0,127.6,127.2,123.7,63.5$. Spectral data were in consistent with the literature data [15].

(E)-3-(4-Bromophenyl)prop-2-en-1-ol (19c):

19c

Following general procedure B, compound $\mathbf{1 8 c}(5.0 \mathrm{~g}, 19.6 \mathrm{mmol})$ was reduced by DIBAL-H. The crude product was purified by a silica gel column chromatography (5$15 \%$ EtOAc in hexanes) to obtain compound 19c as a white solid. Yield: $96 \%(4.0 \mathrm{~g}) ; \mathrm{R}_{f}$: 0.21 (silica gel, 25% EtOAc in hexanes); mp: 66-68 ${ }^{\circ} \mathrm{C}$ \{Lit. mp: 65-67 $\left.{ }^{\circ} \mathrm{C}\right\}[16] ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.24 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 6.56 (dt, J $=15.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{dt}, J=16.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{bs}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.9,131.9,130.0,129.6,128.2,121.6,63.7$. Spectral data were consistent with the literature data [16].

(E)-3-(2-Fluorophenyl)prop-2-en-1-ol (19d):

19d

Following general procedure B, compound $\mathbf{1 8 d}(5.0 \mathrm{~g}, 25.74 \mathrm{mmol})$ was reduced by DIBAL-H. The crude product was purified by a silica gel column chromatography (5$15 \%$ EtOAc in hexanes) to obtain compound 19d as a colorless gum. Yield: 95\% (3.72
g); $\mathrm{R}_{f}: 0.25$ (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45$ (dt, $J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{dt}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{ddd}, J=1.2,8.2$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{td}, J=5.6,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=1.6$, $5.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.3(\mathrm{~d}, J=249.4 \mathrm{~Hz}$), $131.2(\mathrm{~d}, J=4.6$ $\mathrm{Hz}), 128.9(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 127.5(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 124.5(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 124.1(\mathrm{~d}, J=3.6$ $\mathrm{Hz}), 123.4(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=22.0 \mathrm{~Hz})$, 63.8. Spectral data were consistent with the literature data [17].

General procedure C: \boldsymbol{m}-chloroperbenzoic acid ($\boldsymbol{m} \mathrm{CPBA}$)-mediated epoxidation of E-cinnamylalcohola 19a-d:

To a stirred solution of E-cinnamyl alcohol 19 (10 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added m CPBA (77% purity, $3.32 \mathrm{~g}, 15 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt for 6 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and then washed successively with aq. solutions of $\mathrm{Na}_{2} \mathrm{SO}_{3}(25 \mathrm{~mL}), \mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and brine $(25 \mathrm{~mL})$. The organic layers was separated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The resulting crude product was purified by a silica gel column chromatography (5-20\% EtOAc in hexanes).
trans-(\pm)-3-Phenyloxiran-2-yl)methanol (20a):

20a

Following general procedure C, compound 19a ($1.34 \mathrm{~g}, 10.0 \mathrm{mmol}$) was epoxidized by m CPBA. The crude product was purified by a silica gel column chromatography (5$25 \%$ EtOAc in hexanes) to obtain compound 20a as a colorless gum. Yield: 90\% (1.35 $\mathrm{g}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.20(\mathrm{~m}, 5 \mathrm{H}) ; 4.01(\mathrm{dd}, J=12.7,2.9 \mathrm{~Hz}, 1 \mathrm{H})$; $3.90(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.74(\mathrm{dd}, J=12,6.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.21(\mathrm{td}, J=4.1,2.2 \mathrm{~Hz}, 1 \mathrm{H})$; 2.71 (br s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.6,128.5,128.3,125.7,62.5,61.2$, 55.6. Spectral data were consistent with the literature data [18-20].

20b

Following general procedure C, compound 19b ($2.13 \mathrm{~g}, 10.0 \mathrm{mmol}$) was epoxidized by m-CPBA. The crude product was purified by a silica gel column chromatography (5$25 \%$ EtOAc in hexanes) to obtain compound 20b as a colorless gum. Yield: 75\% (1.72 g); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 2 \mathrm{H})$, 7.21-7.15 (m, 1H), $4.19(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=10.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=$ $12.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.2,132.0,129.2,127.5,126.1,122.2,62.1,61.4,55.4$. Spectral data were consistent with the literature data [9].

trans-(\pm)-3-(4-Bromophenyl)oxiran-2-yl)methanol (20c):

Following general procedure C, compound 19c ($2.13 \mathrm{~g}, 10.0 \mathrm{mmol}$) was epoxidized by m CPBA. The crude product was purified by a silica gel column chromatography (525\% EtOAc in hexanes) to obtain compound 20c as a colorless gum. Yield: 81\% (1.86 $\mathrm{g}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 4.04 (dd, $J=2.4 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=3.2 \mathrm{~Hz}, 12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.16-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.8,131.6$, $127.3,122.2,62.4,60.9,54.9$; Spectral data were consistent with the literature data [21].

trans-(\pm)-3-(2-Fluorophenyl)oxiran-2-yl)methanol (20d):

Following general procedure \mathbf{C}, compound $19 \mathrm{~d}(1.52 \mathrm{~g}, 10.0 \mathrm{mmol})$ was epoxidized by m CPBA. The crude product was purified by a silica gel column chromatography (5$25 \%$ EtOAc in hexanes) to obtain compound 20d as a colorless gum. Yield: 70\% (1.18
$\mathrm{g}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26-7.03(\mathrm{~m}, 4 \mathrm{H}), 4.21(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ (ddd, $J=12.8,5.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{ddd}, J=8.4,7.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.23$ (dd, $J=7.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.3(\mathrm{~d}, J=245 \mathrm{~Hz}), 129.5$ $(\mathrm{d}, J=8 \mathrm{~Hz}), 126.2(\mathrm{~d}, J=3 \mathrm{~Hz}), 124.3(\mathrm{~d}, J=3 \mathrm{~Hz}), 124.0(\mathrm{~d}, J=12 \mathrm{~Hz}), 115.2(\mathrm{~d}, J=$ $20 \mathrm{~Hz}), 61.7,61.2,50.2(\mathrm{~d}, J=6 \mathrm{~Hz})$; Spectral data were consistent with the literature data [21].

General Method D: tosylation of trans-3-arylglycidols 20a-d:

To a stirred solution of trans-3-arylglycidol $20(7.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added triethylamine ($1.5 \mathrm{~mL}, 10.47 \mathrm{mmol}$) followed by tosyl chloride ($2 \mathrm{~g}, 10.47$ mmol) and kept in the refrigerator for 12 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ (100 mL), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine $(100 \mathrm{~mL})$ and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (2-15\% EtOAc/hexanes).

(\pm)-trans-3-Phenyloxiran-2-yl)methyl 4-methylbenzenesulfonate (21a):

Following general procedure D, compound 20a ($1.05 \mathrm{~g}, 7.0 \mathrm{mmol}$) was subjected to the tosylation reaction. The crude product was purified by a silica gel column chromatography ($2-15 \%$ EtOAc in hexanes) to obtain compound 21a as a white solid. Yield: $94 \%(2.00 \mathrm{~g}) ; \mathrm{mp}: 65-66^{\circ} \mathrm{C}$ (lit. mp: 68-69 ${ }^{\circ} \mathrm{C}$) [22]; $R_{f}: 0.52$ (silica gel, 15% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.38-7.31$ (m, 5H), 7.23-7.20 (m, 2H), $4.36(\mathrm{dd}, J=11.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=11.5,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 145.3,135.6,132.7,130.0,128.7,128.6,128.0,125.8,69.5,58.6,58.4,21.7$. The spectroscopic and physical data were in agreement with literature data [22].
(\pm)-trans-3-(2-Bromophenyl)oxiran-2-yl)methyl 4-methylbenzenesulfonate (21b):

Following general procedure \mathbf{D}, compound $\mathbf{2 0 b}(1.60 \mathrm{~g}, 7.0 \mathrm{mmol})$ was subjected to the tosylation reaction. The crude product was purified by a silica gel column chromatography ($2-15 \%$ EtOAc in hexanes) to obtain compound 21b as a white solid. Yield: 92% (2.47 g); mp: $120-122{ }^{\circ} \mathrm{C}$; $R_{f}: 0.57$ (silica gel, 15% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{dd}, J=11.4,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.10 (dd, $J=11.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13}{ }^{1}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.1,135.2,132.6,132.2,129.9,129.7,127.9,127.7$, 126.2, 122.4, 69.4, 58.2, 55.9, 21.6; Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{4} \mathrm{~S}: \mathrm{C}, 50.14$; H, 3.94, found: C, 50.19; H, 3.96.

(\pm)-trans-3-(4-Bromophenyl)oxiran-2-yl)methyl 4-methylbenzenesulfonate (21c):

Following general procedure \mathbf{D}, compound $\mathbf{2 0 c}(1.60 \mathrm{~g}, 7.0 \mathrm{mmol})$ was subjected to the tosylation reaction. The crude product was purified by a silica gel column chromatography ($2-15 \% \mathrm{EtOAc}$ in hexanes) to obtain compound 21c as a white solid. Yield: $93 \%(2.49 \mathrm{~g}) ; R_{f}: 0.52$ (silica gel, 15% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.08 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.31 (dd, $J=11.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (dd, $J=11.4,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.73(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8145.2, 134.7, 132.7, 131.8, 130.0, 128.0, 127.3, 122.6, 69.0, 58.6, 55.9, 21.7. The spectroscopic and physical data were in agreement with literature data [7].
(\pm)-trans-3-(2-Fluorphenyl)oxiran-2-yl)methyl 4-methylbenzenesulfonate (21d):

21d

Following general procedure D, compound $\mathbf{2 0 d}(1.18 \mathrm{~g}, 7.0 \mathrm{mmol})$ was subjected to the tosylation reaction. The crude product was purified by a silica gel column chromatography ($2-15 \% \mathrm{EtOAc}$ in hexanes) to obtain compound 21d as a white solid. Yield: $92 \%(2.07 \mathrm{~g})$; mp: $117-119{ }^{\circ} \mathrm{C}$; R_{f} : 0.56 (silica gel, 15% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.26$ (m, 1H), 7.14-7.10 (m, 2H), 7.07-7.02 (m, 1H), 4.39 (dd, $J=11.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (dd, $J=11.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.3$ (d, $J=248.2 \mathrm{~Hz}$), 145.1, $132.5,129.93(\mathrm{~d}, J=8.6$ $\mathrm{Hz}), 129.94,127.9,126.1(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 124.4(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 122.9(\mathrm{~d}, J=12.5 \mathrm{~Hz})$, $115.3(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 69.3,57.9,50.9(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 21.6$; Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FO}_{4} \mathrm{~S}: \mathrm{C}, 59.62 ; \mathrm{H}, 4.69$, found: C, 59.72; H, 4.64.

General method E: synthesis of trans-2-aryl-3-(aryloxymethyl)oxiranes 7a-x by the alkylation of penols/naphthols with epoxy tosylates 21a-d (Table 2.1):

To a stirred suspension of sodium hydride ($36 \mathrm{mg}, 1.5 \mathrm{mmol}$) in DMF (3 mL), a solution of phenol/naphthol (1.0 mmol) in anh. DMF (5 mL) was added at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The resulting mixture was stirred for 5 min , and a solution of racemic epoxy tosylates 21a-d (1.05 mmol) in DMF (5 mL) was added dropwise. The solution was stirred for an additional 12 h at rt . The reaction was terminated by the addition of 10% aqueous ammonium chloride (10 mL) and diethyl ether $(50 \mathrm{~mL})$ was added. The organic layer was separated, washed by brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After filtration, the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (5-15\% EtOAc/hexanes).

(\pm)-trans-2-((3,5-Dimethylphenoxy)methyl)-3-phenyloxirane (7a):

7a
Following general procedure E, alkylation of 3,5-dimethylphenol ($122 \mathrm{mg}, 1.0$ mmol) with epoxy tosylate $\mathbf{2 1 a}$ ($319 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound 7a as a colorless oil. Yield: 85% (216 mg); $R_{f}: 0.57$ (silica gel, 15% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.21-7.33(\mathrm{~m}, 5 \mathrm{H}), 6.51-6.60(\mathrm{~m}, 3 \mathrm{H}), 4.21$ (dd, $J=3.1$,
$11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=5.3,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.33(\mathrm{~m}$, $1 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.7,136.8,128.7,128.5,125.9$, $123.2,112.6,67.9,60.4,56.4,21.6$. The spectroscopic and physical data were in agreement with literature data [7].

(\pm)-trans-2-((3,5-Dimethoxyphenoxy)methyl)-3-phenyloxirane (7b):

Following general procedure \mathbf{E}, alkylation of 3,5-dimethoxyphenol (154 mg, 1.0 mmol) with epoxy tosylate 21a ($319 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound 7b as a colorless oil. Yield: 84% (241 mg); $R_{f}: 0.45$ (silica gel, 15% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.20-6.10(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=3.1$, $11.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.05 (dd, $J=5.2,11.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.88 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 ($\mathrm{s}, 6 \mathrm{H}$), 3.37 $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.5,160.2,136.4,128.4,128.3,125.6,93.5$, $93.4,67.9,60.0,56.2,55.2$. The spectroscopic and physical data were in agreement with literature data [7].
(\pm)-trans -2-((3,4,5-Trimethoxyphenoxy)methyl)-3-phenyloxirane (7c):

Following general procedure E, alkylation of 3,4,5-trimethoxyphenol (184 mg, 1.0 mmol) with epoxy tosylate 21a ($319 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound 7c as a colorless gum. Yield: 74% (234 mg); $R_{f}: 0.41$ (silica gel, $15 \% \mathrm{EtOAc}$ in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.22(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{dd}, J=3.1,11.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.11$ (dd, $J=5.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (s, 6H), 3.79 (s, $3 \mathrm{H})$, 3.40-3.38 (m, 1H); Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}: \mathrm{C}, 68.34 ; \mathrm{H}, 6.37$, found: 68.22; H, 6.44.
(\pm)-trans-2-((3,4-Dimethoxyphenoxy)methyl)-3-phenyloxirane (7d):

Following general procedure E, alkylation of 3,4,-dimethoxyphenol ($154 \mathrm{mg}, 1.0$ mmol) with epoxy tosylate $\mathbf{2 1 a}$ ($319 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound 7d as a colorless semi-solid. Yield: $81 \%(232 \mathrm{mg}) ; R_{f}: 0.44$ (silica gel, $15 \% \mathrm{EtOAc}$ in hexanes); Compound $7 \mathbf{d}$ was used for the next step without characterization.
(\pm)-trans -2-((2-Methoxyphenoxy)methyl)-3-phenyloxirane (7e):

7e
Following general procedure E, alkylation of 2-methoxyphenol ($124 \mathrm{mg}, 1.0 \mathrm{mmol}$) with epoxy tosylate 21a ($319 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound 7 e as a colorless gum. Yield: 78% (200 mg); R_{f} : 0.49 (silica gel, $15 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.01-6.90(\mathrm{~m}, 4 \mathrm{H}), 4.40(\mathrm{dd}, J=2.3,11.3$ Hz, 1H), 4.20 (dd, $J=5.5,11.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.91 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.87 ($\mathrm{s}, 3 \mathrm{H}$), 3.47-3.45 $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.6,147.8,136.5,128.4,128.3,125.7,122.0$, 120.8, 114.4, 111.9, 69.4, 60.3, 56.4, 55.7; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 74.98; H, 6.29, found: C, 75.18; H, 6.30.

(\pm)-trans -((4-Methoxyphenoxy)methyl)-3-phenyloxirane (7f):

7f

Following general procedure E, alkylation of 4-methoxyphenol ($124 \mathrm{mg}, 1.0 \mathrm{mmol}$) with epoxy tosylate 21a ($319 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound $\mathbf{7 f}$ as a colorless solid. Yield: 85% (217 mg); mp: $140-142{ }^{\circ} \mathrm{C}$ (lit. mp: 142-143 ${ }^{\circ} \mathrm{C}$) ${ }^{7} R_{f:} 0.49$ (silica gel, 15% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.26(\mathrm{~m}, 5 \mathrm{H})$, 6.91-6.81 (m, 4H), 4.26 (dd, $J=3.1,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (dd, $J=5.1,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-$ $3.88(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.35(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.3$,
152.7, 136.6, 128.6, 128.4, 125.7, 115.8, 114.7, 68.7, 60.4, 56.4, 55.7. The spectroscopic and physical data were in agreement with literature data [7].
(\pm)-trans -2-((3-(Benzyloxy)phenoxy)methyl)-3-phenyloxirane (7g):

7g

Following general procedure \mathbf{E}, alkylation of 3-benzyloxyphenol ($200 \mathrm{mg}, 1.0$ mmol) with epoxy tosylate 21a ($319 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound 7 g as a light yellow semi-solid. Yield: $72 \%(239 \mathrm{mg}) ; R_{f}: 0.53$ (silica gel, $15 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46-7.30(\mathrm{~m}, 10 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.65-$ $6.56(\mathrm{~m}, 3 \mathrm{H}), 5.06(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{dd}, J=3.2,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=5.5,11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.11(\mathrm{dd}, J=5.5,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.39(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.9,159.6,136.8,136.4,128.9,128.5,128.4,127.9$, 127.4, 125.7, 107.6, 107.0, 102.0, 69.9, 67.8, 60.1, 56.2; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 79.50; H, 6.06, found: C, 79.62; H, 6.14.
(\pm)-trans -2-((4-(Benzyloxy)-3-methoxyphenoxy)methyl)-3-phenyloxirane (7h):

7h

Following general procedure E, alkylation of 4-benzyloxy-3-methoxyphenol (230 $\mathrm{mg}, 1.0 \mathrm{mmol}$) with epoxy tosylate $\mathbf{2 1 a}(319 \mathrm{mg}, 1.05 \mathrm{mmol})$ was performed to obtain compound 7h as a light yellow semi-solid. Yield: 75% (271 mg); $R_{f}: 0.51$ (silica gel, 15% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.30(\mathrm{~m}, 10 \mathrm{H}), 6.80(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=2.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 3 \mathrm{H}), 4.28$ (dd, $J=3.2,11.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08 (dd, $J=5.4,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-$ $3.38(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.6,150.8,142.8,137.4,136.4,128.5$, $128.4,127.4,125.7,111.5,104.1,101.4,72.0,68.4,60.3,56.3,55.9$; Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{4}$: C, 76.22; H, 6.12, found: C, 76.27; H, 6.21.
(\pm)-trans-2-((4-(tert-Butyl)phenoxy)methyl)-3-phenyloxirane (7i):

Following general procedure E, alkylation of 4-tert-butylphenol ($150 \mathrm{mg}, 1.0$ mmol) with epoxy tosylate $\mathbf{2 1 a}$ ($319 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound $7 \mathbf{i}$ as a colorless solid. Yield: 83% (234 mg); mp: 149-151 ${ }^{\circ} \mathrm{C}$ (lit. mp: $152-153{ }^{\circ} \mathrm{C}$) [7]; $R_{f}: 0.58$ (silica gel, 15% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27-7.38$ (m, 7H), 6.87-6.90 (m, 2H), 4.29 (dd, $J=3.3,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=5.1,11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.40(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 156.3,144.1,136.6,128.6,128.4,126.4,125.8,114.2,68.0,60.4,56.4,34.1$, 31.6. The spectroscopic and physical data were in agreement with literature data $[7,8]$.

(\pm)-trans-2-Phenyl-3-((p-tolyloxy)methyl)oxirane (7j):

7j

Following general procedure \mathbf{E}, alkylation of p-cresol ($108 \mathrm{mg}, 1.0 \mathrm{mmol}$) with epoxy tosylate 21a ($319 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound $\mathbf{7 j}$ as colorless solid. Yield: 84% (202 mg); Compound $\mathbf{7 j}$ was used for the next step without characterization.

(\pm)-trans-2-(Phenoxymethyl)-3-phenyloxirane (7k):

7k
Following general procedure E, alkylation of phenol ($94 \mathrm{mg}, 1.0 \mathrm{mmol}$) with epoxy tosylate 21a ($319 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound $\mathbf{7 k}$ as a colorless solid. Yield: 80% (181 mg); mp: $131-133{ }^{\circ} \mathrm{C}$ (lit. $\mathrm{mp}: 129-130{ }^{\circ} \mathrm{C}$) $[7,8] ; R_{f}$: 0.52 (silica gel, 15% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27-7.38(\mathrm{~m}, 7 \mathrm{H}), 6.94-7.0$ (m, 3H), 4.32 (dd, $J=3.2,11 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (dd, $J=5.1,11 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (d, $J=2.0 \mathrm{~Hz}$, 1H), 3.39-3.42 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.5,136.5,129.6,128.6$,
$128.4,125.7,121.3,114.7,67.9,60.3,56.4$. The spectroscopic and physical data were in agreement with the literature data $[7,8]$.
(\pm)-trans-2-((4-Bromophenoxy)methyl)-3-phenyloxirane (7l):

71
Following general procedure E, alkylation of 4-bromophenol ($173 \mathrm{mg}, 1.0 \mathrm{mmol}$) with epoxy tosylate $\mathbf{2 1 a}(319 \mathrm{mg}, 1.05 \mathrm{mmol})$ was performed to obtain compound $\mathbf{7 1}$ as a colorless solid. Yield: 89% (272 mg); mp: $115-117^{\circ} \mathrm{C}$ (lit. mp: $117-118{ }^{\circ} \mathrm{C}$) [8]. $R_{f:} 0.54$ (silica gel, 15% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.40(\mathrm{~m}, 5 \mathrm{H})$, 6.83-6.86 (m, 2H), 4.32 (dd, $J=3.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$ (dd, $J=5.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.41(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.6,136.3$, $132.3,128.6,128.5,125.7,116.5,113.5,68.1,60.0,56.2$. The spectroscopic and physical data were in agreement with the literature data [8].
(\pm)-trans-2-((Naphthalen-2-yloxy)methyl)-3-phenyloxirane (7m):

Following general procedure E, alkylation of 2-naphthol ($144 \mathrm{mg}, 1.0 \mathrm{mmol}$) with epoxy tosylate 21a ($319 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound $\mathbf{7 m}$ as a colorless gum. Yield: $77 \%\left(213 \mathrm{mg}\right.$); mp: $109-111^{\circ} \mathrm{C}$ (lit. mp: 108-109 ${ }^{\circ} \mathrm{C}$) [8]; $R_{f:} 0.55$ (silica gel, 15% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~m}, 3 \mathrm{H}), 7.45$ (m, 1H), $7.30(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=11.0,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12(\mathrm{dd}, J=11.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=4.5,2.2 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.4,136.5,134.4,129.6,129.2,128.6,128.4$, 127.7, 126.8, 126.5, 125.7, 123.9, 118.8, 107.0, 67.9, 60.2, 56.4. The spectroscopic and physical data were in agreement with the literature data $[6,8]$.
(\pm)-trans-2-((Naphthalen-1-yloxy)methyl)-3-phenyloxirane (7n):

7n
Following general procedure E, alkylation of 1-naphthol ($144 \mathrm{mg}, 1.0 \mathrm{mmol}$) with epoxy tosylate 21a ($319 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound $\mathbf{7 n}$ as a colorless semi-solid. Yield: 75% (207 mg); $R_{f:} 0.55$ (silica gel, $15 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-$ $7.38(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.17(\mathrm{~m}, 6 \mathrm{H}), 6.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=2.0,11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.25(\mathrm{dd}, J=5.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.37(\mathrm{~m}, 1 \mathrm{H})$; Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 82.58; H, 5.84, found: C, 82.66; H, 5.76.

(\pm)-trans-2-(2-Bromophenyl)-3-((3,5-dimethoxyphenoxy)methyl)oxirane (70):

Following general procedure E, alkylation of 3,5-dimethoxyphenol ($154 \mathrm{mg}, 1.0$ mmol) with epoxy tosylate $\mathbf{2 1 b}(402 \mathrm{mg}, 1.05 \mathrm{mmol})$ was performed to obtain compound 7 o as a colorless semi-solid. Yield: $80 \%(292 \mathrm{mg}) ; R_{f}: 0.47$ (silica gel, $15 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.16(\mathrm{~m}, 3 \mathrm{H})$, $6.15(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.12-6.11(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=2.3,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=5.9,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 3.25-3.22(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.5,160.3,136.1,132.2,129.4,127.6,126.3,122.4,93.5,67.9$, 59.8, 55.9, 55.4; Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{4}$: C, 55.91 ; $\mathrm{H}, 4.69$, found: C, 55.82 ; H , 4.72.

(\pm)-trans-2-(2-Bromophenyl)-3-((3,5-dimethylphenoxy)methyl)oxirane (7p):

Following general procedure E, alkylation of 3,5-dimethylphenol ($122 \mathrm{mg}, 1.0$ mmol) with epoxy tosylate $\mathbf{2 1 b}$ ($402 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound 7p as a light yellow gum. Yield: 75% (250 mg); R_{f} : 0.58 (silica gel, $15 \% \mathrm{EtOAc}$ in
hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H})$, 7.19-7.14 (m, 1H), 6.62-6.60 (m, 3H), $4.40(\mathrm{dd}, J=2.7,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=5.5,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 158.5,139.2,136.2,132.2,129.4,127.6,126.3,123.0,122.4,112.4$, 112.5, 67.7, 60.4, 55.9, 21.4; Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{2}$: $\mathrm{C}, 61.28$; $\mathrm{H}, 5.14$, found: C , 61.21; H, 5.09.
(\pm)-trans-5-((3-(2-Bromophenyl)oxiran-2-yl)methoxy)benzo[d][1,3]dioxole (7q):

$7 q$

Following general procedure E, alkylation of sesamol ($138 \mathrm{mg}, 1.0 \mathrm{mmol}$) with epoxy tosylate 21b ($402 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound $\mathbf{7 q}$ as a white solid; Yield: 71% (248 mg); mp: $87-88^{\circ} \mathrm{C}$; $R_{f}: 0.47$ (silica gel, $15 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.16(\mathrm{~m}, 3 \mathrm{H})$, $6.71(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=2.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}$, $2 \mathrm{H}), 4.37(\mathrm{dd}, J=2.7,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=5.5,11.4 \mathrm{~Hz}$, 1 H), 3.23-3.20 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.9,148.2,142.0,136.1$, 132.2, 129.4, 127.6, 126.3, 122.4, 107.9, 105.9, 101.2, 98.4, 68.9, 59.9, 55.9; Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrO}_{4}$: C, $55.04 ; \mathrm{H}, 3.75$, found: C, $55.14 ; \mathrm{H}, 3.66$.

(\pm)-trans-2-(2-Bromophenyl)-3-((naphthalen-1-yloxy)methyl)oxirane (7r):

7r
Following general procedure E, alkylation of 1-naphthol ($144 \mathrm{mg}, 1.0 \mathrm{mmol}$) with epoxy tosylate 21b ($402 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound $\mathbf{7 r}$ as a colorless gum. Yield: 68% (242 mg); R_{f} : 0.56 (silica gel, $15 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.34$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.80 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60$ $(\mathrm{dd}, J=2.7,11.0 \mathrm{~Hz}, 1 \mathrm{H})$,), $4.36(\mathrm{dd}, J=5.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.40-3.38 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.1,136.2,134.5,132.3,129.5$,
127.7, 127.4, 126.5, 126.3, 125.7, 125.6, 125.3, 122.4, 122.0, 120.9, 105.0, 68.1, 59.9, 56.1; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{BrO}_{2}$: C, 64.24; H, 4.26, found: C, 64.28; H, 4.35 .
(\pm)-trans-2-(4-Bromophenyl)-3-((3,5-dimethoxyphenoxy)methyl)oxirane (7s):

Following general procedure \mathbf{E}, alkylation of 3,5-dimethoxyphenol ($154 \mathrm{mg}, 1.0$ mmol) with epoxy tosylate $\mathbf{2 1 c}(402 \mathrm{mg}, 1.05 \mathrm{mmol})$ was performed to obtain compound 7s as a colorless solid; Yield: 85% (310 mg); mp: 69-71 ${ }^{\circ} \mathrm{C}$ (lit. mp: 73-74 ${ }^{\circ} \mathrm{C}$) [7]. R_{f} : 0.45 (silica gel, 15% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48(\mathrm{~d}, J=8.4$ Hz, 2H), 7.17 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.12 (s, 3H), 4.27 (dd, $J=3.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.09 (dd, $J=5.1,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 3.30-3.40(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 161.5,160.2,135.6,131.7,127.3,122.3,93.6,93.5,67.6,60.1$, 55.7, 55.4. The spectroscopic and physical data were in agreement with the literature data [7].
(\pm)-trans-2-(4-Bromophenyl)-3-((3,5-dimethylphenoxy)methyl)oxirane (7t):

Following general procedure \mathbf{E}, alkylation of 3,5 -dimethylphenol ($122 \mathrm{mg}, 1.0$ mmol) with epoxy tosylate 21c ($402 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound 7t as a light yellow liquid; Yield: 71% (237 mg); R_{f} : 0.59 (silica gel, $15 \% \mathrm{EtOAc}$ in hexanes); Compound $\mathbf{7 j}$ was immediately used for the next step without characterization.
(\pm)-trans-2-(4-Bromophenyl)-3-((3,4-dimethoxyphenoxy)methyl)oxirane (7u):

Following general procedure \mathbf{E}, alkylation of 3,4-dimethoxyphenol (154 mg, 1.0 mmol) with epoxy tosylate 21c ($402 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound $7 \mathbf{u}$ as a white semi-solid; Yield: $74 \%(270 \mathrm{mg})$; $R_{f}: 0.46$ (silica gel, $15 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{dd}, J=3.0,9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.18 (dd, $J=3.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=4.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.75(\mathrm{~m}, 7 \mathrm{H}), 3.24$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.9,149.9,144.0,135.6,131.7$, $127.3,122.3,111.6,104.0,101.2,68.2,60.4,56.4,55.8,55.7$; Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{4}$: C, 55.91; H, 4.69, found: C, $55.88 ; \mathrm{H}, 4.62$.

(\pm)-trans-2-(4-Bromophenyl)-3-((naphthalen-1-yloxy)methyl)oxirane (7v):

7v
Following general procedure E, alkylation of 1-naphthol ($144 \mathrm{mg}, 1.0 \mathrm{mmol}$) with epoxy tosylate 21c ($402 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound $7 \mathbf{v}$ as a white solid; Yield: 76% (270 mg); mp.: $144-145{ }^{\circ} \mathrm{C}$; $R_{f}: 0.58$ (silica gel, $15 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.30-8.27(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.48(\mathrm{dd}, J=3.2,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=5.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.48-3.45(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.1,135.7,134.6,131.7$, 127.5, 127.4, 126.6, 125.7, 125.6, 125.4, 122.3, 121.9, 121.0, 105.1, 67.9, 60.3, 55.8; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{BrO}_{2}$: C, 64.24; H, 4.26, found: C, $64.29 ; \mathrm{H}, 4.34$.

(\pm)-trans-2-((3,5-Dimethoxyphenoxy)methyl)-3-(2-fluorophenyl)oxirane (7w):

Following general procedure E, alkylation of 3,5-Dimethoxyphenol ($154 \mathrm{mg}, 1.0$ mmol) with epoxy tosylate 21d ($338 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound 7w as a colorless gum; Yield: 84% (250 mg); $R_{f}: 0.49$ (silica gel, 15% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.13-6.10(\mathrm{~m}, 3 \mathrm{H}), 4.33$
(dd, $J=2.7,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=5.5,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (s, 6H), 3.39-3.36 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.5,161.4$ (d, $J=247.3$ Hz), 160.2, 159.5, 155.4, 129.6 (d, $J=7.7 \mathrm{~Hz}$), 126.1 (d, $J=3.8 \mathrm{~Hz}$), 124.3 (d, $J=2.9$ Hz), 123.8 (d, $J=12.5 \mathrm{~Hz}), 115.2(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 93.51,93.48,67.8,59.5,55.28,55.30$, 50.6 (d, $J=7.7 \mathrm{~Hz}$); Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{4}$: C, 67.10 ; H, 5.63 , found: C, 67.56 ; H, 5.73 .
(\pm)-trans-2-((3,5-Dimethylphenoxy)methyl)-3-(2-fluorophenyl)oxirane (7x):

7x

Following general procedure \mathbf{E}, alkylation of 3,5 -dimethylphenol ($122 \mathrm{mg}, 1.0$ mmol) with epoxy tosylate $\mathbf{2 1 d}$ ($338 \mathrm{mg}, 1.05 \mathrm{mmol}$) was performed to obtain compound 7x as a colorless gum; Yield: 84% (229 mg); R_{f} : 0.58 (silica gel, $15 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.63-6.59(\mathrm{~m}, 3 \mathrm{H}), 4.33$ (dd, $J=3.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=5.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-$ $3.36(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$; Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{2}$: C, 74.98 ; $\mathrm{H}, 6.29$, found: C , 74.87; H, 6.20.

General procedure F: synthesis of (\pm)-trans-4-arylchroman-3-ols 8a-x by $\mathbf{T s O H} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of (\pm)-trans-2-aryl-3-(aryloxymethyl)oxiranes (Table

 2.2):To a stirred solution of (\pm)-trans-2-aryl-3-(aryloxymethyl)oxiranes $7(0.4 \mathrm{mmol})$ in AR grade toluene (8 mL) and $\mathrm{MeCN}(2 \mathrm{~mL})$ was added TsOH. $\mathrm{H}_{2} \mathrm{O}(16 \mathrm{mg}, 0.084$ $\mathrm{mmol})$. The resulting mixture was then heated at $70{ }^{\circ} \mathrm{C}$. When the reaction was completed (approx. 30 min), the mixture was cooled to room temperature, and then poured in beaker containing EtOAc (25 mL) and saturated aq. NaHCO_{3} solution (25 mL) with vigorous stirring. The organic layer was separated and the aq. layer was extracted by EtOAc (20 x 2 mL). The combined organic layers were washed with brine (50 mL) and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solution was evaporated to anh.ness under reduced pressure. The residue was subjected to silica gel column chromatography (with 5-20\% EtOAc/hexanes) to afford the desired (\pm)-trans-4-arylchroman-3-ol 8a-x.
(\pm)-trans-5,7-Dimethyl-4-phenylchroman-3-ol (8a):

8a

Following general procedure $\mathbf{F}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 a}$ ($102 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 a}$ as a white solid. Yield: 94% (239 mg); $\mathrm{mp}: 125-126^{\circ} \mathrm{C}$ (lit. mp: 127-128 ${ }^{\circ} \mathrm{C}$) [7]. $R_{f}: 0.45$ (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.96(\mathrm{~m}$, $2 \mathrm{H}), 2.28(\mathrm{~s}, 4 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.8,142.6,139.2$, 138.0, 128.7, 128.5, 126.7, 124.5, 116.0, 114.9, 69.9, 64.4, 46.5, 21.1, 18.9; Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$: C, $80.28 ; \mathrm{H}, 7.13$, found: C, $80.36 ; \mathrm{H}, 7.19$. The physical and spectral data are in well agreement with the literature reported data $[7,8]$.
(\pm)-trans-5,7-Dimethoxy-4-phenylchroman-3-ol (8b):

8b
Following general procedure $\mathbf{F}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 b}$ ($115 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 b}$ as a white solid; Yield: 92% (263 mg); $\mathrm{mp}: 101-102{ }^{\circ} \mathrm{C}$ (lit. $\mathrm{mp}: 100-101^{\circ} \mathrm{C}$) [7]. $R_{f}: 0.39$ (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27-7.24$ (m, 2H), 7.19-7.16 (m, 1H), 7.08 (d, $J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.15(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.92(\mathrm{~m}$, 3 H), $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 2.1(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.2$, 159.6, 154.9, 143.3, 128.3, 128.0, 126.3, 101.6, 92.8, $92.3,69.2,64.9,55.4,55.2,43.2$; Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$: C, $71.31 ; \mathrm{H}, 6.34$, found: $\mathrm{C}, 71.40 ; \mathrm{H}, 6.36$. The physical and spectral data are in well agreement with the literature reported data $[7,8]$.
(\pm)-trans-5,6,7-Trimethoxy-4-phenylchroman-3-ol (8c):

8c
Following general procedure $\mathbf{F}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 c}$ ($127 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 c}$ as a white semi-solid. Yield: 84% (106 mg); $R_{f}: 0.35$ (silica gel, $30 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29-$ $7.26(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 3 \mathrm{H}), 3.83(\mathrm{~s}$, 3 H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.2,149.8,143.8$, 136.6, 128.3, 128.1, 126.5, 106.9, 95.5, 69.1, 64.9, 60.6, 60.1, 55.7, 44.1; Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$: C, 68.34; H, 6.37, found: C, 68.41; H, 6.39.

(\pm-trans-6,7-Dimethoxy-4-phenylchroman-3-ol (8d):

8d

Following general procedure $\mathbf{F}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 d}(115 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 d}$ as a White semi-solid. Yield: 83\% (95 mg); mp: 118-119 ${ }^{\circ} \mathrm{C} ; R_{f}: 0.40$ (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.35-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 4.09-$ $4.06(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.98-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.9,147.9,143.8,142.8,128.9,128.5,126.8,113.1$, 111.9, 100.2, 69.9, 66.2, 56.2, 55.7, 49.3; Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$: C, 71.31; H, 6.34, found: C, 71.25; H, 6.42.

(\pm)-trans-8-Methoxy-4-phenylchroman-3-ol (8e):

Following general procedure $\mathbf{F}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 e}(103 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 e}$ as a white solid. Yield: $82 \%(85 \mathrm{mg}) ; \mathrm{mp}$: $140-142{ }^{\circ} \mathrm{C}$; $R_{f}: 0.45$ (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.25-7.02 (m, 5H), 6.73-6.68 (m, 2H), 6.39 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), ~ 4.13-3.99$ (m, 4 H$), 3.81$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 148.0, 142.5, 130.2, 129.0, 128.6, 128.4, 126.9, 122.8, 120.7, 109.4, 69.4, 66.8, 55.7, 49.7; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 74.98 ; H, 6.29, found: C, 75.07; H, 6.32.

(\pm)-trans-6-Methoxy-4-phenylchroman-3-ol (8f):

8 f
Following general procedure $\mathbf{F}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 f}(103 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 f}$ as a white solid. Yield: $84 \%(86 \mathrm{mg}) ; \mathrm{mp}$: $114-115{ }^{\circ} \mathrm{C}$ (lit. mp: $115-116{ }^{\circ} \mathrm{C}$) [7]; $R_{f}: 0.53$ (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 2 \mathrm{H})$, 6.89 (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (dd, $J=3.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}$, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.99-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.9,148.0,142.5,129.0,128.6,126.9,122.5,117.2,115.2$, 114.6, 69.7, 66.5, 55.5, 50.2; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 74.98; H, 6.29, found: C, $74.91 ; \mathrm{H}, 6.22$. The physical and spectral data are in well agreement with the literature reported data $[7,8]$.
(\pm)-trans-7-(Benzyloxy)-4-phenylchroman-3-ol (8g):

Following general procedure \mathbf{F}, $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 g}(133 \mathrm{mg}, 0.4$ $\mathbf{m m o l}$) was performed to obtain compound $\mathbf{8 g}$ as a colorless semi-solid; Yield: 80% (106 mg); $R_{f}: 0.48$ (silica gel, $30 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44-$ $7.24(\mathrm{~m}, 8 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{dd}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.55-6.53(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~s}$, 2H), 4.16-3.96 (m, 4H), $2.20(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.7,154.8$, $142.7,136.8,131.8,129.0,128.6,128.5,127.9,127.5,127.0,114.3,109.2,102.0,69.9$, 69.7, 66.7, 49.5; Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 79.50; H, 6.06, found: C, 79.59; H, 6.11.

(土)-trans-6-(Benzyloxy)-7-methoxy-4-phenylchroman-3-ol (8h):

8h

Following general procedure $\mathbf{F}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 h}(145 \mathrm{mg}, 0.4$ $\mathbf{m m o l}$) was performed to obtain compound $\mathbf{8 h}$ as a colorless semi-solid. Yield: 87\% (126 mg); $R_{f}: 0.41$ (silica gel, $30 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.29-$ $7.24(\mathrm{~m}, 8 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 4.12-3.93(\mathrm{~m}$, $4 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.1,148.6,142.8$, 142.6, 137.1, 130.0, 128.9, 128.6, 128.3, 127.7, 127.5, 126.9, 117.0, 100.6, 71.8, 69.9, 66.6, 55.9, 49.6; Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{4}$: C, 76.22; H, 6.12, found: C, 76.28; H, 6.05.

(\pm)-trans-6-(tert-Butyl)-4-phenylchroman-3-ol (8i):

8i

Following general procedure $\mathbf{F}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 i}$ ($113 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound 8 i as a white solid. Yield: $74 \%(84 \mathrm{mg}) ; \mathrm{mp}$: $108-109{ }^{\circ} \mathrm{C}$ (lit. mp: $110-111{ }^{\circ} \mathrm{C}$) [7]; $R_{f}: 0.52$ (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.21$ (m, 4H), 7.14 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.87 (d, $J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.15-4.08(\mathrm{~m}, 3 \mathrm{H}), 4.08-3.99(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{bs}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.8,144.1,142.9,129.1,128.7,128.1,127.9,125.3,120.8$, 116.0, 70.1, 66.5, 50.2, 34.1, 31.1; Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2}$: C, 80.52; H, 7.59, found: $\mathrm{C}, 80.57 ; \mathrm{H}, 7.53$. The physical and spectral data are in well agreement with the literature reported data $[7,8]$.

(\pm)-trans-6-Methyl-4-phenyl-chroman-3-ol (8j):

8j
Following general procedure \mathbf{F}, $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 j}$ ($96 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 j}$ as a white solid. Yield: $75 \%(72 \mathrm{mg}) ; \mathrm{mp}$: 102-103 ${ }^{\circ} \mathrm{C}$; $R_{f}: 0.48$ (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.35-7.11 (m, 5H), 6.98-6.95 (m, 1H), $6.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.15-4.04$ (m, 3H), 3.998-3.95 (m, 1H), $2.17(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.8,142.7,131.4,130.2,129.1,128.9,128.6,126.9,121.5,116.3,69.8,66.5,50.1$, 20.4; Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 79.97; H, 6.71, found: C, 79.92; H, 6.78.

(\pm)-trans-4-Phenyl-chroman-3-ol (8 k):

Following general procedure \mathbf{F}, $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 k}(90 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 k}$ as a white solid. Yield: $59 \%(54 \mathrm{mg}) ; \mathrm{mp}$: $122-123{ }^{\circ} \mathrm{C}$ (lit. mp: $120-121{ }^{\circ} \mathrm{C}$) [7]; $R_{f}: 0.46$ (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.13$ (m, 6H), 6.92- 6.84 (m, 3H), 4.18 (dd, $J=2.1$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 2 \mathrm{H}), 4.02-3.98(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 154.1,142.6,131.3,129.1,128.5,128.2,127.1,122.1,121.2,116.6,69.7$, 66.7, 50.1; Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$: C, $79.62 ; \mathrm{H}, 6.24$, found: $\mathrm{C}, 79.68 ; \mathrm{H}, 6.19$. The physical and spectral data are in well agreement with the literature reported data $[7,8]$.

(\pm-trans-6-Bromo-4-phenyl-chroman-3-ol (81):

81

Following general procedure $\mathbf{F}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 1}(122 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 1}$ as a white solid; Yield: $59 \%(54 \mathrm{mg}) ; \mathrm{mp}$: $118-119{ }^{\circ} \mathrm{C}$ (lit. mp: $120-121{ }^{\circ} \mathrm{C}$) [8]; $R_{f}: 0.50$ (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ (d, $J=1.8$ Hz, 1H), 6.76 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.18 (d, $J=2.1,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-3.97(\mathrm{~m}, 3 \mathrm{H}), 1.58$ (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.3,141.9,139.8,137.1,129.0,129.0$, 127.5, 124.8, 119.0, 83.5, 69.4, 66.5, 49.9; Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{2}$: C, 59.04; H, 4.29 , found: C, $59.10 ; \mathrm{H}, 4.21$. The physical and spectral data are in well agreement with the literature reported data [8].

(\pm)-trans-1-Phenyl-2,3-dihydro-1H-benzo[f]chromen-2-ol (8m):

Following general procedure \mathbf{F}, $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 m}(111 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 m}$ as a white solid. Yield: $82 \%(90 \mathrm{mg}) ; \mathrm{mp}$: $130-131{ }^{\circ} \mathrm{C} ; R_{f}$: 0.53 (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.25-8.23 (m, 1H), 7.72-7.70 (m, 1H), 7.48-7.42 (m, 2H), 7.31-7.08 (m, 6H), 6.89 (d, J $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.05(\mathrm{~m}, 3 \mathrm{H}), 2.38(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.3,142.8,133.6,129.2,128.7,128.5,127.4,127.0,126.3$, 125.6, 124.8, 121.8, 120.8,115.2, 69.9, 66.7, 50.1; Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{2}: \mathrm{C}, 82.58$; H, 5.84, found: C, $82.52 ; \mathrm{H}, 5.89$. The physical and spectral data are in well agreement with the literature reported data $[6,8]$.
(\pm)-trans-4-Phenyl-3,4-dihydro-2H-benzo[h]chromen-3-ol (8n):

8n
Following general procedure $\mathbf{F}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 n}(111 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 n}$ as a white solid. Yield: $79 \%(87 \mathrm{mg}) ; R_{f}$: 0.52 (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77-7.73$ (m, 2 H), 7.48-7.45 (m, 1H), 7.30-7.15 (m, 8H), 4.68 (br s, 1H), 4.22-4.14 (m, 3H), 2.30 (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.7,143.0,133.4,129.8,129.3,128.5,126.8$, 126.7, 123.5, 122.9, 118.5, 111.7, 69.7, 64.8, 45.9; Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{2}: \mathrm{C}, 82.58$; H, 5.84, found: C, 82.66; H, 5.89.

(\pm)-trans-4-(2-Bromophenyl)-5,7-dimethoxychroman-3-ol (80):

Following general procedure $\mathbf{F}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of 7 ol ($146 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 o}$ as a white solid. Yield: 80% (116 mg); $\mathrm{mp}: 158-159{ }^{\circ} \mathrm{C}$; $R_{f}: 0.39$ (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.57(\mathrm{dd}, J=1.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{dd}, J=1.4,7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.15(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.04(\mathrm{~m}, 2 \mathrm{H})$, 3.92-3.89 (m, 1H), $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 159.4,155.3,141.8,132.8,129.9,128.1,127.3,124.5,101.3,92.8,92.4,66.7$,
64.9, 55.5, 55.3, 43.1; Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{4}$: C, 55.91; H, 4.69, found: C, 55.99; H, 4.57.

(\pm)-trans-4-(2-Bromophenyl)-5,7-dimethylchroman-3-ol (8p):

8p

Following general procedure $\mathbf{F}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 p}(133 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 p}$ as a white solid. Yield: $78 \%(104 \mathrm{mg})$; $\mathrm{mp}: 121-122{ }^{\circ} \mathrm{C} ; R_{f}: 0.54$ (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.61(\mathrm{dd}, J=1.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{dd}, J=1.4,7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.93(\mathrm{~m}, 1 \mathrm{H}), 2.29$ (s, 3H), $1.84(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.8,141.0,138.8,138.2,133.0$, 130.4, 128.5, 127.7, 124.7, 124.6, 115.7, 114.8, 67.1, 64.3, 45.9, 21.0, 18.5; Anal.Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{2}$: C, 61.28; H, 5.14. Found: C, 61.39; H, 5.17.

(\pm)-trans-8-(2-Bromophenyl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-7-ol (8q):

8q

Following general procedure $\mathbf{F}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 q}(140 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 q}$ as a colorless semi-solid. Yield: 69% (96 mg); mp: 121-122 ${ }^{\circ} \mathrm{C} ; R_{f}: 0.38$ (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}$, $1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H}), 4.15-3.95(\mathrm{~m}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 1 \mathrm{H})$; Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrO}_{4}$: C, 55.04; $\mathrm{H}, 3.75$, found: C, $55.07 ; \mathrm{H}, 3.66$.
(\pm)-trans-4-(2-Bromophenyl)-3,4-dihydro-2H benzo[h]chromen-3-ol (8r):

8r

Following general procedure $\mathbf{F}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 r}(142 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 r}$ as a pale yellow semi-solid. Yield: 72% $(102 \mathrm{mg}) ; R_{f}: 0.54$ (silica gel, 30% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.27(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=1.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-$ 7.48 (m, 2H), 7.37 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ $(\mathrm{dd}, J=1.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.15(\mathrm{~m}, 3 \mathrm{H}), 2.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.5,133.6,133.0,128.54,128.51,127.6,127.4,126.4,125.6$, 125.0, 124.7, 121.7, 121.1, 114.0, 67.7, 65.8, 48.7; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{BrO}_{2}$: C, 64.24; H, 4.26, Found: C, 64.31; H, 4.29 .

(\pm)-trans-4-(4-Bromo-phenyl)-5,7-dimethoxy-chroman-3-ol (8s):

8s

Following general procedure \mathbf{F}, $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 s}$ ($146 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 s}$ as a white solid. Yield: 87% (127 mg); mp: $76-77{ }^{\circ} \mathrm{C}$ (lit. mp: $77-78{ }^{\circ} \mathrm{C}$) [7]. $R_{f}: 0.38$ (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.38$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 6.95 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 6.14 (d, J $=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~d}, J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.4,159.5,155.0,142.5,131.4,129.7,120.2,101.3,92.9,92.4,69.0,64.9,55.4$, 55.3, 42.8; Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{4}$: C, 55.91 ; H, 4.69, found: C, 55.99; H, 4.61. The physical and spectral data are in well agreement with the literature reported data [7].

(\pm)-trans-4-(4-Bromo-phenyl)-6,7-dimethoxy-chroman-3-ol (8t):

Following general procedure $\mathbf{F}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 t}$ ($133 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound 8 t as a White solid. Yield: 72% (105 mg); $\mathrm{mp}: 89-90{ }^{\circ} \mathrm{C}$; $R_{f}: 0.56$ (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J$ $=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.99(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.9,144.1,141.9,131.7,130.6,120.9,112.8,111.3,100.3,69.8$, 66.2, 56.2, 55.8, 48.9; Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{4}$: C, 55.91; H, 4.69, found: C, 55.97; H, 4.78 .

(\pm)-trans-4-(4-Bromo-phenyl)-5,7-dimethyl-chroman-3-ol (8u):

8u

Following general procedure $\mathbf{F}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 u}$ ($146 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 u}$ as a white solid. Yield: 88% (117 mg); $\mathrm{mp}: 86-87{ }^{\circ} \mathrm{C}$; R_{f} : 0.35 (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.38(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.07(\mathrm{~m}, 1 \mathrm{H}), 4.03-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.92-88(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.87(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.7$, 141.7, 139.1, 138.4, 131.9, 130.3, 124.7, 115.5, 115.08, 69.7, 64.3, 46.0, 21.2, 18.9; Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{2}$: C, 61.28 ; H , 5.14, found: C, 61.37; H, 5.31.
(\pm)-trans-4-(4-Bromo-phenyl)-3,4-dihydro-2H-benzo[h]chromen-3-ol (8v):

8v

Following general procedure $\mathbf{F}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 v}$ ($142 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 v}$ as a white solid. Yield: $69 \%(98 \mathrm{mg}) ; \mathrm{mp}$: $128-129{ }^{\circ} \mathrm{C}$; R_{f} : 0.49 (silica gel, $30 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.26-8.23 (m, 1H), 7.77-7.75 (m, 1H), 7.51-7.47 (m, 2H), $7.42(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.21(\mathrm{~m}, 1 \mathrm{H})$, 4.23-4.11 (m, 3H), $2.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.3,141.9,133.6$, 131.8, 130.8, 128.2, 127.4, 126.5, 125.7, 124.8, 121.8, 121.1, 114.7, 69.8, 66.7, 49.5; Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{BrO}_{2}$: C, $64.24 ; \mathrm{H}, 4.26$, found: $\mathrm{C}, 64.29 ; \mathrm{H}, 4.38$.

(\pm)-trans-4-(2-Fluorophenyl)-5,7-dimethoxychroman-3-ol (8w):

Following general procedure \mathbf{F}, $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 w}$ ($109 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 w}$ as a white solid. Yield: $68 \%(82 \mathrm{mg}) ; \mathrm{mp}$: $146-147{ }^{\circ} \mathrm{C} ; R_{f}: 0.51$ (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.23-7.17 (m, 1H), 7.09-7.04 (m, 1H), $6.99(\mathrm{td}, J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{td}, J=7.8,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.05(\mathrm{~m}$, $2 \mathrm{H}), 3.93(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 160.6(\mathrm{~d}, J=246.3 \mathrm{~Hz}), 160.4,159.5,155.4,130.1(\mathrm{~d}, J=13.4 \mathrm{~Hz})$, 129.7 (d, $J=4.8 \mathrm{~Hz}), 128.1(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 124.0(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 115.1(\mathrm{~d}, J=22.0 \mathrm{~Hz})$, $100.5,92.9,92.4,67.1,65.3,55.5,55.3(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 37.0$; Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{4}$: C, 67.10; H, 5.63, found: C, 67.05; H, 5.72.

Following general procedure $\mathbf{F}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$-catalyzed IFCEAC of $\mathbf{7 x}$ ($122 \mathrm{mg}, 0.4$ mmol) was performed to obtain compound $\mathbf{8 x}$ as a white solid; Yield: $66 \%(71 \mathrm{mg}) ; \mathrm{mp}$: $132-133{ }^{\circ} \mathrm{C}$; R_{f} : 0.40 (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.22-7.19 (m, 1H), 7.10-6.97 (m, 2H), 6.70-6.64 (m, 3H), 4.43 (m, 1H), 4.11-4.04 (m, 2 H), 3.96-3.93 (m, 1H), $2.29(\mathrm{~s}, 4 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H})$; Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{2}: \mathrm{C}, 74.98$; H, 6.29, found: C, 75.08; H, 6.18.

Large scale synthesis of compound 8a (Scheme 2.5):

Following general procedure \mathbf{F}, the reaction of 2.5 g of $\mathbf{7 a}$ under the optimized reaction conditions delivered the corresponding product 8a in 84% (2.1 g) yield.

Preparation of a trans-4-arylchroman-3-ol with free phenolic-OH groups on the two arene rings (Scheme 2.6):
4-Formyl-2-methoxyphenyl-4-methylbenzenesulfonate (23):

23

To a stirred solution of vanillin $22(5.0 \mathrm{~g}, 32.86 \mathrm{mmol})$ in acetone (50 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(9.1 \mathrm{~g}, 65.7 \mathrm{mmol})$. After stirring the reaction mixture for 10 min at $\mathrm{rt}, \mathrm{TsCl}(7.52$ $\mathrm{g}, 39.4 \mathrm{mmol}$) was added to it . The reaction mixture was then heated at reflux temperature for 8 h and then cooled to rt , filtered and concentrated under reduced pressure. The resulting residue was re-dissolved in EtOAc (100 mL) and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The organic layer was separated, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude residue was purified by column chromatography (5-25\% ethyl acetate in hexanes) to give $23(9.46 \mathrm{~g}, 94 \%)$ as a white solid; mp: $124-126^{\circ} \mathrm{C}$ (lit. mp: $125-128^{\circ} \mathrm{C}$) [11]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.91$ (s, 1 H), 7.75 (d, $J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46-7.28(\mathrm{~m}, 5 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.4(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 190.8$,
$152.4,145.4,142.8,135.6,132.6,129.4,128.4,124.4,124.2,110.9,55.6,21.6$. The physical and spectral data matched with the literature data [11].

Ethyl (E)-3-(3-methoxy-4-tosyloxyphenyl)-2-propenoate (24):

Following general procedure A, aldehyde $23(7.66 \mathrm{~g}, 25 \mathrm{mmol})$ was subjected to the HWE olefination reaction. The crude product was purified by a silica gel column chromatography (5-20\% EtOAc in hexanes) to obtain compound 24 as a colorless oil. Yield: $96 \%(9.03 \mathrm{~g}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.57 (d, J $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=8.0,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.58(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $166.5,151.9,145.2,143.2,139.5,134.3,132.9,129.3,128.5,124.2,120.7,119.2,111.4$, $60.5,55.5,21.6,14.2$. The physical and spectral data matched with the literature data [11].
(E)-3-(3-Methoxy-4-tosyloxyphenyl)-2-propen-1-ol (25):

25

Following general procedure B, compound $\mathbf{2 4}(5.0 \mathrm{~g}, 13.28 \mathrm{mmol})$ was reduced by DIBAL-H. The crude product was purified by a silica gel column chromatography (5$30 \%$ EtOAc in hexanes) to obtain compound $\mathbf{2 5}$ as a colorless gum. Yield: $98 \%(4.36 \mathrm{~g})$; $\mathrm{R}_{f}: 0.46$ (silica gel, 50% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73$ (d, $J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dt}, J=16.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.32-4.28 (m, 2H), $3.54(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.7$, 145.0, 137.7, 136.8, 133.1, 129.8, 129.7, 129.3, 128.6, 123.9, 118.8, 110.2, 63.3, 55.4, 21.6. The physical and spectral data matched with the literature data [11].

(\pm)-trans-3-(Hydroxymethyl)oxiran-2-yl)-2-methoxyphenyl 4-methylbenzene sulfonate (26):

26

Following general procedure C, compound $\mathbf{2 5}(3.34 \mathrm{~g}, 10.0 \mathrm{mmol})$ was epoxidized by m-CPBA. The crude product was purified by a silica gel column chromatography (5$25 \%$ EtOAc in hexanes) to obtain compound 26 as a colorless semi-solid. Yield: 90\% (3.15 g); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=8.3 \mathrm{~Hz}, 3$ H), 7.07 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.82 (dd, $J=2.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.05-3.95 (m, 1 H), 3.86 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.14-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.79$ (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.8,144.9,138.0,136.8,133.0,129.2$, $128.3,123.8,117.8,109.2,62.5,60.8,55.4,54.8,29.5$. The physical and spectral data matched with the literature data [11]
(\pm)-3-((4-(Benzyloxy)-3-methoxyphenoxy)methyl)oxiran-2-yl)-2-methoxyphenyl 4methylbenzenesulfonate (27):

27

Following general procedure D, epoxy alcohol 26 ($500 \mathrm{mg}, 1.43 \mathrm{mmol}$) was subjected to the tosylation reaction. The crude product was recrystallized from $\mathrm{EtOAc} /$ hexane to obtain the corresponding pure epoxy tosylate as white solid (647 mg) which was used for the next step without further purification and characterization.

Following general procedure E, alkylation of 4-benzyloxy-3-methoxyphenol (281 $\mathrm{mg}, 1.22 \mathrm{mmol}$) with the epoxy tosylate ($647 \mathrm{mg}, 1.28 \mathrm{mmol}$), obtained from the abovementioned reaction, was performed to obtain compound 27 as a colorless semi-solid. Yield: 65% (523 mg); $R_{f}: 0.59$ (silica gel, 15% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=1.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=2.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{dd}, J$
$=3.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=5.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 4 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.27$ $(\mathrm{m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.4,152.1,150.9,145.0,142.9$, 138.3, 137.4, 136.7, 133.2, 129.4, 128.6, 128.5, 127.8, 127.4, 124.0, 118.1, 115.4, 109.2, 104.1, 101.3, 72.0, 68.1, 60.4, 55.9, 55.8, 55.6, 55.6, 21.6; Anal. calcd. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{~S}: \mathrm{C}$, 66.18; H, 5.37, found: C, 66.08; H, 5.44.
(\pm)-trans-4-(6-(Benzyloxy)-3-hydroxy-7-methoxychroman-4-yl)-2-methoxyphenyl 4methylbenzenesulfonate (28):

28

Compound 28 was prepared according to the general procedure \mathbf{F}, starting from 27 $(0.5 \mathrm{~g}, 0.88 \mathrm{mmol})$. Column chromatography: $10-20 \%$ ethyl acetate in hexanes as elution gradient. Yield: 85% (425 mg); light yellow semi-solid; R_{f} : 0.39 (silica gel, $30 \% \mathrm{EtOAc}$ in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 8 \mathrm{H})$, 7.01 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.47$ (s, 1H), 6.31 ($\mathrm{s}, 1 \mathrm{H}), 4.96-4.88$ (m, 2H), 4.05 (dd, $J=3.2$ and $11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99-3.90 (m, 3H), 3.85 (s, 3H), 3.49(s, 3H), 2.43 (s, 3H), 2.17 (br s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.9,150.2,148.6,145.0,142.7,137.3$, 137.0, 133.4, 129.4, 128.5, 128.4, 127.8, 127.4, 123.8, 121.0, 116.9, 113.0, 111.7, 100.6, 71.8, 69.7, 66.7, 55.9, 55.6, 49.6, 21.6; Anal. calcd. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{~S}: \mathrm{C}, 66.18$; H, 5.37, found: C, 66.26; H, 5.42.
(\pm)-trans-4-(4-Hydroxy-3-methoxyphenyl)-7-methoxychroman-3,6-diol (29):

29
To a solution of compound $\mathbf{2 8}(0.3 \mathrm{~g}, 0.53 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($371 \mathrm{mg}, 2.65 \mathrm{mmol}$) and the mixture heated at reflux temperature for 4 h . Methanol was
removed in a rotary evaporator and the resulting residue was dissolved in beaker containing $\mathrm{EtOAc}(50 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and stirred vigorously. The organic layer was separated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to obtain a light brown semi-solid which was used for the next step without further purification. This detosylated product was then dissolved in EtOAc (50 mL) and purged with nitrogen by repeated filling and deflating of a nitrogen balloon. $10 \% \mathrm{Pd}-\mathrm{C}(50 \mathrm{mg})$ was added to this solution. After degassing under reduced pressure, the flask was purged with hydrogen using a rubber balloon. After stirred at rt and normal pressure under the hydrogen atmosphere for 2 h , the reaction solution was suction-filtered using Celite, and the filtrate was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography ($10-30 \%$ EtOAc in hexanes) to obtain compound 29 ($118 \mathrm{mg}, 70 \%$ over the two steps) as brown semi-solid. $R_{f}: 0.25$ (silica gel, 60% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.60$ $(\mathrm{m}, 2 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 1 \mathrm{H}), 4.15-$ $4.09(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.3,146.7,146.3,144.7,140.1,134.3,122.0,115.5,114.4$, 113.9, 111.1, 99.5, 70.0, 66.9, 55.9, 49.8; Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6}$: C, 64.14; H, 5.70, found: C, 64.72; H, 5.61.

IFCEAC with chiral substrate (Scheme 2.7):

Synthesis of (2R,3R)-3-phenyloxiran-2-yl)methanol \{(2R,3R)-20a\}:

(2R,3R)-20a

A mixture of activated $3 \AA$ molecular sieves $(0.9 \mathrm{~g})$ and 50 mL of anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $-10^{\circ} \mathrm{C}$. Diethyl D-(-)-tartrate ($0.5 \mathrm{~g}, 2.4 \mathrm{mmol}$), $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}(0.45 \mathrm{~g}, 1.6 \mathrm{mmol})$, and ${ }^{\mathrm{t}} \mathrm{BuOOH}\left(7.8 \mathrm{~mL}, 48 \mathrm{mmol} 6.2 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) were added sequentially. The resulting suspension was stirred for 20 min at this temperature. Then, the mixture was cooled to $-20{ }^{\circ} \mathrm{C}$ and cinnamyl alcohol $19 \mathrm{a}\left(4.35 \mathrm{~g}, 32.5 \mathrm{mmol}\right.$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added with stirring over a time period of 15 min . Stirring was continued for 12 h at $-20^{\circ} \mathrm{C}$. The reaction mixture was then allowed to come to $0^{\circ} \mathrm{C}$ and quenched with water (10 mL). Next, the mixture was treated with 2.5 mL of a 30% aqueous solution of sodium
hydroxide saturated with sodium chloride and was stirred for 10 min . The aqueous layer was separated and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$. Combined organic layers were dried with anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting lite yellow liquid was purified by column chromatography ($5-20 \% \mathrm{EtOAc}$ in hexanes) as colorless gum ($896 \mathrm{mg}, 80 \%$); $[\alpha]^{27}{ }_{\mathrm{D}}=+48.2$ (c 2.25, CHCl_{3}) $\left\{\right.$ lit. $[\alpha]^{27}{ }_{\mathrm{D}}=-49.6\left(\mathrm{c} 2.4, \mathrm{CHCl}_{3}\right)$ for (2S,3S)-20a\} [20]. The spectroscopic data were identical with the racemic substrate 20a.

Synthesis of ((2R,3R)-3-Phenyloxiran-2-yl)methyl 4-methylbenzenesulfonate $\{(2 R, 3 R)-21 \mathrm{a}\}:$

(2R,3R)-21a

Following the synthesis of racemic 21a, ($\mathbf{2 R}, \mathbf{3 R}$)-21a was synthesized from ($\mathbf{2 R}, \mathbf{3 R}$)20a. $[\alpha]^{27}{ }_{\mathrm{D}}=+44.6\left(\mathrm{c}=2.5, \mathrm{CHCl}_{3}\right) ;\left\{\right.$ lit. $[\alpha]^{27}{ }_{\mathrm{D}}=-41.7\left(\mathrm{c}=1.27, \mathrm{CHCl}_{3}\right)[22]$ and $[\alpha]^{27}{ }_{\mathrm{D}}=-45.0\left(\mathrm{c}=2.5, \mathrm{CHCl}_{3}\right)[23]$ for the $\left.\left.(2 S, 3 S)\right)-21 \mathbf{a}\right\}$; yield and spectral data of $\mathbf{(2 R , 3 R})-\mathbf{2 1 a}$ were identical with that of racemic 21a.

Synthesis of (2R,3R)-2-((3,5-Dimethoxyphenoxy)methyl)-3-phenyloxirane $\{(\mathbf{2 R}, \mathbf{3 R})$ 7b\}:

Following the synthesis of racemic $\mathbf{7 b},(\mathbf{2 R}, \mathbf{3 R}) \mathbf{- 7 b}$ was synthesized from $(\mathbf{2 R}, \mathbf{3 R})$ 21a and 3,5-dimethoxyphenol. $[\alpha]^{27}{ }_{\mathrm{D}}=+52.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; $\left\{\right.$ lit. $[\alpha]^{27}{ }_{\mathrm{D}}=+52.6(\mathrm{c}=$ $\left.1.2, \mathrm{CHCl}_{3}\right)[7]$ and $\left.[\alpha]^{20}{ }_{\mathrm{D}}=+54.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)[8]\right\}$; yield and spectral data of $\mathbf{(2 R}, \mathbf{3 R}) \mathbf{- 7 b}$ were identical with that of racemic $\mathbf{7 b}$.

Synthesis of (3S,4R)-5,7-Dimethoxy-4-phenylchroman-3-ol\{(3S,4R)-8b\}:

(3S,4R)-8b

Following the synthesis of racemic $\mathbf{8 b},(\mathbf{3 S}, \mathbf{4 R}) \mathbf{- 8 b}$ was synthesized from $(\mathbf{2 R}, \mathbf{3 R}) \mathbf{- 7 b}$. $[\alpha]^{27}{ }_{\mathrm{D}}=+51.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;\left\{\right.$ lit. $[\alpha]^{27}{ }_{\mathrm{D}}=+52.3\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)[7]$ and $[\alpha]^{20}{ }_{\mathrm{D}}=$ $\left.+53.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)[8]\right\}$; yield and spectral data of $(\mathbf{3 S , 4 R})-\mathbf{8 b}$ were identical with that of racemic $\mathbf{8 b}$.

Conversion of trans-4-arylchroman-3-ols to the corresponding cis-4-arylchroman-3ols (Scheme 2.9):
(\pm)-5,7-Dimethyl-4-phenylchroman-3-one (30a):

30a
To a stirred solution of (\pm)-trans-5,7-dimethyl-4-phenylchroman-3-ol 8a ($254 \mathrm{~g}, 1.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added Dess-Martin periodinane ($504 \mathrm{mg}, 1.18 \mathrm{mmol}$) at 0 ${ }^{\circ} \mathrm{C}$ and the resulting solution was stirred at rt for 12 h . The reaction mixture was quenched with a saturated solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and $\mathrm{NaHCO}_{3}(15 \mathrm{~mL}$ each). The reaction mixture was passed through a pad of celite. The combined organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and chromatographed on silica gel column (2-10\% EtOAc in hexanes) to get 30a ($228 \mathrm{mg}, 90 \%$) as colorless gum. R_{f} : 0.58 (silica gel, 20% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29-7.24$ (m, 3H), 7.18 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.83 (s, 1H), 6.79 ($\mathrm{s}, 1 \mathrm{H}$), $4.84(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}$, 3H), 2.12 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.6,154.5,138.8,137.7,135.6$, 128.9, 127.8, 127.5, 126.0, 119.9, 116.1, 71.6, 53.5, 21.1, 18.4; Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 80.93; H, 6.39, found: C, 80.88; H, 6.50.
(土)-4-(2-Fluorophenyl)-5,7-dimethoxychroman-3-one (30b):

30b

Starting from compound $\mathbf{8 w}$ ($305 \mathrm{mg}, 1 \mathrm{mmol}$), the title compound was isolated as colorless gum in the same manner as described for compound 30a. Yield: 91\% (278 mg); $R_{f}: 0.48$ (silica gel, 20% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23-7.17$ $(\mathrm{m}, 1 \mathrm{H}), 7.10-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.30(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}$, 1 H), 4.66 (dd, $J=16.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.41 (dd, $J=16.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 (s, 3H), 3.67 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 204.9,160.9,160.7(\mathrm{~d}, J=247.1 \mathrm{~Hz}), 158.4$, $156.0,129.9(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 125.6(\mathrm{~d}, J=15.6 \mathrm{~Hz}), 124.1,115.6$ (d, $J=20.8 \mathrm{~Hz}$), 72.4, 55.6, 55.4, 43.5; Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FO}_{4}: \mathrm{C}, 67.54 ; \mathrm{H}, 5.00$, found: C, 67.59; H, 5.07.

(\pm)-cis-5,7-Dimethyl-4-phenylchroman-3-ol (31a):

31a
To a stirred solution of $\mathbf{3 0 a}(101 \mathrm{mg}, 0.4 \mathrm{mmol})$ in THF (5 mL) and water (1 mL), was added $\mathrm{NaBH}_{4}(75 \mathrm{mg}, 2.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 30 min and then quenched by addition of saturated aq. solution of $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{~mL})$. The mixture was extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$, washed brine $(40 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solution was evaporated to anh.ness under reduced pressure. The residue was subjected to silica gel column chromatography (with 5-20\% EtOAc in hexanes) to obtain 31a as white solid. Yield: 98% (99 mg); $R_{f}: 0.47$ (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26-7.17(\mathrm{~m}, 3 \mathrm{H})$, $7.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 4.26-4.22(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.89(\mathrm{~m}$, $1 \mathrm{H}), 3.67(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 4 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 154.0, 138.1, 138.0, 130.3, 128.5, 127.3, 123.9, 117.8, 114.5, 65.5, 64.4, 44.9, 21.0, 19.0; Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 80.28; $\mathrm{H}, 7.13$, found: $\mathrm{C}, 80.32 ; \mathrm{H}, 7.19$.

(\pm)-cis-4-(2-Fluorophenyl)-5,7-dimethoxychroman-3-ol (31b):

31b

Starting from compound $\mathbf{3 0 b}$ ($100 \mathrm{mg}, 0.33 \mathrm{mmol}$), the title compound was prepared in same manner as described for compound 31a. Yield: 97% (98 mg); light yellow gum; $R_{f}: 0.42$ (silica gel, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23-7.18$ (m, 1H), 7.09-6.99 (m, 2H), $6.86(\mathrm{td}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.05$ $(\mathrm{d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.86$ $(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 161.5(\mathrm{~d}, J=243.5 \mathrm{~Hz}), 160.4,158.6,155.9,130.7(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 128.1(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}), 127.1(\mathrm{~d}, J=14.4 \mathrm{~Hz}), 123.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 114.7(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 102.6$, 92.7, $92.1,65.4,64.9,55.4(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 55.2(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 34.8$; Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{4}$: C, 67.10; $\mathrm{H}, 5.63$, found: C, 67.18; H, 5.57.

Preparation of Chroman-Fused 2,3-Dihydrobenzofuran (Scheme 2.10)

rel-(6aR,11bR)-1,3-Dimethoxy-6a,11b-dihydro-6H-benzofuro[2,3-c]chromene (33):

33

To a solution of compound $\mathbf{3 1 b}(60 \mathrm{mg}, 0.19 \mathrm{mmol})$ in THF (5 mL) was added KOBu^{t} ($33 \mathrm{mg}, 0.29 \mathrm{mmol}$) under nitrogen atmosphere. The resulting mixture was then refluxed for 3 h . After cooling to rt , the reaction mixture was quenched by adding $\mathrm{H}_{2} \mathrm{O}$ (5 mL) and then extracted with EtOAc (20 mL). The combined organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and chromatographed (5-15\% EtOAc in hexanes) on silica gel column to get $33(38 \mathrm{mg}, 70 \%)$ as white solid. R_{f} : 0.61 (silica gel, $30 \% \mathrm{EtOAc}$ in hexanes); mp: 109-110 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.11-7.07 (m, 1H), 6.82-6.78 (m, 2H), 6.17 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$,
5.17-5.13 (m, 1H), $4.84(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=3.7$ and $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}$, $J=2.7$ and $11.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.92(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $159.6,159.0,158.5,130.9,128.3,126.2,120.9,109.6,105.7,99.9,94.3,93.0,79.8,66.7$, 55.3, 55.4, 36.3; Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4}$: C, 71.82; H, 5.67, found: C, 71.89; H, 5.72.

2.7. References

[1] Ellis, G. P. and Lockhart, I. M. Chromenes, Chromanones, and Chromones. In The Chemistry of Heterocyclic Compounds, volume 31, pages 1-1196. Wiley-VCH, 2007.
[2] Goel, A., Kumar, A., and Raghuvanshi, A. Synthesis, Stereochemistry, Structural Classification, and Chemical Reactivity of Natural Pterocarpans. Chemical Reviews, 113(3):1614-1640, 2012.
[3] May, J. A., Sharif, N. A., McLaughlin, M. A., Chen, H. H., Severns, B. S., Kelly, C. R., and Dean, T. R. Ocular Hypotensive Response in Nonhuman Primates of ($8 R$)-1-[(2S)-2-Aminopropyl]-8,9-dihydro-7H-pyrano[2,3-g]indazol-8-ol a Selective 5-HT2 Receptor Agonist. Journal of Medicinal Chemistry, 58(22):88188833, 2015.
[4] Aron, P. M. and Kennedy, J. A. Flavan-3-ols: nature, occurrence and biological activity. Molecular Nutrition \& Food Research, 52(1):79-104, 2008.
[5] Andrianasolo, E. H., Haramaty, L., Rosario-Passapera, R., Bidle, K., White, E., Vetriani, C., and Lutz, R. Ammonificins A and B, Hydroxyethylamine Chroman Derivatives from a Cultured Marine Hydrothermal Vent Bacterium, Thermovibrio ammonificans. Journal of Natural Products, 72(6):1216-1219, 2009.
[6] Donnelly, D. M. X., Finet, J. P., Guiry, P. J., and Nesbitt, K. Synthesis of neoflavenes by ligand coupling reactions with aryllead triacetates. Tetrahedron, 57(2):413-423, 2001.
[7] Marcos, R., Rodríguez-Escrich, C., Herrerias, C. I., and Pericàs, M. A. MetalMediated Cyclization of Aryl and Benzyl Glycidyl Ethers: A Complete Scenario. Journal of the American Chemical Society, 130(50):16838-16839, 2008.
[8] Li, G.-X. and Qu, J. Friedel-Crafts alkylation of arenes with epoxides promoted by fluorinated alcohols or water. Chemical Communications, 2010(46):2653-2655, 2010.
[9] Liu, Y., Li, X., Lin, G., Xiang, Z., Xiang, J., Zhao, M., and Yang, Z. Synthesis of

Catechins via Thiourea/ AuCl_{3}-Catalyzed Cycloalkylation of Aryl Epoxides. The Journal of Organic Chemistry, 73(12):4625-4629, 2008
[10] Li, L. Q., Li, M. M., Wang, K., and Qin, H. B. Total synthesis of (\pm)-brazilin and formal synthesis of (\pm)-brazilein, (\pm)-brazilide A using m-CPBA. Tetrahedron Letters, 54(45):6029-6031, 2013.
[11] Yadav, J. S., Pandurangam, T., Reddy, V. V. B., and Reddy, B. V. S. Total Synthesis of Rhoiptelol B. Synthesis, 2010(24):4300-4306, 2010.
[12] Rondot, C., Retailleau, P., and Zhu, J. Synthesis of Protected Chiral Vicinal Diaminoalcohols by Diastereoselective Intramolecular Benzylic Substitution from Bistrichloroacetimidates. Organic Letters, 9(2):247-250, 2007.
[13] Lu, J. and Toy, P. H. Organocatalytic Decarboxylative Doebner-Knoevenagel Reactions between Arylaldehydes and Monoethyl Malonate Mediated by a Bifunctional Polymeric Catalyst. Synlett, 2011(12):1723-1726, 2011.
[14] Basu, B., Das, S., Das, P., Mandal, B., Banerjee, D., and Almqvist, F. Palladium Supported on a Polyionic Resin as an Efficient, Ligand-Free, and Recyclable Catalyst for Heck, Suzuki-Miyaura, and Sonogashira Reactions. Synthesis, 2009(07):1137-1146, 2009.
[15] Kim, E., Koh, M., Lim, B. J., and Park, S. B. Emission Wavelength Prediction of a Full-Color-Tunable Fluorescent Core Skeleton, 9-Aryl-1,2-dihydropyrrolo[3,4-b]indolizin-3-one. Journal of the American Chemical Society, 133(17):6642-6649, 2011
[16] Davis, M. C. and Groshens, T. J. Synthesis of p-Quinquephenyl from $E, E-1,4-$ Bis(4-bromophenyl)-1,3-butadiene. Synthetic Communications, 41(2):206-218, 2010.
[17] Petersen, M. Å., Mortensen, M. A., Cohrt, A. E., Petersen, R., Wu, P., FleuryBrégeot, N., and Clausen, M. H. Synthesis of 1, 4, 5 trisubstituted γ-lactams via a 3-component cascade reaction. Bioorganic \& Medicinal chemistry, 23(11):26952698, 2015.
[18] Gao, Y., Klunder, J. M., Hanson, R. M., Masamune, H., Ko, S. Y., and Sharpless, K. B. Catalytic Asymmetric Epoxidation and Kinetic Resolution: Modified Procedures Including in Situ Derivatization. Journal of the American Chemical Society, 109(19):5765-5780, 1987.
[19] Li, X. and Borhan, B. Prompt Determination of Absolute Configuration for Epoxy

Alcohols via Exciton Chirality Protocol. Journal of the American Chemical Society, 130(48):16126-16127, 2008.
[20] Balamurugan, R., Kothapalli, R. B., and Thota, G. K. Gold-Catalysed Activation of Epoxides: Application in the Synthesis of Bicyclic Ketals. European Journal of Organic Chemistry, 2011(8):1557-1569, 2011.
[21] Xu, M. H., Tu, Y. Q., Tian, J. M., Zhang, F. M., Wang, S. H., Zhang, S. H., and Zhang, X. M. Asymmetric epoxidation of α, β-unsaturated aldehydes catalyzed by a spiro-pyrrolidine-derived organocatalyst. Tetrahedron: Asymmetry, 27(6):294300, 2016.
[22] Patel, A. R., Hu, X. G., Lawer, A., Ahmed, M. I., Au, C., Jwad, R., and Hunter, L. Scalable, stereoselective syntheses of α, β-difluoro- γ-amino acids. Tetrahedron, 72(23):3305-3317, 2016.
[23] Brunner, H. and Sicheneder, A. Synthesis of Optically Active Phosphanes via Sharpless Epoxidation. Angewandte Chemie, International Edition, 100(5):730731, 1988
[24] Ebisawa, M., Ueno, M., Oshima, Y., and Kondo, Y. Synthesis of dictyomedins using phosphazene base catalyzed diaryl ether formation. Tetrahedron Letters, 48(50):8918-8921, 2007.

2.8. NMR Spectra of Selected Compounds

Figure 2.2. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 8 a

Figure 2.3. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectrum of compound 8 a

Figure 2.4. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{8 g}$

Figure 2.5. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 8 g

Figure 2.6. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 8 s

Figure 2.7. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 8 s

Figure 2.8. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{8 w}$

Figure 2.9. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{8 w}$

Figure 2.10. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 30 b

Figure 2.11. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 0 b}$

Figure 2.12. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 31b

Figure 2.13. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 31b

Figure 2.14. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectrum of compound 33

Figure 2.15. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 33

