List of Tables:

Chapter	Table	Title	Page No
1	1.1	Ligand-free Sonogashira coupling reaction	15
	1.2	Ligand-free Suzuki-Miyaura coupling reaction	16
2	2.1	Screening of catalyst loading on Sonogashira coupling of 4-iodonitrobenzene and phenylacetylene	33
	2.2	Screening of efficiency of solvent and base for coupling of aryl iodide and phenylacetylene	34
	2.3	Sonogashira coupling of aryl halides with different terminal acetylenes	36
3	3.1.1	Metal contents (in ppm) in WEPBA through Flame Photometry (FP) and Ion-Exchange Chromatography (IEC)	46
	3.1.2	Screening of Pd(OAc) ₂ /WEPBA for Suzuki- Miyaura cross-coupling	47
	3.1.3	Suzuki-Miyaura coupling of aryl bromides and aryl boronic acids using WEPBA/Pd(OAc) ₂	49
	3.1.4	Optimization of WEPBA/Pd(OAc) ₂ for Sonogashira cross-coupling reaction	51
	3.1.5	Optimization of substrate ratio for Sonogashira cross-coupling reaction	52
	3.1.6	Sonogashira coupling of aryl halides with different terminal acetylenes	53
	3.2.1	Screening of AWEH & catalyst amount for Suzuki-Miyaura cross-coupling	64
	3.2.2	Pd(OAc) ₂ /AWEH catalyzed Suzuki-Miyaura coupling of aryl halides and aryl boronic acids	65
4	4.1.1	Screening of catalytic effect on Sonogashira coupling	76
	4.1.2	Screening the solvent and base	77
	4.1.3	Substrate scope of Sonogashira coupling	81
	4.1.4	Reusability of the <i>in situ</i> generated Pd NPs in Sonogashira coupling	82

List of Tables:

Chapter	Table	Title	Page No
4	4.2.1	Comparison of basic phytochemical composition of <i>Ocimum sanctum</i> and <i>Aloe vera</i>	91
	4.2.2	Optimization of reaction conditions for Suzuki- Miyaura reaction	96
	4.2.3	Substrate scope for Suzuki-Miyaura cross- coupling reaction	98
	4.2.4	Optimization of reaction conditions for Sonogashira reaction	101
	4.2.5	Substrate scope for Sonogashira cross-coupling reaction	103
5	5.1.1	Optimization of the amount of catalyst and base for Suzuki-Miyaura coupling reaction	124
	5.1.2	Substrate scope for Pd NPs catalyzed Suzuki- Miyaura reaction	125
	5.1.3	Optimization of catalyst and solvent in Sonogashira cross-coupling reaction	127
	5.1.4	Pd NPs catalyzed Sonogashira cross-coupling reaction of aryl halides with terminal alkyne	128
	5.1.5	Comparison of the present protocol with some existing literatures	129
	5.2.1	Optimization of catalytic system for Sonogashira cross-coupling reaction	145
	5.2.2	Sonogashira cross-coupling of aryl iodides and phenylacetylene	146
6	6.1	Optimization of reaction conditions for Suzuki- Miyaura reaction	164
	6.2	Substrate scope for Suzuki-Miyaura reaction	165
	6.3	Optimization of reaction conditions for Sonogashira coupling reaction	167
	6.4	Optimization of reaction conditions for Sonogashira coupling of aryl bromides and phenylacetylene	168
	6.5	Substrate scope for Sonogashira coupling of heteroaryl bromides and terminal acetylene	169

List of Figures:

Chapter	Figure	Title	Page No
1	1.1	Phosphine based ligands for Suzuki-Miyaura and Sonogashira coupling	11
	1.2	Water Soluble Phosphine based ligands for Suzuki-Miyaura and Sonogashira coupling	12
	1.3	(a) NHC Palladium complexes (b) Palladacycles used in Sonogashira and Suzuki-Miyaura cross- coupling reactions.	13
3	3.1.1	Preparation of WEPBA	45
	3.1.2	(a) EDX spectrum of papaya bark ash (b) IEC analysis of WEPBA	46
	3.1.3	(a) TEM image of Pd NPs and (b) Pd NPs distribution	48
	3.1.4	Reusability of WEPBA/Pd(OAc) ₂ in Suzuki- Miyaura coupling	50
	3.2.1	Preparation of AWEH and their application in Suzuki-Miyaura coupling	62
	3.2.2	EDX Spectrum of ash of Eichhornia crassipes	63
4	4.1.1	(I) UV/Vis absorption spectra of $Pd(OAc)_2$, gallic acid and preformed Pd NPs (II) UV/Vis absorption spectra <i>in situ</i> Pd NPs: (a) 1 mol% $Pd(OAc)_2$ and 1 mol% gallic acid; (b) 1 mol% $Pd(OAc)_2$ and 1 mol% gallic acid after 2 h; (c) 1 mol% $Pd(OAc)_2$ and 0.5 mol% gallic acid; (d) 1 mol% $Pd(OAc)_2$ and 4 mol% gallic acid.	78
	4.1.2	(I) Powder XRD pattern of Pd NPs, (II) FT-IR spectra of $Pd(OAc)_2$ and Pd NPs	79
	4.1.3	TEM images of gallic acid derived <i>in situ</i> generated Pd NPs	80
	4.1.4	(a) Powder XRD pattern of <i>in situ</i> generated Pd NPs after 1 st catalytic run (b)TEM images (c) SAED pattern and (d) Particle size distribution of <i>in situ</i> generated Pd NPs after 2 nd catalytic run	83
	4.2.1	Change in colour of Pd(OAc) ₂ after addition of (a) Ext OS (b) Ext AV	90

List of Figures:

Chapter	Figure	Title	Page No
4	4.2.2	Powder XRD pattern of (a) Pd_{OS} NPs and (b) Pd_{AV} NPs	92
	4.2.3	FT-IR spectrum of (a) $Pd(OAc)_2$, (b) Pd_{OS} NPs and (c) Pd_{AV} NPs	92
	4.2.4	(a) XPS survey spectrum of Pd_{OS} NPs (b) high- resolution Pd3d spectrum of Pd_{OS} NPs (c) XPS survey spectrum of Pd_{AV} NPs (d) high-resolution Pd3d spectrum of Pd_{AV} NPs and (e) high- resolution O1s spectrum of Pd_{AV} NPs	93
	4.2.5	UV visible spectra of (a) Ext OS (b) $Pd(OAc)_2$ & Ext OS (c) $Pd_{OS} NPs_{in \ situ}$ (d) $Pd(OAc)_2$ & Ext AV (e) $Pd_{AV} NPs_{in \ situ}$ (f) $Pd_{AV} NPs_{ex \ situ}$	94
	4.2.6	(a, b, c and d) are the TEM and HRTEM images and SAED pattern of the Pd_{AV} NPs _{<i>in situ</i>} , (e, f and g) are the HRTEM images and TEM image and (h) is the particle size distribution of the Pd _{OS} NPs _{<i>in situ</i>} . Inset in (f) is the SAED pattern of the Pd _{OS} NP <i>in situ</i>	95
	4.2.7	Reusability of Pd _{AV} NPs _{in situ} in Suzuki-Miyaura cross-coupling reaction	99
	4.2.8	TEM (a,b and c) and high-resolution TEM (HRTEM) images (d) of Pd _{AV} NPs _{in situ} after 2nd catalytic cycle	100
5	5.1.1	Preparation of Pd NPs from waste papaya peels	121
	5.1.2	(a, b & c) are UV/Vis absorption spectra of papaya extract, mixture of papaya extract & $Pd(OAc)_2$ and Pd NPs respectively (d) Powder XRD pattern of Pd NPs (e) EDX analysis of Pd NPs	122
	5.1.3	(a) TEM image, (b) Pd NPs distribution and (c) &(d) HRTEM images of Pd NPs	123
	5.1.4	(a) & (b) SEM images, (c) BET surface area and inset, (d) pore size distribution of Pd NPs	123
	5.1.5	Reusability of Pd NPs for the coupling reactions	130
	5.2.1	Preparation of Cu NPs using papaya peel extract	139

List of Figures:

Chapter	Figure	Title	Page No
5	5.2.2	(a) Solid state UV/Vis spectra of, Cu-433K and Cu-463K (b) Powder XRD pattern of $Cu(OAc)_2$, Cu-433K and Cu-463K	141
	5.2.3	FTIR spectra of (a) Cu(OAc) ₂ and (b) Cu-463K NP (c) EDX analysis of Cu-463K NP	142
	5.2.4	(a, b, c and d) are the TEM and HRTEM images and inset in (c) is the SAED pattern of the Cu- 463K NPs	142
	5.2.5	(a, b, and c) are the SEM images of Cu-463K	143
	5.2.6	BET surface area and pore size distribution (inset) of Cu-463K	143
	5.2.7	Reusability of Cu-463K in Sonogashira cross- coupling reaction	146
6	6.1	Pictorial presentation of pomegranate peel residue (PPR) and peel extract	155
	6.2	TEM images of (a) PPR(A) and (b) PPR(M)	158
	6.3	SEM images of (a) PPR(A) (c) and (d) PPR(M)	158
	6.4	FTIR spectra of (a) $Pd(OAc)_2$, (b) Pd NP, (c) PPR(M) and (d) Pd@PPR(M)	159
	6.5	(I) Powder XRD spectra of (a) PPR(M) and (b)Pd@PPR(M) (II) EDX analysis of Pd@PPR(M)(II) EDX analysis of Pd@PPR(M)	160
	6.6	(a) XPS survey spectrum, (b, c and d) high- resolution Pd3d, C1s and O1s spectrum respectively of Pd@PPR(M)	161
	6.7	TEM images (a and b) and (c) HRTEM image of Pd@PPR(M), inset in (c) SAED pattern of Pd@PPR(M)	161
	6.8	(a, b, c and d) are the SEM images of Pd@PPR(M)	162
	6.9	N_2 adsorption/desorption isotherm of (I) PPR(M) (II) Pd@PPR(M), and inset in (I) and (II) are the pore size distribution curves	163

List of Figures:

Chapter	Figure	Title	Page No
6	6.10	Reusability of Pd@PPR(M) in Suzuki-Miyaura cross-coupling reaction	166
	6.11	(a), (b), (c) TEM and HRTEM images of Pd@PPR(M) after 5 th reuse, inset in (c) is the SAED pattern of Pd@PPR(M) and (d) EDX analysis of reused Pd@PPR(M)	166
	6.12	Reusability of Pd@PPR(M) in Sonogashira cross- coupling reaction	170

List of Schemes:

Chapter	Scheme	Title	Page No
1	1.1	Copper mediated Glaser coupling	2
	1.2	Copper mediated Ulmann coupling	2
	1.3	Copper mediated Cadiot-Chodkiewicz coupling	2
	1.4	Palladium catalyzed common cross-coupling reactions	3
	1.5	General catalytic cycles for Pd-catalyzed cross- coupling reaction	4
	1.6	Mechanistic pathways for oxidative addition step	5
	1.7	Mechanistic pathways for reductive elimination step	5
	1.8	Sonogashira Cross-Coupling Reaction	6
	1.9	Palladium/copper co-catalyzed catalytic cycle for Sonogashira reaction	7
	1.10	Copper free catalytic cycles for Sonogashira reaction	8
	1.11	Palladium-free copper catalytic cycles for Sonogashira reaction	9
	1.12	Suzuki-Miyaura cross-coupling reaction	9
	1.13	Palladium catalytic cycle for Suzuki-Miyaura cross-coupling reaction	10
	1.14	Urgaonkar's and Verkade's ligand free Sonogashira reaction	14
	1.15	Glycerol as solvent in Suzuki-Miyaura and Sonogashira coupling	17
	1.16	Cyrene as solvent in Suzuki-Miyaura and Sonogashira coupling reaction	17
	1.17	Suzuki-Miyaura coupling reaction using WEB and WERSA	18
2	2.1	Pd(OAc) ₂ /Urea catalysed Suzuki-Miyaura cross- coupling reaction	32

List of Schemes:

Chapter	Scheme	Title	Page No
4	4.1.1	Mechanism of reducing action gallic acid for <i>in situ</i> generation of Pd NPs	81
5	5.2.1	Sonogashira cross-coupling reaction using (A) Cu ₂ O@Cu composite (B) Cu/Cu ₂ O-rGO with a Cu-MOF-derived jacket structure	139
	5.2.2	Controlled experiment for Sonogashira cross- coupling using Cu-433K and Cu-463K	140
	5.2.3	Plausible mechanistic action of Cu/Cu ₂ O NPs in Sonogashira-coupling reaction	147

List of Abbreviations:

AWE	Agro Waste Extract
AWEH	Ash Water Extract of Water Hyacinth
BINAP	2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)
BET	Brunauer-Emmett-Teller
BHM	Biodegradable Heterogeneous Material
CAM	Conventional Acid-treated Method
Су	Cyclohexyl
Cy-pip-phos	4-(Dicyclohexylphospino)-N,N-dimethylpiperidinium chloride
DABCO	1,4-Diazabicyclo[2,2,0]octane
DAPCy	trans-Bis(Dicyclohexylamine)palladiumdiacetate
DCPES	Dicyclohexylphosphinoethanesulfonate sodium salt
DMF	Dimethylforamide
Dfpp	1,1'-Bis[Di(5-methyl-2-furyl)phosphino]ferrocene
Dppf	1,2-Bis(Diphenylphosphino)ferrocene
DIOP	O-Isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane
EDX	Energy Dispersive X-Ray
Et	Ethyl
FP	Flame Photometry
FTIR	Fourier Transform Infrared Spectroscopy
ICP-OES	Inductively Coupled Plasma Atomic Emission Spectroscopy
IC	Ion Chromatography
<i>i</i> Pr	Isopropyl
J	Coupling constant
JCPDS	Joint Committee on Powder Diffraction Standards
MAM	Microwave Assisted Method
mg	Milligram
Me	Methyl
mmol	Millimole
mL	Milliliter
NFC	Nanofibrillar cellulose
NCC	Nanocrystalline cellulose