List of Tables:

Chapter	Table	Title	Page No
2	2.1	PBE0/6-31+G* calculated C-C _C -C bond angles (in degrees) and C _C -C bond lengths (in Å) of 1- 34 for both singlet and triplet states.	31
	2.2	PBE0/6-31+G* computed singlet-triplet (ΔE_{S-T} , kcal mol ⁻¹) and HOMO-LUMO (ΔE_{H-L} , in eV) gaps of 1-34 .	34
	2.3	PBE0/6-31+G* computed hydrogenation energies (E_{hydro} , kcal mol ⁻¹) and stabilization energies (SE, kcal mol ⁻¹) of 1-34 (excluding 2 and 24-27).	36
	2.4	PBE0/6-31+G* calculated energies of σ - symmetric lone pair orbital (E _{σ} in eV) and the π - symmetric unoccupied orbital (E _{π*} in eV) concentrated on the carbenic carbon atom (C _C) as well as natural charge at C _C (q(C _C)) of 1-34 (excluding 2 and 24-27).	39
	2.5	PBE0/6-31+G* calculated nucleophilicity indices (N , in eV) and electrophilicity indices (ω , in eV) for 1-34 (excluding 2 and 24-27).	43
	2.6	PBE0/6-31+G* calculated C _C -P and P-C _{Ph} bond lengths (in Å) and ³¹ P NMR chemical shifts (δ (³¹ P)) for the adducts L-PPh (L= 1-34 , excluding 2 and 24-27).	47
3	3.1.1	Comparison of the singlet-triplet gaps (ΔE_{S-T} , in kcal mol ⁻¹) using different basis sets and functionals.	59
	3.1.2	Comparison of the calculated and observed ¹³ C NMR chemical shifts (ppm) of experimentally known molecules.	60
	3.1.3	PBE0/6-31+G* calculated C _C -E bond lengths $(r_1/r_2 \text{ in } \text{Å})$ and E-C _C -E bond angles (in degrees) in the singlet state geometry of 1-22 (where E = C or N).	63
	3.1.4	PBE0/6-31+G* calculated singlet-triplet separations (ΔE_{S-T} , in kcal mol ⁻¹) and stabilization energies (SE, in kcalmol ⁻¹) of 1–22 .	64

List of Tables:

Chapter	Table	Title	Page No
3	3.1.5	PBE0/6-31+G* calculated energies (E_{σ} , in eV) and hybridization (%s-character) of the σ - symmetric lone-pair orbital concentrated at the carbene carbon atom and the respective proton affinity (PA, kcal mol ⁻¹) values of 1–22.	67
	3.1.6	PBE0/6-31+G* calculated energies of the σ -symmetric lone-pair orbital concentrated at the carbene carbon atom (E _{σ} , in eV) and the average carbonyl stretching frequencies (v _{CO(avg)} , in cm ⁻¹) of L-Rh(CO) ₂ Cl (L: 1 - 22) complexes.	70
	3.1.7	PBE0/6-31+G* calculated nucleophilicity indices (<i>N</i> , in eV), bond dissociation energies of the Ga-C _C bond (BDE, kcal mol ⁻¹), degree of pyramidalization at the Ga atom (θ_{Ga} , in degree) and Ga-C _C bond lengths (r_{Ga-C_C} , in Å) of the GaCl ₃ adducts of 1–22 .	71
	3.2.1	PBE0/6-31+G* calculated values of C_C - C_α bond lengths (in Å) and C_α - C_C - $C_{\alpha'}$ bond angles (in degree) for both singlet and triplet states of 1 - 6 .	80
	3.2.2	PBE0/6-31+G* calculated values of singlet- triplet separations (ΔE_{S-T} , in kcal mol ⁻¹) and natural charges at C _C (q(C _C)) for molecules 1–6 .	81
	3.2.3	Calculated values of singlet-triplet gaps (ΔE_{S-T} , in kcal mol ⁻¹) of 6PMe₃ using different basis sets and functionals.	83
	3.2.4	PBE0/6-31+G* calculated NICS(0) and NICS(1) values of molecules $1-6$.	85
	3.2.5	Average isotropic $[\chi(C/\Omega)]$ and out-of-plane $[\chi_{ZZ}(C/\Omega)]$ interatomic magnetizability values in cgs-ppm units (where $\Omega = C/N$).	87
	3.2.6	PBE0/6-31+G* calculated values of hydrogenation energies (E_{hydro} , in kcal mol ⁻¹) for molecules 1–6 .	88
	3.2.7	PBE0/6-31+G* calculated dimerization reaction energies (ΔE_{dimer} , in kcal mol ⁻¹) and dimerization gibbs free energies (ΔG_{dimer} , kcal mol ⁻¹) of some representative molecules.	89

List of Tables:

Chapter	Table	Title	Page No
3	3.2.8	PBE0/6-31+G* calculated energies of the σ -symmetric lone pair orbital (E $_{\sigma}$, in eV) concentrated at the carbene carbon of molecules 1–6.	90
	3.2.9	PBE0/6-31+G* calculated energies of the σ - symmetric lone pair orbital (E σ , in eV) concentrated at the carbene carbon, carbonyl stretching frequencies (v _{CO} in cm ⁻¹) for both symmetrical and unsymmetrical stretching mode and average carbonyl stretching frequencies (v _{CO(avg)} , in cm ⁻¹) of some representative L- Rh(CO) ₂ Cl (L = 1Me , 2PMe3 , 3Me , 4PMe3 , 5Me , 6PMe3) complexes.	91
	3.2.10	PBE0/6-31+G* calculated nucleophilicity index values of molecules $1-6$.	92
4	4.1	Calculated values of key geometrical parameters for some representative molecules at different levels of theories.	108
	4.2	Calculated zero-point corrected energies of the parent and flipped isomers (in hartree) for some representative molecules and their energy differences (ΔE , in kcal mol ⁻¹) at different levels of theories.	109
	4.3	BP86/Def2-SVP, Def2-TZVP(Fe) Calculated values of energies (in hartree) for some representative molecules in their respective singlet and triplet spin states as well as the energy difference between singlet and triplet states (ΔE_{S-T} , in kcal mol ⁻¹).	109
	4.4	BP86/Def2-SVP, Def2-TZVP(Fe) calculated zero point corrected energies (in hartree) of the rotated and unrotated isomers with chelated 5NHCs as well as their energy differences ($\Delta E_{rot-unrot}$, in kcal mol ⁻¹).	113
	4.5	BP86/Def2-SVP, Def2-TZVP(Fe) calculated zero point corrected energies (in hartree) of the rotated and unrotated isomers of 2x-6NHC , 2'x- 6NHC , 2x-aNHC , 2'x-aNHC , 2x-BNHC and 2'x-BNHC complexes as well as their energy differences ($\Delta E_{rot-unrot}$, in kcal mol ⁻¹).	114

List of Tables:

Chapter	Table	Title	Page No
4	4.6	BP86/Def2-SVP, Def2-TZVP(Fe) calculated zero point corrected energies (in hartree) of the rotated and unrotated isomers with chelated CAACs as well as their energy differences ($\Delta E_{rot-unrot}$, in kcal mol ⁻¹). Negative sign indicates unrotated isomer is more stable.	115
5	5.1	M062X/Def2-TZVP calculated values of key geometrical parameters for both the complexes $[1]^0$ and $[2]^0$ and the intermediates involved in the catalytic cycle. The iron centers are denoted by Fe _p and Fe _d whereas the apical and bridging carbonyl groups are indicated by CO _{ap} and CO _{bridg} respectively.	133
	5.2	Calculated values of Mössbauer isomer shift (δ) and Mulliken spin densities (ρ).	140
	5.3	BP86/Def2-TZVP calculated values of reduction potentials of the reduction events for both $[1]^0$ and $[2]^0$.	141
	5.4	M062X/Def2-TZVP calculated ΔpK_a values for the protonated species obtained from different protonation pathways.	142

List of Figures:

Chapter	Figure	Title	Page No
2	2.1	Optimized singlet state geometries for the mesoionic NHCs (1–18).	30
	2.2	Optimized singlet state geometries for the six- membered remote NHCs (19–34)	32
	2.3	Correlation plot between hydrogenation energies (E_{hydro}) and singlet-triplet gaps (ΔE_{S-T}) of six- membered rNHCs.	37
	2.4	Plot of the energies of σ -symmetric lone pair orbitals (E _{σ}) and π -symmetric unoccupied orbitals (E _{π*}) concentrated on the central carbon atom of (a) five-membered rNHCs (1 , 3-18) and (b) six-membered rNHCs (19-23 , 28-34).	38
	2.5	Correlation plot between the energies of the π -symmetric unoccupied MO (E _{π*}) and the values of natural charge at carbenic carbon (q(C _C)) of five-membered rNHCs (omitting the point corresponding to 10).	41
	2.6	Correlation plot between the energies of the π -symmetric unoccupied MO (E_{π^*}) and the values of natural charge at carbenic carbon (q(C _C)) of six-membered rNHCs (omitting the points corresponding to 29 and 32).	42
	2.7	Correlation plot between the energies of the σ -symmetric lone pair orbital (E _{σ}) and the values of nucleophilicity index (<i>N</i>) of five-membered rNHCs.	43
	2.8	Correlation plot between the (a) energies of the σ -symmetric lone pair orbital (E σ) and nucleophilicity index values (<i>N</i>) and (b) energies of the π -symmetric unoccupied molecular orbital (E π^*) and electrophilicity index values (ω) for six-membered rNHCs.	45
	2.9	Optimized geometry and key bond lengths (in Å) of the 1-PPh adduct.	46
	2.10	Correlation plot between the energy of the π -symmetric unoccupied MO (E_{π^*}) and ³¹ P chemical shifts (δ^{31} P) of the phosphinidene adducts of (a) five- and (b) six-membered rNHC	49

List of Figures:

Chapter	Figure	Title	Page No
3	3.1.1	Optimized singlet state geometries of all the carbenes $(1-22)$.	62
	3.1.2	Correlation plot between calculated singlet- triplet separations (ΔE_{S-T}) and stabilization energies (SE) of 1-22 .	66
	3.1.3	Plot of the energies of the σ -symmetric lone-pair orbitals (E _{σ} , in eV) concentrated at the central carbon atom of 1–22 .	66
	3.1.4	Correlation plot between the energies of the σ -symmetric lone-pair orbitals concentrated at the carbene center (E_{σ} , in eV) and percentage of s-character of the lone pair of 1–22.	68
	3.1.5	Correlation plot between the energies of the σ -symmetric lone-pair orbitals (E $_{\sigma}$, in eV) and proton affinity (PA, kcal mol ⁻¹) values of 1–22.	69
	3.1.6	Correlation plot between the energies of the σ -symmetric lone pair orbitals concentrated at the central carbene carbon atom (E _{σ} , in eV) and the $v_{CO(avg)}$ values (in cm ⁻¹) of the L–Rh(CO) ₂ Cl complexes (L: 1–22).	70
	3.1.7	Correlation plot between energies of the σ -symmetric lone pair orbitals (E _{σ} , in eV) and nucleophilicity indices (<i>N</i> , in eV) for 1–22.	72
	3.1.8	Correlation plots between (a) the pyramidalization angle at the gallium atom (θ_{Ga} , in degrees) and the nucleophilicity indices (<i>N</i> , in eV), and (b) the Ga–C _C bond dissociation energies (BDE, in kcalmol ⁻¹]) and the Ga–C _C bond lengths (in Å) of the GaCl ₃ adducts of 1–22 .	73
	3.1.9	Correlation plot between the calculated proton affinities (kcal mol ⁻¹) and pyramidalization angle at gallium atom (θ_{Ga}) of the GaCl ₃ adducts of 1–22 .	73
	3.2.1	Optimized singlet-state geometries of all the remote carbenes (1-6).	79

List of Figures:

Chapter	Figure	Title	Page No
3	3.2.2	(a) Contour plots of molecular orbitals showing cyclic delocalization of electrons within the five atom ring of 6PMe3 and (b) Contour line diagram of the Laplacian of electron density in the ring plane of 6PMe3 . Solid blue lines indicate regions of charge depletion $[\nabla^2 \rho(r) > 0]$ and dashed maroon lines indicate regions of charge concentration $[\nabla^2 \rho(r) < 0]$. Green and red spheres denote bond critical points (bcp) and ring critical points (rcp), respectively.	83
	3.2.3	(a) Contour plots of molecular orbitals showing cyclic delocalization of electrons within the five atom ring of 6PⁱPr3 and (b) Contour line diagram of the Laplacian of electron density in the ring plane of 6PⁱPr3 . Solid blue lines indicate regions of charge depletion $[\nabla^2 \rho(r) > 0]$ and dashed maroon lines indicate regions of charge concentration $[\nabla^2 \rho(r) < 0]$. Green and red spheres denote bond critical points (bcp) and ring critical points (rcp), respectively.	84
	3.2.4	Contour plots showing cyclic delocalization of electrons involving all the five ring atoms of 2PMe3 , (a) top view (b) side view (PMe3 groups are omitted for clarity).	86
	3.2.5	Graphical representation of singlet-triplet separations (ΔE_{S-T} , kcal mol ⁻¹) and hydrogenation energies (E_{hydro} , kcal mol ⁻¹) of rNHCs 1–6 .	88
	3.2.6	Correlation plot between energies of the σ -symmetric lone pair orbitals (E $_{\sigma}$, in eV) concentrated at the carbene carbon and nucleophilicity index (<i>N</i>) values for rNHCs 1 and 3–6.	92
4	4.1	Optimized rotated structures for the model complexes with chelated 5NHCs.	111
	4.2	Figure showing the metallacycle formed at Fe_p as a result of coordination of the chelated 5NHC rings in complex 2_H-5NHC .	112
	4.3	Molecular orbital representing Fe_p - Fe_d bonding interaction in (a) 1 _H - 5 NHC and (b) 2 _H - 5 NHC.	112

List of Figures:

Chapter	Figure	Title	Page No
4	4.4	Molecular orbital representing the overlap between the lone pairs of CAAC and metal d- orbitals in (a) 1 _H -CAAC and (b) 2 _H -CAAC.	117
	4.5	Molecular orbital showing the interaction between the proximal iron center (Fe_p) and bridging carbonyl group in 2_H-CAAC .	118
	4.6	Molecular orbitals representing the stepwise change of Fe _p -Fe _d bonding interaction as well as formation of new Fe _p -CO _{bridg} bond during rotation of Fe _d (CO) ₃ unit in 2 _H -CAAC. The values represented by the arrows are natural charges at Fe _p (left) and Fe _d (right). θ_{rot} (\angle CCo- Fe _p -Fe _d -C _{CO}) represents the dihedral angle reflecting rotation at Fe _d (CO) ₃ unit (C _{CO} represents carbon atom of the carbonyl group). The values of Fe _p -Fe _d bond lengths and θ_{rot} are given in Å and degrees respectively.	118
5	5.1	Lowest Unoccupied Molecular Orbital (LUMO) of [1- <i>t</i> H] ⁺ .	132
	5.2	Proposed mechanism for production of H_2 using $[1]^0$ (phenyl groups at the nitrogen atoms of CAAC are omitted for clarity.)	136
	5.3	Proposed mechanism for production of H_2 using $[2]^0$	138

List of Schemes:

Chapter	Scheme	Title	Page No
1	1.1	Schematic representation of the mesoionic $(1-18)$ and remote NHCs $(19-34)$ considered in this study.	12
	1.2	Schematic representation of the range of carbenes considered in this study (Dipp: 2,6-diisopropylphenyl).	14
	1.3	Schematic representation of the range of cyclic carbenes considered in this study.	15
	1.4	Schematic representation of the active site structure of [FeFe]-hydrogenase.	15
	1.5	Schematic representation of the molecules considered in the present study (X= H/Cyclohexyl).	16
	1.6	Schematic representation of the catalytic cycle of H_2 production catalyzed by [1] ⁰ .	17
	1.7	Schematic representation of the catalytic cycle of H_2 production catalyzed by [2] ⁰ .	18
2	2.1	Schematic representation of the mesoionic $(1-18)$ and remote NHCs $(19-34)$ considered in this study.	28
	2.2	Resonance forms of carbene-phosphinidene adducts. Resonance form A dominates over B with increasing π acidity of carbenes. C represents the orbital interaction involved in back donation from the phosphorus center to the formally vacant p orbital at the carbenic carbon atom.	46
3	3.1.1	Schematic representation of the range of carbenes considered in this study (Dipp: 2,6-diisopropylphenyl).	58
	3.1.2	Schematic representation of the back-bonding interaction between the metal center and the CO antibonding (π^*) orbital.	69
	3.2.1	Schematic representation of experimentally known aminoylidecarbenes	76

List of Schemes:

Chapter	Scheme	Title	Page No
3	3.2.2	Range of molecules considered for this study.	76
4	4.1	Schematic structures for the active site of $[FeFe]$ -hydrogenase, left: oxidized or mixed valence state (H _{ox}), right: reduced state (H _{red}).	104
	4.2	Crystallographically characterized structures for the model complexes with inverted square pyramidal geometry at one Fe center in the Fe ^I - Fe ^I state.	105
	4.3	Schematic representation of the molecules considered in the present study (X= H/Cyclohexyl)	106
	4.4	Schematic representations of the difference in orientation of the chelated 5NHC ligands in (a) $[(\mu-pdt)]Fe(Che-5NHC)(CO)_4]$, (b) 2x-5NHC and (c) 2'x-5NHC, where X= H/Cy.	111
5	5.1	Schematic representation of the active site of [FeFe]-hydrogenase.	128
	5.2	Schematic representation of the model complexes used as catalyst in the present study for production of dihydrogen.	129
	5.3	Schematic representation of the catalytic cycle of H_2 production catalyzed by [1] ⁰ .	132
	5.4	Schematic representation of the catalytic cycle of H_2 production catalyzed by [2] ⁰ .	134
	5.5	Schematic depiction of different protonation pathways considered in this study for complex $[1]^0$. Similar pathways are also considered for $[2]^0$.	142