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[1.1] Introduction 

Chemistry is a scientific discipline which deals with the study of matter, their 

properties (both physical and chemical) and reactions which involves breaking and 

formation of bonds between chemical entities. Even though from its beginning, 

chemistry relies on experimental aspects, nowadays due to the tremendous development 

in modern computing techniques, computational chemistry emerges as an important tool 

towards solving a variety of chemical problems. Computational chemistry is based on 

methods which use the law of quantum mechanics and is found to be very helpful in the 

study of different properties such as molecular geometry, relative energies of isomers, 

simulation of spectroscopic properties as well as to investigate reaction pathways, 

intermediates and transition states etc. The methods used by a computational program 

can be broadly classified into five categories [1] which are as follows: 

(a) Molecular mechanics 

(b) Ab initio 

(c) Semiempirical 

(d) Density functional theory 

(e) Molecular dynamics 

Molecular mechanics considers a molecule as balls and springs model while Ab initio 

and semiempirical methods are known as wavefunction methods as they deal with the 

solving of Schrödinger equation considering the wavefunction for a particular state. 

Further, molecular dynamics is based on laws of motion. However, the works presented 

in this thesis were being carried out employing Density Functional Theory (DFT) [2] 

calculations using the Gaussian software package [3] and accordingly, a brief description 

of DFT is provided below. 

[1.2] Density Functional Theory 

Unlike wavefunction methods, DFT relies on electron density function and uses 

the electron density (denoted by ρ(x, y, z) where x, y, z are the spatial coordinates) of a 

particular system to determine its properties. An alternative notation for ρ(x, y, z) is ρ(r) 

where r is the position vector of the point with coordinates (x, y, z). Being a function of 

only position, i.e., it depends only on the spatial variables (x, y, z), DFT is advantageous 

over the wavefunction methods as the later depends not only on spatial variables but also 

on spin variable thereby creating problems in the solution of multi-atom systems. The 

use of electron density as the basis for determination of atomic and molecular properties 
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of a system was initiated as early as in 1927 by Enrico Fermi and P. A. M. Dirac [4]. 

Similarly, the Xα method which was introduced by Slater in 1951 was also based on 

model comprising of uniform electron gas [5]. However, current DFT methods are based 

on the two theorems put forwarded by Hohenberg and Kohn in 1964 [2c]. 

[1.2.1] The Hohenberg-Kohn Theorems 

The first Hohenberg-Kohn theorem [2c] can be stated as – The ground state 

electron density function ρ0(r) determines all the properties of a molecule in its ground 

electronic state. Alternatively, any ground state property of a molecule is a functional of 

ρ0(r). For example, the ground state energy (E0) of a molecule can be represented as 

E�  =  �[��(r)]                                                        (1.1) 

where F[ρ0(r)] is the functional corresponding to the ground state electronic energy. It 

should be noted that a functional is a function of a definite function. 

The second Hohenberg-Kohn theorem [2c] states that the energy obtained from 

any trial electron density function will be higher than (or equal to, if the respective 

function represents the true electron density) the true ground state energy. 

Mathematically it can be represented as  

 E�[��(r)]≥  E�[��(r)]                                               (1.2) 

where ρt(r) is a trial electron density while ρ0(r) is the true ground state electron density 

of the molecule. However, the validity of the second Hohenberg-Kohn theorem relies on 

the fact that the trial electron density must obey the conditions represented by the 

equations (1.3) and (1.4). 

∫ ��(r)dr =  N                                                       (1.3) 

where N is the number of total electrons in the molecule. For all the values of r, 

��(r)≥  0                                                            (1.4) 

[1.2.2] The Kohn-Sham Energy 

The calculation of the total energy of a molecule in Kohn-Sham (KS) approach is 

carried out in a similar way to those of the Hartree-Fock approach used in the 

wavefunction theory. An initial guess of the electron density is used to determine the 

initial guess of the KS orbitals which is then refined in order to get the final KS orbitals 

and the final electron density. The total ground state energy (E0) comprises of three 
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energy terms viz., electron kinetic energy, nucleus-electron attraction energy and 

electron-electron repulsion energy and each of these three energies is a functional of the 

ground state electron density. 

E� = 〈T[��(r)]〉 +  〈V�� [��(r)]〉 +   〈V��[��(r)]〉                          (1.5) 

The functional corresponding to the nucleus-electron attraction energy can be expressed 

in terms of electron density and external potential (υ(r)) as [6]: 

〈V�� [��(r)]〉=  ∫ �� (r)υ(r)dr                                             (1.6) 

Therefore, equation (1.5) will take the form: 

E� = ∫ �� (r)υ(r)dr +  〈T[��(r)]〉 +   〈V��[��(r)]〉                       (1.7) 

In order to determine the unknown functionals corresponding to the electron kinetic 

energy and electron-electron repulsion energy in equation (1.7), Kohn and Sham 

introduced two new quantities ∆〈T[��(r)]〉 and ∆〈V��[��(r)]〉. ∆〈T[��(r)]〉 is nothing but 

the deviation of real kinetic energy from the kinetic energy of a reference system 

consisting of non-interacting electrons: 

∆〈T[��(r)]〉=  〈T[��(r)]〉 −  〈T�[��(r)]〉                                 (1.8) 

Similarly, ∆〈V��[��(r)]〉 is the deviation of the real electron-electron repulsion energy 

from a classical charge-cloud coulomb repulsion energy and can be mathematically 

defined as: 

                ∆〈V��[��(r)]〉 =  〈V��[��(r)]〉 −   
1

2
 �

��(r�)��(r�)

r��
dr�dr�              (1.9) 

Therefore, using equations (1.7), (1.8) and (1.9), the ground state energy can be given as: 

E� = ��� (r)υ(r)dr +  〈T�[��(r)]〉 +   
1

2
 �

��(r�)��(r�)

r��
dr�dr� +  ∆〈T[��(r)]〉  

          +   ∆〈V��[��(r)]〉                                                                                                             (1.10) 

Or, 

E� = ��� (r)υ(r)dr + 〈T�[��(r)]〉+  
1

2
 �

��(r�)��(r�)

r��
dr�dr� + E��[��(r)]    (1.11) 

where E��[��(r)] is the exchange-correlation energy functional and it is the sum of the 

energy deviations represented by the equations (1.8) and (1.9). Further simplification of 

the first two energy terms in equation (1.11) leads to the following expression for the 

total ground state electronic energy: 
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E� = − � Z�
������ �

�
��(r�)

r��
dr� −   

1

2
�〈ψ�

��(1)|∇�
�|ψ�

��(1)〉 

��

���

+  
1

 2
 �

��(r�)��(r�)

r��
dr�dr�  +    E��[��(r)]                                   (1.12)   

Therefore, the only term which contains the unknown functional is the fourth term in the 

above equation that is the exchange correlation energy E��[��(r)]. Further, the true 

ground state electron density which is same as that of the non-interacting reference 

system can be expressed in terms of KS spatial orbitals (ψ�
��) as follows: 

                                                                �� =  �� =  ��ψ�
��(1)�

�
��

���

                                      (1.13) 

Now, using the equations (1.12) and (1.13) as well as considering the variation principle 

as suggested by the second Hohenberg-Kohn theorem, the final KS equation can be 

written as: 

           �−   
1

2
∇�
� – �

Z�
r��

������ �

  +   �
�(r�)

r��
dr�  +  υ��(1)�ψ�

��(1)=  ϵ�
��ψ�

��(1)    (1.14) 

where υ��(1) is the exchange-correlation potential designated for electron number 1. It 

can be defined as the functional derivative of the exchange-correlation energy functional 

with respect to the electron density functional: 

                                                                 υ��(r) =   
δE��[�(r)]

δ�(r)
                                         (1.15)  

If one can exactly determine the exchange-correlation functional, the exact energy of a 

system can be determined. However, this is the main problem with DFT that the exact 

functional and hence the corresponding potential are not known. Current DFT methods 

comprise of a variety of approximations for the exchange-correlation functional and a 

brief account of them is discussed below. 

[1.2.3] The Local Density Approximation (LDA) 

It is the simplest approximation to the exchange-correlation energy functional 

and for a particular point it depends only on the electron density at that point. For a 

homogeneous electron gas model, the exchange-correlation energy functional 
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E��
���[�(r)] and the associated potential υ��

���(r) can be accurately calculated and given 

by: 

                                                      E��
���[�(r)]=  ��(r)ԑ��[�(r)]dr                                (1.16) 

where ԑ��[�(r)] is the exchange-correlation energy per particle. 

                                 υ��
���(r) =   

δE��
���[�(r)]

δ�(r)
  =  ԑ��[�(r)]+  �(r)

δԑ��[�(r)]

δ�(r)
       (1.17) 

An extended version of the simple LDA approximation is the local spin density 

approximation (LSDA) where the electrons with different spins (α and β) are assigned in 

different spatial orbitals. Therefore, LSDA is found to be suitable for systems having 

unpaired electrons, radicals etc. The exchange-correlation energy functional 

E��
�������, ��� is given by: 

                                                     E��
���� ���, �� � =  ��(r)ԑ�����, ���dr                        (1.18) 

However, LSDA is equivalent to LDA for systems in which all the electrons are paired. 

Even though LDA is found to be reasonably good in the prediction of a variety of 

properties, it has several demerits. For example, LDA performs poorly in the 

determination of ionization potential, dissociation energies, energy barriers etc. 

Therefore, further modification of LDA was carried out which lead to the evolution of 

more sophisticated approximations to the exchange-correlation energy functional. 

[1.2.4] The Generalized-Gradient Approximation (GGA) 

In case of LDA (also in LSDA), the system is considered to be composed of 

homogeneous electron gas, i.e., the distribution of electron density is equal throughout 

the whole system. However, this is not the case with real molecules where the electron 

density varies with spatial coordinates. Therefore, LDA functionals are improved by 

introducing the gradient of the electron density which is the first derivative of electron 

density with respect to position. This is known as generalized-gradient approximation 

and the functionals are called gradient-corrected functionals. The exchange-correlation 

energy functional can be written as: 

                                               E��
���[�(r)]=  ��(r)ԑ��[�(r), |∇�(r)|]dr                        (1.19) 
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The use of GGA functionals instead of the LDA functional leads to better results with 

more accuracy. B88 [7], LYP [8] and PW91 [9] are the examples of GGA functional. 

A more sophisticated version of GGA functionals are the meta-GGA functionals 

in which the exchange-correlation energy functional ( E��
����) is not only a function of 

electron density (ρ(r)) and its first derivative (∇�(r)) but also of the second derivative of 

electron density (∇��(r)) and/or local kinetic energy density (τ). TPSS [10] and M06-L 

[11] are examples of meta-GGA functional. Mathematically, E��
���� can be expressed as: 

                            E��
����[�(r)]=  �� (r)ԑ��[�(r), |∇�(r)|, ∇

��(r), τ]dr                     (1.20) 

where the local kinetic energy density is given by: 

                                                              τ =  
1

2
�|∇ψ�(r)|

�

�

                                                   (1.21) 

[1.2.5] Hybrid Functional 

Hybrid functionals are those in which the exchange-correlation energy functional 

includes an exact exchange energy (E�
��) calculated using Hartree-Fock theory and is 

given by the following expression: 

                                E�
�� =  − ��〈ψ�

��(1)ψ�
��(2)�

1

r��
� ψ�

��(2)ψ�
��(1)〉

�

���

�

���

                  (1.22) 

The contribution of the exchange functional to the total exchange-correlation functional 

is significantly larger than the contribution from the correlation part. Further, E�
�� gives 

the exact exchange energy for a non-interacting reference system having electron density 

equal to the real system. Therefore, it will be wise to use hybrid functionals for the 

calculation of energy (and the associated properties) of a molecular system in order to 

get more accurate results. A widely used hybrid functional is B3LYP [12] which is 

constructed by introducing the LYP 1988 correlation functional [8] to that in the Becke 

1993 exchange-energy functional [13]. 

[1.3] Basis Set 

A basis set is a set of mathematical functions (called basis functions) used to 

approximate the atomic orbitals of an atom and the linear combinations of these basis 

functions yield the molecular orbitals. It is worthwhile to mention that accuracy as well 

as the computational cost efficiency of a particular calculation is largely governed by the 
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type of basis set used. The basis functions are of two types – Slater type functions [14] 

and Gaussian type functions [15] and can be represented by the following expressions: 

                                                                         φ�� = Ne(���)                                                  (1.23) 

                                                                          φ�� = Ne(���
�)                                               (1.24) 

Therefore, Gaussian type functions differ from Slater type functions in the fact that the 

exponential part in the former involves the square of the radius (r2) while the later 

involves only ‘r’. Unfortunately, evaluation of certain integrals is very difficult with 

Slater type functions whereas they can be easily evaluated with Gaussian type functions. 

However, the major drawback of Gaussian type functions is that they describe less 

satisfactorily the radial electron distribution thereby leading to results with less accuracy. 

To overcome this problem, a number of Gaussian type functions with different exponents 

and coefficients are summed up to approximate a particular Slater type function. 

The basis sets are broadly classified into two categories known as minimal basis 

sets and extended basis sets. Minimal basis sets are the simplest ones and describe only 

the basic characteristics of a particular orbital. STO-3G [16] is an example of minimal 

basis set which is constructed by the combination of three Gaussian functions to 

approximate one Slater type function/orbital. Extended basis sets are more sophisticated 

than the minimal ones and hence they give more clear and accurate approximation for 

each atomic orbital. A brief description of different types of extended basis set is given 

below. 

In case of minimal basis sets, all the orbitals are approximated to be similar i.e., 

all the orbitals are represented by only one type of Slater function. However, in case of 

real molecules, all the orbitals are not equivalent. Therefore, to get a better picture of the 

atomic orbitals, they must be represented with more than one basis function for each 

orbital. For example, in case of double zeta basis set, each orbital is described by two 

Slater type functions having different orbital exponent. Similarly, triple zeta basis set 

describes an orbital by a combination of three Slater type functions. cc-pVDZ and cc-

pVTZ are examples of double zeta and triple-zeta basis sets respectively [17]. 

Another class of extended basis set is the split valence basis set where the core 

and valence shell orbitals are described with different types of basis functions. 6-31G is 

an example of split valence double-zeta basis set where the core and valence orbitals are 

represented by one and two different types of Slater type basis functions respectively. 

“6” indicates that the Slater function representing the core orbitals is obtained by the 
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summation of six Gaussian functions. Similarly, “3” and “1” stands for the number of 

Gaussian functions summed up to obtain the first and second Slater functions 

representing the valence orbitals (i.e., of double zeta). 

In case of the molecules, the atomic orbitals undergo polarization because of the 

interaction between the neighbouring atoms. As a result of this polarization, the “s” 

orbitals attain somewhat “p” character and similarly the “p” orbitals attain “d” character. 

Therefore, polarized basis sets were developed where polarization functions are added to 

the pure atomic orbitals. For example, 6-31G* is an example of polarized basis set where 

the single asterisk ‘*’ indicates that the polarization has been taken into account in the 

“p” orbitals for all the non-hydrogen atoms. Similarly, use of two asterisks ‘**’ (e.g., 6-

31G**) mean that the polarization of the “s” orbitals is also considered in addition to the 

“p” orbitals. One alternative notation for representing the polarized basis set is by putting 

the higher angular momentum orbitals within parenthesis. For example, 6-31G* and 6-

31G** basis sets can also be represented as 6-31G(d) and 6-31G(d,p) respectively. 

Even though the basis sets discussed till now are found to be suitable for various 

systems, they give poor results in case of molecules having lone pairs, anions, excited 

electronic states etc. Therefore, diffuse functions were developed which can effectively 

describe the orbitals for systems having loosely bound electrons. Due to the very small 

exponent values, diffuse functions fall very slowly with the increase in distance from the 

nucleus. Therefore, they can accurately approximate the orbitals with significant electron 

density at relatively large distances from the nucleus. Typically, a basis set with diffuse 

functions is represented by plus ‘+’ signs. One ‘+’ sign (e.g., 6-31+G*) indicates that the 

diffuse function is added to all the heavy (non-hydrogen) atoms while two ‘++’ signs 

(e.g., 6-31++G*) are for the heavy atoms as well as for the hydrogen atoms. 

[1.4] Effective Core Potential (ECP) 

In case of the molecules containing heavy atoms (third row onwards), the use of 

all electron basis sets takes very long time for any calculations which is due to the 

presence of a large number of two-electron integrals. Further, for the heavier atoms, 

relativistic effects also induce complications. The only way to overcome these problems 

without compromising with the accuracy of the results is to replace the core electrons in 

a calculation with an average potential. This is known as effective core potential (ECP) 

[18] or pseudopotential (PP) and can be expressed by the following general expression: 



Chapter 1: Brief Introduction to Computational Chemistry 

 

~ 9 ~ 
 

                                                               ECP(r)=  �c�

�

���

r��e����
�
                                       (1.25) 

where the summation is over k terms, ci is the coefficient characteristic of each term, r is 

the distance from the nucleus and αi is an exponent for the ith term. ECPs can be broadly 

divided as: large-core, small-core and all-electron ECPs. Use of ECP eliminates the need 

of evaluation of the two-electron integrals for the core electrons thereby significantly 

reduces the total time of computation for a particular calculation. Since the chemical 

property of a species is mainly governed by the valence electrons, therefore use of ECP 

for the core electrons does not alter the property of the same. Indeed, use of ECP for the 

heavier atoms, mostly for transition metals is found to be beneficial as it accounts for the 

relativistic effects and also found to reproduce experimental results. However, there are 

some limitations of ECP such as the inability to describe properties of a system which 

directly relates to the core electrons (e.g., X-ray photoelectron spectroscopy). LANL2DZ 

is an example of popular basis set which include ECP for the core electrons [19]. 

[1.5] Gauge-Independent Atomic Orbital (GIAO) Method 

Gauge-Independent Atomic Orbital (GIAO) method is used to calculate the NMR 

shielding tensors. GIAO approach uses local gauge origins to define the vector potential 

of the external magnetic field [20]. It was first adapted by Ditchfield in the gauge 

invariant atomic orbitals (GIAO) method which was followed by Giessner-Prettre and 

Fukui [21-23]. In various applications, GIAO method appears to provide high accuracy 

with a smaller basis and has been found to be successful in the determination of the 

magnetic properties of various chemical entities. 

[1.6] Quantum Theory of Atoms in Molecules (QTAIM) 

QTAIM is a very powerful tool to interpret and understand the observations of 

experimental chemistry as it provides the quantum basis for an atom in a molecule [24]. 

The discovery of QTAIM helps in solving a number of problems at atomic level which 

were previously not possible by any other methods. QTAIM considers an atom in a 

molecule as a region of real space bounded by a surface S(rs) of local zero-flux in the 

gradient vector field of the electron density ρ(r) and expressed by the following equation 

[25]: 

                                                        ∇�(r). n(r)= 0     ∀ r∈ S(r�)                                       (1.26) 
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where n(r) is a unit vector perpendicular to the surface. This equation defines the 

boundary condition for an atom in a molecule as well as leads to the partitioning of a 

molecular system into a set of separate non-overlapping atoms. 

In a molecule, the nuclei of two bonded atoms are linked by a bond path along 

which the electron density is maximum with respect to any other neighbouring line. 

There exists a point known as bond critical point (bcp) along the bond path where the 

first derivative of electron density is zero (i.e., ∇ρ(r) =0). At the bond critical point, ρ(r) 

falls down in two perpendicular directions of space while rises in the third direction. 

Accordingly, bcp possesses two negative (λ1 and λ2) and one positive curvature (λ3) and 

the laplacian of electron density [∇�ρ(r)] at the bcp is the summation of all these three 

curvatures. 

                                                               ∇��(r)=  λ� +  λ� +  λ�                                         (1.27) 

The laplacian of electron density provides a measure of local charge 

concentration or depletion. A positive value of [∇�ρ(r)] indicates local charge depletion 

whereas a negative value indicates charge concentration. A critical point (CP) is 

expressed by its rank and signature where rank is the number of non-zero curvatures of 

ρ(r) at the CP and the signature is the algebraic sum of their signs [25]. Therefore, a bcp 

can be expressed as (3, -1) where 3 and -1 are the rank and signature respectively. There 

are three more types of CPs which are as follows: 

(a) (3, -3) CP: This is known as nuclear critical point (ncp) where the electron 

density falls down in all the three perpendicular directions of space, i.e., all the three 

curvatures are negative. 

(b) (3, +1) CP: In this case, electron density rises in two directions while falls in 

one directions, i.e., two curvatures are positive and one is negative. This type of critical 

point is known as ring critical point (rcp) which resides in the middle of several bonds 

forming a ring. 

(c) (3, +3) CP: Here all the curvatures are positive as electron density rises in all 

the three perpendicular directions of space. This is a local minimum and known as cage 

critical point (ccp) because these types of CPs are found when a number of rings form a 

cage structure. 

A brief description of the topological parameters which were evaluated in order 

to study the objectives of this thesis is given below. 
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[1.6.1] Bond Magnetizability 

QTAIM can be successfully applied to determine the extent of aromaticity within 

a system by the determination of magnetic response properties such as inter-atomic 

magnetizability or bond magnetizability [26]. The bond magnetizability values gives a 

direct measure of the current flux between two adjacent atomic basins and hence to 

predict the extent of electron delocalization within a ring system. The magnetizability 

tensor (χ) of a system in an external magnetic field (B) is given by [27] 

                                                                � = �
1

2cB
��r× J(r)dr                                         (1.28) 

where J(r) is the induced current density. For an atomic basin defined by the equation 

(1.26), the magnetizability which arises due to the flow of current density within the 

atomic basin is termed as intra-atomic magnetizability. However, flow of current density 

flux through the interatomic surfaces between the atoms and its adjacent neighbours 

gives the inter-atomic magnetizability. Therefore, the total magnetizability obtained for 

any system has contributions from both intra- and inter-atomic magnetizabilities. It is 

worthwhile to mention that in case of ionic and polar systems, the contribution of bond-

magnetizability to the total magnetizability is very less while the same predominates in 

case of covalently bonded ones [28]. 

[1.7] Brief Overview of the Remaining Chapters 

[1.7.1] Chapter 2: Tuning the Electronic and Ligand Properties of Remote 

Carbenes. 

N-Heterocyclic carbenes (NHCs) have found a great deal of attention after their 

isolation by Arduengo in 1991 [29] and have grown extensively in the past few years 

because of the remarkable catalytic activity of the corresponding transition metal 

complexes. NHCs are found to have excellent σ-donation as well as considerable π-

acceptance abilities [30,31]. In addition to these NHCs, NHC variants known as remote 

NHCs (rNHCs) have drawn the attention of several researchers as rNHCs are better σ-

donors as well as better π-acceptors than their normal NHC counterparts [32]. 

Interestingly, annulation and/or carbonylation of the NHC ligands were found to 

significantly increase their π-accepting abilities [33]. 

In this chapter, the effect of annulation and carbonylation on the electronic and 

ligating properties of both five- and six-membered rNHCs (Scheme 1.1) were studied  
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Scheme 1.1: Schematic representation of the mesoionic (1−18) and remote NHCs 

(19−34) considered in this study. 

employing PBE0/6-31+G* level of theory [34,35]. This study reveals that annulation and 

carbonylation of rNHCs results in decreases in thermodynamic and kinetic stabilities. 

Further, both annulation and carbonylation result in decrease in σ-donating ability but 

significant increase in π-accepting ability. The significant increase in π-acidity has been 

further corroborated by the calculated electrophilicity index values as well as 31P NMR 

chemical shift values of the corresponding rNHC-phosphinidene adducts. 
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[1.7.2] Chapter 3: Effect of Ylide Substitution on the Stability and Electron 

Donation Ability of NHCs. 

Following the isolation of the stable singlet NHC in 1991 [29], a number of their 

structural derivatives have been isolated which possess varying degree of ligand 

properties [36]. One of the interesting candidate of this family is 

cyclic(alkyl)(amino)carbene (CAAC), which possesses better σ-basicity and π-acidity 

than the normal NHCs [37]. Further, the seminal works of Kawashima and Fürstner in 

2008 suggest that introduction of electron-donating phosphorus and sulfur ylide centers 

into the ring framework also leads to significant increase in σ-donation ability of cyclic 

carbenes [38]. 

This chapter contains two parts – (i) the first part of which deals with the effect of 

ylide substitution on the electron-donating ability and stability of a number of five- and 

six-membered cyclic carbenes and (ii) the second part deals with the theoretical studies 

aimed toward stabilization of five- and six-membered remote carbenes in their singlet 

ground states. 

[1.7.2.1] Moving Toward Ylide-Stabilized Carbenes. 

The electron-donating ability of a carbene ligand has a significant effect on the 

catalytic activity of the corresponding transition-metal complexes. Hence, the design and 

synthesis of carbene frameworks with enhanced electron-donating abilities may help to 

develop novel catalysts for various applications. 

In this part, we have investigated the effect of ylide substitution at position α with 

respect to the carbene carbon on the stability and σ-donating ability of a number of cyclic 

carbenes (Scheme 1.2) using PBE0/6-31+G*, SDD level of theory [34,35,39]. The 

introduction of ylide centers into the ring framework dramatically enhances the σ-

donating ability. Furthermore, for majority of the carbenes, ylide substitution leads to a 

significant increase in stability. The increase in σ-basicity in the ylide substituted ones 

has been further assessed by the calculation of carbonyl-stretching frequencies of the 

corresponding metal complexes, proton affinity values and the extent of gallium 

pyramidalization in the corresponding GaCl3 adducts. 
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Scheme 1.2: Schematic representation of the range of carbenes considered in this study 

(Dipp: 2,6-diisopropylphenyl). 

[1.7.2.2] Theoretical Strategies Toward Stabilization of Singlet Remote N-

Heterocyclic Carbenes. 

Even though the remote NHCs (rNHCs) possess superior ligand properties in 

terms of both σ-donation and π-acceptance ability compared to the classical NHCs [32], 

so far no rNHCs have been isolated in their free state. In case of normal NHCs, the 

singlet state stability can be attributed to the effective π delocalization from the nitrogen 

lone pairs to the formally vacant p orbital at the carbene carbon. However, unlike in 

normal NHCs, π stabilization is not so effective in rNHCs resulting in lower singlet state 

stability. 

In this part, we present the results of theoretical studies aimed toward 

stabilization of five- and six-membered remote carbenes (Scheme 1.3) in their singlet 

ground states. The quantum-mechanical calculations carried out at PBE0/6-31+G*, SDD 

[34,35,39] level of theory predict that the singlet states of ylide-substituted remote 

carbenes are significantly stable and comparable to those of experimentally known 

NHCs. Further, NICS [40] and QTAIM based bond magnetizability [26] calculations 

indicate the presence of cyclic electron delocalization in majority of the molecules. 
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Scheme 1.3: Schematic representation of the range of cyclic carbenes considered in this 

study. 

[1.7.3] Chapter 4: Carbene Driven Stabilization of the Hred State of Biomimetic 

Model [FeFe]-Hydrogenase Complexes. 

[FeFe]–hydrogenase is an enzyme which catalyzes the reversible activation of 

dihydrogen involving two key intermediates (Hox and Hred, Scheme 1.4) [41]. One of the 

important structural features of both Hox and Hred state of the native enzyme is the 

presence of an inverted square pyramidal geometry (or rotated geometry) at one of the 

iron center (distal) with a carbonyl group in bridging position between the two iron 

centers. The vacant site at the distal iron center is the probable site for coordination of 

H+/H2 during reversible dihydrogen production [42]. Even though a number of model 

complexes for the Hox state have been isolated with a rotated conformation, only a few 

model complexes for the Hred state were known with an inverted square pyramidal 

geometry at one of the iron center [43]. 

 

Scheme 1.4: Schematic representation of the active site structure of [FeFe]-hydrogenase. 

In this chapter, we present our results of theoretical investigation toward 

stabilization of rotated structure in carbene substituted [FeFe]-hydrogenase model 

complexes (Scheme 1.5) carried out at BP86/Def2-SVP, Def2-TZVP(Fe) level of theory 
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[7,44]. Stabilization of fully rotated conformation at one of the iron center has been 

achieved for the reduced Fe(I)Fe(I) state in chelated CAAC substituted biomimetic 

hydrogenase model complex. This study indicates that the spatial orientation of the 

chelated NHCs at one of the iron center (Fep) plays a major role in determining the 

geometry at the other (Fed). We also made an attempt at explaining the electronic origin 

behind the favorability of rotated vs unrotated structure in asymmetrically substituted 

chelated vs monodentate NHC complexes. 

 

Scheme 1.5: Schematic representation of the molecules considered in the present study 

(X= H/Cyclohexyl). 

[1.7.4] Chapter 5: Can Carbene Decorated [FeFe]-Hydrogenase Model Complexes 

Catalytically Produce Dihydrogen? An Insight from Theory. 

In this chapter, we have studied the mechanistic details of catalytic production of 

dihydrogen using bio-inspired [FeFe]-hydrogenase model complexes which possess 

rotated conformation at one of the iron centers ([1]0 and [2]0, Scheme 1.6 and 1.7). The 

catalytic evolution of H2 is found to be highly favourable using both the complexes as 

evident from high exergonicity of the overall reaction as well as very shallow activation 

energy barrier for the transition states involved. The computed reduction potential values 
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are found to be less negative compared to those reported earlier for experimentally 

known system. 

 

Scheme 1.6: Schematic representation of the catalytic cycle of H2 production catalyzed 

by [1]0. 
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Scheme 1.7: Schematic representation of the catalytic cycle of H2 production catalyzed 

by [2]0. 
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