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211 
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4,4′-bipyridine-N,N′-dioxide as coformer. 

Scheme 7.3 Variable stoichiometry cocrystals of theophylline exhibiting 

different drug release behaviour controlled by intermolecular 

interactions. 
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Scheme 7.4 Improving the efficacy of drug ethenzamide by changing its 

molecular planarity and lipophilicity via cocrystallization. 
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Scheme 7.5 Pictorial representations of prevention of famotidine 

degradation via cocrystallization. 
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Scheme 7.6 Controlling concomitant polymorphism of drug via drug mimetic 

gel phase crystallization 
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