LIST OF TABLE

	Tables in Chapter 1	Page No
Table 1.1	BCS classification of drug based on solubility and permeability.	5
	Tables in Chapter 2 Part A	
Table 2.A.1	Synthesis of seven new cocrystals of drug theophylline with phenols and isomeric dihydroxybenzoic acids with 1:1 ratio. Cocrystals 1,	49
Table 2.A.2	2, 3, 4 are hydrates. pK_a of drug theophylline and the dihydroxybenzoic acid coformers used in this study.	50
Table 2.A.3	Comparison of melting point of the cocrystals (1-7) with their starting materials.	52
Table 2.A.4	Hydrogen bond matrices for cocrystal 1-7 with symmetry codes.	59-60
Table 2.A.5	Unit cell parameter determination of cocrystals at 90 RH %, over a time span of 90 days to understand the physical stability. Cocrystals 1, 3, 5, 6, and 7 were subjected for this test and found that 5, 6 are stable demonstrated from identical cell parameter even after 90 days.	62
Table 2.A.6	Hydrogen bond synthon of theophylline cocrystals compared with CSD. Coformers selected as aromatic and aliphatic carboxylic acids and phenols. Synthon A and C refer to 2.A.2 are found quite common in crystal structures. Presence of –OH groups facilitate the formation of N–H…O homo dimmers of the API theophylline. Tables in Chapter 2 Part B	65
Table 2.B.1	Synthesis of pyridine <i>N</i> -oxides	80
Table 2.B.2	Four stoichiometry cocrystals of drugs propofol, <i>p</i> -aminobenzoic acid, ferulic acid and sulfathiazole were isolated with BPNO [C1, C2, C3 and C4 respectively].	83
Table 2.B.3	Comparison of drug and melting onset of the cocrystals.	86
Table 2.B.4	Hydrogen bond matrices of entries 4, 6 and cocrystals C1-C4	91

Tables in Chapter 3

Table 3.1	Isomeric aminobenzoic acids (ABA) cocrystallized with drug theophylline (THP) resulted different stoichiometry cocrystals with <i>o</i> -Aminobenzoic acid. Water and/or solvent inclusion is observed as compensator for donor-acceptor ratios. The <i>m</i> - and <i>p</i> - Aminobenzoic acid produce only 1:1 cocrystal	107
Table 3.2	The endotherms representing melting onset of the cocrystals and 60-125 °C for solvate/hydrate cocrystals (i.e. CC-II, CC-III and CC-IV) correspond to solvate/water release	110
Table 3.3	Hydrogen bond parameter of CC-I to CC-VI	115-117
Table 3.4	Aqueous solubility comparison of THP, coformers and cocrystals	119
Table 3.5	Mechanochemical grinding THP and isomeric ABAs mixtures result cocrystals. Three different starting drug-coformer ratios and 17 solvent systems are examined to afford various stoichiometry cocrystals. Only <i>o</i> -ABA results four different stoichiometry cocrystals. The <i>m</i> -ABA and <i>p</i> -ABA shows only 1:1 cocrystals irrespective of starting material ratio and solvent of crystallization. Tables in Chapter 4	127-128
Table 4.1	Comparison of cocrystals melting parameters with melting of drug ethenzamide and their respective coformers	139
Table 4.2	Hydrogen bond parameters in SCXRD of 1 to 4	142
Table 4.3	Synthesis of ZMD multicomponent systems with dihydroxybenzoic acid coformers Tables in Chapter 5	152
Table 5.1	Synthesized cocrystal of drug famotidine with three xanthine derivatives	166
Table 5.2	Melting point comparison of the cocrystals with their parent compounds.	168
Table 5.3	Hydrogen bond parameters of SCXRD structure of cocrystal THP.FAM.	171
	Tables in Chapter 6	
Table 6.1	Gelators G-1, G-2 and G-3 are screened for testing gelation behaviour in a range of solvents by heating	189-190

2 % w/v of the gelator compound until completely dissolved in corresponding solvents followed by sonication.

Table 6.2	T _{sol} of G-1 at different concentrations considering different solvent systems.	191
Table 6.3	Comparison of crystallization outcome from solution and Gel crystallization of barbital.	197
Table 6.4	Comparison of crystallization outcome from solution and Gel crystallization of THL.	200

LIST OF FIGURE

Figures in Chapter 1

Figure 1.1Examples of supramolecular synthons, (a) -COOH…COOH
homodimer (b) -CONH2…CONH2 homodimer (c)
SO2NH2…SO2NH2 homodimer (d) -COOH…CONH2
heterosynthon (e) -COOH…pyridine-N-oxide heterosynthon (f)
-COOH…Naromatic heterosynthon.

- **Figure 1.2** Representation of the pKa rule to predict the possibility of proton transfer in a multicomponent system. This Scheme is reproduced from the PhD thesis entitled 'Structural and Thermal Analysis of Organic Solids' by B. Sarma, 2009, University of Hyderabad, India.
- **Figure 1.3** Calculated existence of neutral AB (grey) and ionic A^-B^+ (orange) as a function of the calculated ΔpK_a manifested from a CSD study of 6465 acid-base complexes.
- **Figure 1.4** Proposed mechanisms showing the moisture uptake route leading to deliquescence, reactant dissolution, and cocrystal formation. A and B are cocrystal formers, Ds represents solid deliquescent additive, and Dl is the solution phase generated by deliquescence at RH greater than deliquescence RH.
- Figure 1.5N 1s XPS spectra of (a) the theophylline and maleic acid
cocrystal and (b) the theophylline/5-sulfosalicylic acid dihydrate13salt showing the ratios for types of nitrogen.
- Figure 1.6(a) Solution mediated phase transformation of 3:2 cocrystal in
saturated solution of 1:1cocrystal. (b) Transformation of 1:114cocrystal in saturated solution of 3:2 cocrystal.14
- **Figure 1.7** SEM images (a) myricetin, (b) proline, (c) myricetin-proline cocrystal and their (d) physical mixture.
- Figure 1.8(a) Four-membered square-shaped H-bonding structure observed
in cocrystal of vitamin D3 (1) and coformers cholesterol and
cholestanol; (b) Variations of vitamin D3 assay upon storage
(left) at 23 °C under illumination of 5000-1 and (right) at 40 °C
/75% RH.
- Figure 1.9(a) Photodegradation mechanism of dihydropyridines, e.g.nifedipine(b) Strategy of protecting the two correlative19photoreaction sites through cocrystallization.

Page no.

3

9

9

11

15

Figure 1.10	The concept of spring and parachute model to concept to attain high apparent solubility of less soluble drugs.	20
Figure 1.11	(a) Powder dissolution profiles of ketoconazole and ketoconazole oxalate salt (1), cocrystal with fumaric Acid (2), succinic Acid (3), adipic Acid (4) in aqueous condition; (b) Comparison of ketoconazole cocrystal solubility with its oxalate salt.	21
Figure 1.12	Comparison of cocrystal dissolution for different stoichiometry cocrystal of carbamazepine.	22
Figure 1.13	Dissolution profiles of ribavirin from and its cocrystals 1–3 in PBS (pH 6.8) demonstrate the reduced release of drug in cocrystals.	23
Figure 1.14	(a) Plots of permeability of the cocrystals with respect to time;(b) the permeability–solubility interplay correlation plot in cocrystals of hydrochlorothiazide.	24
Figure 1.15	Average plasma time curves of carbamazepine concentrations $(\pm SEM)$ from a cross-over experiment in fasted beagle dogs given oral doses of 200 mg of the active drug as Tegretol tablets and cocrystal.	25
Figure 1.16	(a) Molecular structures of meloxicam and aspirin; (b) Plasma pharmacokinetics profiles over 24 h for cocrystal (1) and meloxicam from a 1 mg/kg dose of meloxicam or its equivalent of cocrystal in rat.	26
Figure 1.17	Comparisons of tabletability plot of caffeine, methyl gallate, and their 1:1 cocrystal shows improved tabletability for the cocrystal	27
Figure 1.18	A pictorial comparison of softness-hardness of voriconazole cocrystal and salt.	28
Figure 1.19	Conformational polymorphism that observed in ritonavir Form I and II.	30
Figure 1.20	Crystal packing diagram of two polymorphic forms of paracetamol. Due to the presence of a slip plane in the crystal structure, polymorphic form II displays better tablelability over form I.	31
Figure 1.21	Pictorial representation of gel formation.	33
	Figures in Chapter 2 Part A	
	$\mathbf{FT} \mathbf{ID} = \mathbf{f} \mathbf{f} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$	F 1

Figure 2.A.1	FT-IR spectra comparison of theophylline and cocrystals 1-3 (a)	51
--------------	---	----

and 4-7 (b)

- Figure 2.A.2Differential Scanning Calorimetry (DSC) of cocrystals 1, 2, 352and 4 show corresponding endotherm for water loss. Melting
temperature for all cocrystal materials were found different from
the starting materials52
- **Figure 2.A.3** Quantitative analysis of stoichiometric water in four hydrate 53 structures (1, 2, 3, 4) by Thermo Gravimetric (TG) measurement is in accordance with 1:1 ratio determined by single crystal X-ray diffraction

53

- Figure 2.A.4 Powder X-ray diffraction patterns of cocrystals 1-7
- Figure 2.A.5 (a) Water acts as connector via O−H···O, O−H···N and N−H···O hydrogen bonds in cocrystal 1. (b) One of the –OH groups of resorcinol is hydrogen bonded to theophylline through O−H···O and N−H···O from imidazole NH which then extended through water linkage forming a 1D tape. The 1D tapes are connected by theophylline molecule through water linker form 2D net
- Figure 2.A.6 (a) In cocrystal 2, theophylline forms a catemeric N-H···N 55 hydrogen bonds (synthon E listed in Scheme 2.A.2) found uncommon in theophylline cocrystals. The catemeric N-H···N hydrogen bonds is assisted by weak C-H···O from imidazole =CH. (b) Water molecules connect the wavy 2D molecular sheets to complete 3D packing
- Figure 2.A.7 The theophylline molecules are arranged as catemeric N-H···N 56 hydrogen bonds in cocrystal 3 similar in cocrystal 2. (b) Water molecules act as hydrogen bonded connector of the 2D wavy molecular sheets formed by the API and coformer leading to 3D packing
- Figure 2.A.8 (a) The -COOH proton from 2,6-dihydroxybenzoic acid is transferred and sits on the basic N centre of imidazole ring. The theophylline forms N-H···O dimer bridged by water molecule in 4 [THP•2,6-DHBA•2H₂O]. Both -OH groups are engaged in intramolecular hydrogen bonding and water involves in assembling 2D layers of API and coformers into 3D structure (b)
- **Figure 2.A.9** (a) Involvement of all functional groups in hydrogen bonding 58 permits no water inclusion. Theophylline forms N–H···O dimers and one of the –OH groups and C=O from 3,5-dihydrobenzoic acid form O–H···O dimers in cocrystal **5**. (b) 2D molecular layers are stacked via weak interactions like $\pi \cdots \pi$ and C–H··· π that complete crystal structure
- Figure (a) Carboxylic acid homo dimer is formed via O-H···O 58
 2.A.10 hydrogen bonds in addition to theophylline N-H···O dimers in cocrystal 6. The two –OH groups were engaged in hydrogen

Figure 2.A.11	 bonding to connect two API via N-H…O dimer that forms a 2D molecular sheet which further stacked through weak interaction into 3D packing (b) (a) Carboxylic acid forms stronger two point acid…amide like synthon via O-H…O and N-H…O hydrogen bonds in cocrystal 7. The API…coformer units are further assisted by weak C-H…N and C-H…O hydrogen bonds leading to 1D zig-zag chains. (b) The 2D molecular layers are stacked by weak interactions completes 3D arrangement of molecules in the lattice 	59
Figure	PXRD patterns of bulk sample of cocrystal 1 kept at relative	62
2.A.12	humidity 90% show water mediated transformation into monohydrate of theophylline and the resorcinol. Arrival of new peaks after 3 days marked (pattern in red) is the indication of decomposition of cocrystal into its coformers and/or coformer hydrate	
Figure	Aqueous solubility comparison of drug THP and the cocrystals	64
2.A.13	Figures in Chapter 2 Part B	
Figure 2.B.1		81
0	crystal structure of acridine N-oxide dihydrate	
Figure 2.B.2	Water chain connects host molecules via $O-H\cdots O$ hydrogen bonds in the crystal structure of 2,2'-bipyridine- <i>N</i> , <i>N</i> '-oxide monohydrate	82
Figure 2.B.3	•	84
Figure 2.B.4		85
Figure 2.B.5	PXRD patterns of C1, C2, C3 and C4	86
Figure 2.B.6	The <i>N</i> -oxide acts as a dual hydrogen bond acceptor as the OH groups from two propofol molecules are connected to <i>N</i> -dioxide via a dominating $O-H\cdots O$ interaction in C1	88
Figure 2.B.7	Carboxylic acid– N -dioxide single point hydrogen bond prevails in cocrystal C2 . The C=O accepts the N–H via N–H···O hydrogen bond	89
Figure 2.B.8	Similar to C2, the C=O group of COOH accepts the OH via $O-H\cdots O$ hydrogen bond. Whereas single point interaction	89
Figure 2.B.9	between COOH and <i>N</i> -oxide retains in cocrystal C3 The 5 member ring NH proton of sulfathiazole bears strongest donation ability; thereby in C4 the formation of $NH_{imide} \cdots N$ - oxide synthon dominates. However $NH_{amine} \cdots N$ -oxide synthon competes with $NH_{imide} \cdots N$ -oxide	90
Figure 2.B.10	Hydrogen bond synthons formed between heterocyclic <i>N</i> -oxide with –COOH, –CONH–, –SO ₂ NH–, and phenolic –OH or–NH	92

	containing coformers in organic cocrystals. The occurrence probability of the synthons is calculated from the crystal structure database that includes the structures presented in this study. Values along with hydrogen bond energies are given in bracket	
Figure 2.B.11	The COOH…pyridine <i>N</i> -oxide, OH…pyridine <i>N</i> -oxide or NH…pyridine <i>N</i> -oxide interactions present in cocrystals C1-C4 are derived from Hirshfeld surfaces	93
Figure 2.B.12	Hirshfeld surfaces show high $O \cdots H$ interaction contributions in C2 and C4 cocrystals leading to favourable interactions with	94
2.0.12	polar solvents. This results in higher aqueous solubility of the cocrystals	
Figure	Aqueous solubility comparisons of drug and N-oxide cocrystals	95
2.B.13	C1-C4	
	Figures in Chapter 3	
Figure 3.1	FT-IR comparison of cocrystals of THP-ABA (CC-I to CC-VI).	108
Figure 3.2	Powder X-ray diffraction patterns of cocrystals CC-I to CC-VI	109
Figure 3.3	The DSC endotherms represent melting onset of the cocrystals	110
	CC-I to CC-VI. Onset temperatures within 120 °C are for	
F ! A (solvate/hydrate release from cocrystal CC-II, CC-III and CC-IV	
Figure 3.4	Weight loss measured by TGA found in good agreement with	111
	the theoretical values due to the evaporation of two <i>iso</i> -BuOH	
	molecule for CC-II and four water molecules from CC-III and CC-IV cocrystals	
Figure 3.5	THP N-H···O dimer connected by o -ABA molecule leading to a	112
Figure 5.5	1D tape and then construct 2D sheet parallel to (100) plane in	112
	CC-I. Symmetry-independent molecules are spotted inside	
	colour circles. The third crystallographic <i>o</i> -ABA molecule (blue	
	circle) sits in the cavity formed by 2D sheets via N-H···O	
	hydrogen bonds and runs almost perpendicular to the layer	
Figure 3.6	THP N–H···O homodimers are connected by o -ABA molecules	112
0	through N-H···O and O-H···O interactions leading to a 1D	
	helix in CC-II. Two such helices coiled and run along [010] axis	
	leading to channels for solvent inclusion.	
Figure 3.7	(a) In CC-III, THP N-HO dimers connected by o-ABA form	113
	similar 1D tape shown in structure CC-I. This ribbon 2 forms	
	channel (blue rectangle) allows water inclusion. Other	
	symmetry-independent THP molecule form tetrameric chain that	
	further joined by o-ABA constructing another 1D molecular tape	
	(ribbon 1). Red circles indicate inclusion of water molecules. (b)	
	Waters in void form octamer held by O-H···O interactions with	
	THP and <i>o</i> -ABA	
Figure 3.8	(a) The crystal structure of CC-IV shows exactly similar	114

xxiii

Figure 3.9	structure pattern as ribbon 2 for CC-III shown in Figure 5a. (b) Water octamer held by O–H···O interactions fill the cavity (a) The acid-amide like heterodimers between THP and <i>m</i> -ABA are formed via O–H···O and N–H···O interactions. The NH ₂ group connects the dimeric units via N–H···O and N–H···N interactions supported by C–H···O interaction construct 2D molecular layers. (b) Layers are further stacked via C–H··· π and π ··· π into 3D packing.	115
Figure 3.10	(a) Pyrimidine NH of THP and adjacent C=O group form strong hydrogen bonds through O–H···O and N–H···O with COOH of p-ABA that further connects another heterodimer via NH ₂ , N–H···O form 1D molecular tape. Molecular tapes are connected by C–H···O, C–H···N and weak N–H···O hydrogen bonds resulted 2D sheets which piled up (b) to complete 3D molecular arrangements along crystallographic [100]-axis	115
Figure 3.11	Stacked plots of PXRD patterns recorded for the slurry of CC-I (a) and CC-III (b) prepared in water show no phase transformation even after 3 days	118
Figure 3.12	Graphical representation of aqueous solubility of the drug THP, coformer <i>o</i> -ABA and their variable stoichiometry cocrystals (CC-I, CC-II, CC-III and CC-IV).	119
Figure 3.13	(a) The coformer o-ABA interactions with the API, THP showing $R_2^2(7)$ hydrogen bonded motif in THP·o-ABA stoichiometry cocrystals, (b) whereas m/p-ABA forms $R_2^2(9)$ hydrogen bonded motif.	121
Figure 3.14	Membrane permeability profiles of the drug THP, coformer <i>o</i> - ABA and their variable stoichiometry cocrystals (CC-I, CC-II, CC-III and CC-IV). Permeability profiles for CC-V and CC-VI are also evaluated for comparison.	122
Figure 3.15	Cumulative amount of THP drug and their cocrystals diffused vs. time plot	122
Figure 3.16 Figure 3.17	Plots of flux/permeability of the cocrystals with respect to time Flux of drug THP and cocrystals measured at 3 h indicate the superiority of <i>o</i> -ABA cocrystals but inferiority with <i>m/p</i> -ABA cocrystals over the drug	123 123
Figure 3.18	Percentage of intermolecular interactions calculated using Hirshfeld surface area analysis in cocrystals CC-I to CC-VI. The actual interactions contribution evaluated for CC-II may slightly differ as PLATON Squeezed structure is the input for calculation. Contribution from two molecules of <i>iso</i> -BuOH needed to consider	125

Figures in Chapter 4

	Figures in Chapter 4	
Figure 4.1	FT-IR spectra comparison of ZMD and its cocrystal 1 to 4	138
Figure 4.2	DSC endotherm plots of ZMD and its cocrystals 1 to 4	139
Figure 4.3	Stacked PXRD patterns of ZMD and its cocrystals 1 to 4.	140
Figure 4.4	(a) Acid…amide heterosynthon via N-H…O and O-H…O	141
Figure 4.4	•	141
	hydrogen bonds in the crystal structure of 1 , (b) layer structure	
	guided by weak C-H···O interaction in 2, (c) acid···acid	
	homosynthon in 3 and (d) layered crystal structure of 4 with	
	acidamide heterosynthon connected by water molecules	
Figure 4.5	Dihedral angle of dangling amide group in pure ZMD and in	143
	ZMD cocrystals [circle - ZMD; red - CSD reported	
	multicomponent systems; black – cocrystals 1 to 4, present	
	study]	
Figure 4.6	PXRD patterns of 4 upon slurry experiment revealing phase	145
i igui e no	transformation to its anhydrous form	110
Figure 4.7	Solubility of cocrystals 1 to 4 and ZMD in pure water and at	146
rigure 4./		140
-	pH 1.2 & 7.4	1 4 7 1 40
Figure 4.8	Particle Size Distribution plots for pure ZMD and cocrystal 1	147-148
	and 3	
Figure 4. 9	Permeability of multicomponent systems 1 to 4 and ZMD at (a)	149
	pH 1.2 and (b) pH 7.4	
F ² 4 10		150
Figure 4.10	Flux of cocrystals 1 to 4 and ZMD at (a) pH 1.2 and (b) pH	150
	7.4	
Figure 4.11	Percentage contribution of various weak interactions exists in	151
	ZMD and cocrystals 1 to 4 analysed by Hirshfeld surfaces.	
	Figures in Chapter 5	
Figure 5.1	FT-IR spectra of pure famotidine and its decomposed product	160
8	under pH~1.2.	
Figure 5.2	Comparison of PXRD patterns for pure famotidine, FAM_D and	164
rigure 3.2	the material obtained from the slurry experiment at pH 1.2.	104
Figure 5.2		164
Figure 5.3	¹ H-NMR spectra comparisons of famotidine (FAM) and its	164
	degradation product (FAM_D).	
Figure 5.4	Plot of $\ln[A_t]/[A_0]$ vs. time required during hydrolysis under	165
	pH~1.2 conditions.	
Figure 5.5	FT-IR spectra comparison of famotidine (FAM) and its	167
	cocrystals.	
Figure 5.6	DSC endotherms representing the melting onset temperature of	168
	famotidine cocrystal.	
Figure 5.7	PXRD patterns of famotidine cocrystals of demonstrates new	169
-8 7	cocrystal phase entirely different from starting material PXRD	~ /
	patterns.	
Figure 5.9	VT-PXRD pattern of Famotidine (a) and FAM.THP cocrystal	170
Figure 5.8	vi-rand patient of randomine (a) and raise. The corrystal	170

	(b).	
Figure 5.9	$R_2^2(12)$ homodimer (red circle) and $R_2^2(9)$ heterodimer (blue	171
	$\frac{1}{2}$ circle) involved in the formation of FAM.THP.	
Figure 5.10	Stacked PXRD patterns of materials obtained from slurry	172
	experiments at pH~1.2 up to 24h (a) famotidine and it's (b) cocrystal FAM.THP.	
Figure 5.11	Crystal packing diagram of famotidine polymorphs (a) A and (b)	173
	B exposed the $-C=N$ group for acid hydrolysis.	170
Figure 5.12	Stacking PXRD patterns of materials obtained from slurry experiments at pH~1.2 up to 24h of cocrystal (a) FAM.CAF and	173
	(b) FAM.THB.	
Figure 6.1	Figures in Chapter 6	186
Figure 6.2	Stacked FT-IR spectra of gelators G-1, G-2 and G-3. Stacked ¹ H NMR spectra of gelators G-1, G-2 and G-3. The	187
1 iguit 0.2	extra peak appeared at 8.32 is identified as residual $CHCl_{3.}$	107
Figure 6.3	Photograph demonstrating reverse sample vial test of the gel of	188
	G-1 at 2% wt in (from left to right) nitromethane, nitrobenzene,	
	ethanol, 1-butanol, tetrahydrofuran, diethylene glycol, 1,4- dioxane, cyclopentanone, cyclohexanone.	
Figure 6.4	Photograph demonstrating the inversion vial test for (a) gels of	189
0	G-2 in solvent system ethanol: cyclohexane (3:1) and	
	nitrobenzene and (b) gels of G-3 in solvent nitromethane,	
Figure 6.5	nitrobenzene and toluene: ethyl acetate (2:1). (a) Oscillatory stress sweep comparisons of G-1 considering	192
Figure 0.5	solvent system cyclohexanone (CH), Nitrobenzene (NB), 1-	192
	butanol (1-Bu) at constant frequency of 1 Hz and (b) frequency-	
	sweep rheology of G-1 in nitrobenzene solvent system	
	cyclohexanone (CH), Nitrobenzene (NB), 1-butanol (1-Bu) at constant stress of 10 Pa.	
Figure 6.6	(a) Stress Sweep and (b) frequency sweep of gelator G-2 at 1	192
	wt. % and 2 wt. % with solvent system ethanol cyclohexane	
	(1:1).	
Figure 6.7	(a) Stress Sweep and (b) frequency sweep of gelator G-3 at 1 wt.	193
	% with solvent system toluene ethyl acetate (2:1); (c) Stress Sweep and (d) frequency sweep of gelator G-2 at 2 wt. % with	
	solvent system toluene ethyl acetate (2:1).	
Figure 6.8	SEM images of the xerogels of gelator (a) G-1, (b) G-2 and (c)	193
-	G-3 demonstrates the fibrous nature of the gelators.	10-
Figure 6.9	FT-IR spectra comparisons of barbital (BAR) polymorphs.	195 105 106
Figure 6.10	Comparison of crystallization outcome of BAR from solution and gel crystallization of BAR. Crystal obtained from solution	195-196

crystallization in (a) 1-butanol, (c) ethanol, (e) nitromethane and (g) cyclohexanone respectively. Crystal obtained inside the gel G-1in (b) 1-butanol, (d) ethanol, (f) nitromethane and (h) cyclohexanone respectively.

- **Figure 6.11** PXRD stacked comparison of BAR polymorph III obtained 197 inside gel and mixture of polymorphs obtained from solution crystallization.
- **Figure 6.12** Concomitant crystals plate (α) and needle (β) of THL obtained 198 from solvent evaporation in nitromethane and (b) crystal of polymorph α grown inside the gel G-1 in nitromethane.
- **Figure 6.13** FT-IR spectra comparisons of (±) thalidomide (THL) 199 polymorphs.
- **Figure 6.14** Comparison of experimental PXRD of (\pm) thalidomide (THL) 199 polymorph α obtained inside the gel with simulated from corresponding crystal structure.

LIST	OF	SCHEMES
------	----	---------

Page No.

	Schemes in Chapter 1	
Scheme 1.1	Pictorial representation showing the most probable solid forms	4
	that can be adapted by a drug. The multicomponent crystalline	
	solids can also exhibit polymorphism.	
	Schemes in Chapter 2 Part A	
Scheme 2.A.1	Chemical structures of API theophylline and the coformers.	48
Scheme 2.A.2	Assorted hydrogen bonded synthons that are observed in the	66-67
	crystal structures of 1-7 between API theophylline and	
	coformer functional groups such as $-COOH$ and $-OH$. Two point theophylline N $-H$ ···O dimer (synthon D) and single point	
	catemer synthon assisted by weak $C-H\cdots O$ (synthon E), two-	
	point (synthon A), single point (synthon B)	
	$-COOH \cdots NH_{imidazole}$ hydrogen bonds, and synthon C are	
	assessed in terms of their stabilization energy which could	
	translate into the physical stability of cocrystals. Synthon	
	energies were calculated on DFT using Gaussian03 and	
	B3LYP; 6311G*(d,p) as basis set.	
	Schemes in Chapter 2 Part B	-
Scheme 2B.1	Synthesis of pyridine <i>N</i> -oxides	78
Scheme 3.1	Schemes in Chapter 3 Chemical structures of drug theophylline and the isomeric	106
Scheme 5.1	aminobenzoic acid coformers	100
	Schemes in Chapter 4	
Scheme 4.1	Chemical structures of ethenzamide and isomeric	137
	dihydroxybenzoic acids used for cocrystallization and their	
	stoichiometric ratio cocrystal formation	
	Schemes in Chapter 5	
Scheme 5.1	Chemical structure of drug famotidine (FAM).	161
Scheme 5.2	Plausible mechanism of famotidine hydrolysis at pH 1.2.	165
Scheme 6.1	Schemes in Chapter 6 Chamical structures of drug (a) barbital and (b) (1)	183
Scheme 0.1	Chemical structures of drug (a) barbital and (b) (\pm) thalidomide; (c) concomitant polymorph appeared from	165
	solution crystallization of barbital in ethanol and (d) appearance	
	of concomitant polymorphs of (\pm) thalidomide from solution	
	crystallization in nitromethane. Red circles signify β form and	
	blue shows plate-shaped α Form of (±) thalidomide.	
Scheme 6.2	Design of drug mimetic gelators G-1, G-2 and G-3.	184
Scheme 6.3	Synthesis of gelator G-1from AMG.	185
Scheme 6.4	Synthesis of gelator G-2 from AMG.	185
Scheme 6.5	Synthesis of gelator G-3 from AMG.	186
	Schemes in Chapter 7	
Scheme 7.1	Stronger COOH N synthon stabilizes the cocrystals of	210
	theophylline with aromatic hydroxyacid at high humid	
	condition whereas weaker OH···N _{imidazole} and OH···O synthon	
Scheme 7.2	destabilizes cocrystals of theophylline with phenolic coforme. Pictorial representation depicting the aqueous solubility	211
Schenne 1.4	improvement of pharmaceutical cocrystal of various drugs with	<i>∠</i> 11
	improvement of pharmaceutical coorystal of various drugs with	

4,4'-bipyridine-*N*,*N*'-dioxide as coformer.

- Scheme 7.3 Variable stoichiometry cocrystals of theophylline exhibiting 212 different drug release behaviour controlled by intermolecular interactions.
- **Scheme 7.4** Improving the efficacy of drug ethenzamide by changing its 213 molecular planarity and lipophilicity via cocrystallization.
- Scheme 7.5 Pictorial representations of prevention of famotidine 213 degradation via cocrystallization.
- **Scheme 7.6** Controlling concomitant polymorphism of drug via drug mimetic 214 gel phase crystallization