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Chapter 3 
 

Markov Model Driven Gaussian Process 

Based Trust Models 
 

 

3.1 Introduction 
 

One important requirement in a Web services network is that a user can make 

security decisions regarding usage of a Web service. Such decisions aim at 

minimizing the risk of abusing or destroying resources in an interaction. To 

make such security critical decisions, a user needs to assess its confidence that 

an interaction with a Web service is secure. Such confidence is derived from 

trust and reputation. An essential component in the trust management 

framework is a behaviour model base with which any user can predict the future 

trust or reputation of a service provider. 

In this chapter we propose two behaviour model frameworks for evaluation of 

trustworthiness of a service provider based on the experience of direct 

interactions and/or the recommendations from the other service users. The 

behaviour model frameworks are based on the theory of Markovian process and 

the principle of non-linear time series prediction. Markovian process models 

facilitate learning the dynamic and state based behaviour of a Web service.   

Both the frameworks use Gaussian Process Regression (GPR) for prediction. A 

GPR model is equipped with a kernel function and is able to learn useful patterns 

from the available training datasets and perform data interpolation and 

extrapolation. A GPR is able to make predictions using small and scarce training 

datasets. In addition, it provides a predictive distribution defined by the mean 

value together with the respective prediction variance. 
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3.2 Background 
 

 

3.2.1 Markov Models 
 

3.2.1.1 Markov Chains 

 

We have a set of states,  1 2,  ,..., RS s s s  .The process starts in one of these 

states and moves successively from one state to another. Each move is called a 

step. If the chain is currently in state is  , then it moves to state js  at the next step 

with a probability denoted by ijp  , and this probability does not depend upon 

which states the chain was in before the current state. The probabilities ijp are 

called transition probabilities. The process can remain in the state it is in, and 

this occurs with probability ijp . An initial probability distribution, defined on S, 

specifies the starting state. Usually this is done by specifying a particular state 

as the starting state. 

3.2.1.2 Hidden Markov Model (HMM) 
 

First introduced and studied in the late 1960s, Hidden Markov Model is a very 

powerful model for predicting the future trend based on sequential datasets 

[122]. A HMM is a Markov chain with each state associated with a particular 

probability distribution over the set of possible symbols, also called 

observations. However, a key difference between a HMM and a Markov chain 

is that in a HMM, state transitions are not observed as is the case in a Markov 

chain, and only observations are visible. We precisely define discrete-time first-

order HMM. The reader is referred to Rabiner [122] for lucid details. 

Definition 

Formally, a discrete-time HMM is defined by the following elements: 

• A set  1 2,  ,..., RS s s s of (hidden) R   states. 
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• A state transition matrix    
i js saA   of size R R , where each element 

i js sa  is the probability of transition from state 
is  to state js . 

• A set  1 2  ,  ,  . . . ,  KV z z z  of observation symbols. A sequence of 

observation symbols is the physical output of the underlying dynamic 

process. 

• An emission matrix     
is kB b z  of size R K , where an element 

 
is kb z is the probability of observing symbol kz  given the current state 

of the dynamic process is
iS . 

• Initial state probability distribution   
is

  , where an element 
is

  is 

the probability of being in state 
iS  at the time 1 

 

Thus an HMM is completely defined by    ,  , , ,S V A B   . The probability 

distributions A , B , and    are called the parameters of the given HMM. 

3.2.1.3 Basic problems of HMM 
 

For any HMM model, there are three basic problems of interest to be solved for 

the model to be useful in real-world applications. We describe them as follows:  

Problem 1: Given the observation sequence  1 2O  ,  ,  . . . ,  ; iT Vo o o o   and 

a model , how to efficiently compute the probability of the observation 

sequence  |P O  ?  

• Problem 2: Given the observation sequence O  and a HMM model , how 

to choose a corresponding state sequence 1 2Q={ , ,  ... , }; T iq q q q S ? 

• Problem 3:  How to adjust the model parameters ? 

  

3.2.1.4 Forward-Backward Algorithm 

 

Forward-Backward algorithm [122] is used to solve Problem 1 at a low 

computational cost. In the following, we present a brief sketch of this algorithm.  
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For a give HMM , the joint probability of a sequence of observation 

 1 2O  ,  ,  . . . ,  ; iT Vo o o o   and the underlying sequence of states 

1 2Q={ , ,  ... , }; T iq q q q S  is defined as 

1 1 1 2 2 -11 2( , | ) . ( ). . ( )... ( ).
T T Tq q q q q q q q TP O Q b o a b o a b o   

The probability of the outcome sequence  1 2O  ,  ,  . . . ,  To o o  given the 

HMM   is therefore equal to the sum of joint probability ( , | )P O Q   over all 

possible sequences Q  of states. That is, 

1 1 1 2 2 -1

1,

1 2

....

( | ) . ( ). . ( )... ( )
T T T

T

q q q q q q q q T

q q S

P O b o a b o a b o 


                  (3.1) 

This probability is obtained by evaluating inductively the forward variable 

given in Eq. (3.2) 

1 2,  ,  . . . ,  , | )( ) ( .t t it i o os P o q s                                 (3.2) 

Here ( )t is  is the joint probability of the partial observation sequence, 

1 2,  ,  . . . ,  to o o  and given the state iS  at time t . A forward procedure evaluates 

( | )P O   as given below. 

1. Initialization :   

1 1(s ) ( ),
i ii s sb o                  1 i R   

 

2. Induction Step : 

 

1 1

1

( ) ( ( ) ). ( ),
i j j

R

t j t i s s s t

i

s s a b o  



      1 ,1t T j R     

3. Termination : 

1

( | ) ( )
R

T i

i

P O s 


   
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In a similar way to the above procedure, the probability ( | )P O   can also be 

computed by evaluating inductively of the backward variable, denoted by 

( )t is  defined below. 

1 2( ) ( .... | , ).t i t t T t is P o o o q s                                (3.3) 

Here ( )t is  is the conditional probability of the partial observation sequence 

1 2....t t To o o   given the state Si  at time t . The backward procedure works as 

below. 

1. Initialization : 

( ) 1,T is                   1 i R   

2. Induction Step : 

1 1 j( ) ( ). ( ),
i j jt i s s s t ts a b o s               1 ,1t T j R     

3. Termination : 

1 1

1

( | ) ( ). ( )
i i

R

s s i

i

P O b o s  


  

3.2.1.5 Viterbi algorithm 

 

The problem-2 of HMM is solved by the Viterbi algorithm originally proposed 

by [158]. The algorithm is designed to find the most likely state sequence 

1 2Q={ , ,  ... , }; T iq q q q S  given the observation sequence 

 1 2O  ,  ,  . . . ,  ; iT Vo o o o   by   maximizing the probability, ( | , )P Q O  . Let 

us define 

1 2 1

1 2
, , ... 

2
,

1( , ,  ... , , | )( )  max ,  ,  . . . ,  
t

t i
q q

t
q

i tP osq o os s q 


   

as the largest probability of a state sequence until time t that ends in the state iq  

In order to obtain the best sequence that maximizes ( )t iq , the following 

Viterbi algorithm is used. 
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Algorithm 3.1: Viterbi   
 

Steps: 
 

1. [Initialise for all  ; 1,2....iq i T  ] 

11 )( ()
i isi sb oq    ;  1 0( )iq   

2. [Recurs for all ; 1,2....jq j T ] 

1 ( ) max[ ( ) ] ( ) 2
i j jt j t i s s s t

t
s s a b o t T      

1 ( ) argmax[ ( ) ] 2
i jt j t i s s

t

s s a t T     

2. [Terminate] 

 
* s argmax[ ( )]T T i

t

s  

3. [State sequence backtracking] 

* *

1 1( ) 1, 2,...,1t t ts s t T T        

 

Here ( )t js  is an array used to keep track of the arguments which actually 

maximized ( )t js . The final resulting optimal state sequence is 

* * *

1( ,......, )t TS s s  

3.2.1.6 Baum-Welch algorithm 
 

Bauam-Welch algorithm [123] is used for solving Problem 3. This technique 

works in the framework of Expectation Maximization (EM) [124]. In this 

technique, we assume that a priori HMM 
'  is given. Then our aim is to derive 

a posterior HMM   that maximizes the expected complete data likelihood 

defined below. 

' '( , ) ( | , ) log ( , | ).
q

L P q O P O q                                      (3.4) 

This function is called the Baum’s auxiliary function. The objective now is to 

determine the optimal parameter values of the posteriori HMM   which 

maximizes
'( , )L   . The term log ( , | )P O q   in Eq. (3.4) can be written in terms 

of the parameters of   as, 

1 1

2 1

log ( , | ) log log log ( )
t t t

T T

q q q q t

t t

P O q a b o 


 

                 (3.5) 
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Using Eq. (3.5) in Eq. (3.4), we have, 

' '

1

1

( , ) ( | , ) log
i

R

i s

i

L P q s O   


     

'

1

1 1 2

(q , | , ) log
i j

R R T

t i t j s s

i j t

P s q s O a

  

    

'

1 1

( | , ) ( , ) log ( ).
i

R K T

t i t k s k

i k t

P q s O o q b q 
  

                                   (3.6) 

 Here ( , )t ko q is defined as 

1
( , )

0

t k

t k

if o q
o q

otherwise



 


                                                (3.7) 

Now Eq. (3.6) can be rewritten as follows. 

'

1 1

( , ) ( ) ( ) ( )
i i i i

R R

a s b s

i i

L Q Q A Q B  
 

                                              (3.8) 

Here 
1 2
, ,...

Rs s s      
 is the initial state probability distribution,

1 2
, ....,

i i i i Rs s s s s s sA a a a   
 is probability distribution from state S

i  to other states, 

and 
1 2( ), ( ),..., ( )

i i i is s s s KB b z b z b z   
 is the emission probability distribution over 

the outcomes given the state is .  

The three Qs  in Eq. (3.8) are defined as following. 

'

1

1

( ) ( | , ) log
i

R

i s

i

Q P q s O   


                                         (3.9) 

'

1

1 2

( ) ( ( , | , )) log
i i i j

R T

a s t i t j s s

j t

Q A P q s q s O A

 

                                   (3.10) 

'

1 1

( ) ( ( | , ) ( , )) log ( )
i i i

K T

b s t i t k s k

k t

Q B P q s O o z B z 
 

                               (3.11) 

Maximizing the auxiliary function is achieved by maximizing each term of Eq. 

(3.8). Further using the Lagrange multiplier technique for optimizing functions 

in Eq. (3.9) to Eq. (3.11), the parameters of the optimal a posteriori model   

are given as  
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'

1( | , )
is iP q s O                                                        (3.12) 

 
1 ,

2

'

1

2

( )

( | , )
i j

T

t i j

t
s s T

t i

t

s s

A

P q s O




















                                               (3.13) 

'

1

1

( | , ) ( , )

( )

( )
i

T

t i t k

t
s k T

t i

t

P q s O o z

B z

s

 













                                         (3.14)  

Here '( ) ( | , )t i t is P q s O    and 
'

1 , 1( ) ( , | , )t i j t i t js s P q s q s O     . The 

former represents the probability of visiting state is  at time t   given an 

observation sequence O   and an HMM
'  while the latter is the probability of 

visiting states is   and 
js   at times 1t   and t  respectively. These probabilities 

are efficiently evaluated in linear time using the forward and backward 

variables ( )t is  and ( )t is  defined in Eq. (3.2) and Eq. (3.3) respectively. The 

Eq. (3.12) to Eq. (3.13) are termed, in the literature, as parameter re-estimation 

equations.  

Given the parameters of the a priori HMM
' , these three equations represent 

one iteration in the Baum-Welch algorithm for estimation of the parameters of 

the a posteriori HMM . Now we can write the re-estimation equations as 

follow. 

1( )i is                                                      (3.15) 

1 ,

2

1

2

( )

( )
i j

T

t i j

t
s s T

t i

t

s s

A

s

















                                                     (3.16) 
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1,

1

( )

( )

( )

t k

i

T

t i

t o z
s k T

t i

t

s

B z

s





 








                                                  (3.17) 

With respect to the a priori HMM
'  Eq. (3.15) to Eq. (3.17) can be described 

as follows. 

i = expected number time visiting state is  at time ( 1)t   

 expected number of transitions from state to state 

expected number of transitions from state 
i j

i j
s s

i

s s
A

s
  

expected number of times in state  and observing symbol 
( )

expected number of times in state 
i

k
s k

i

i z
B z

s
 

 

Using discrete probability functions greatly simplifies greatly modeling of the 

problem. However they have limited representative power. To solve this 

problem, either a single or mixture of continuous probability distribution 

functions is used as the observation probability during the training phase. The 

task of learning is then to learn the parameters of these distributions. The most 

widely used distribution is the d-dimensional Gaussian distribution or Normal 

distribution. 

 

3.2.2 Time Series Prediction 
 

Generally, a time series is a number of data points, measured in uniform time 

intervals and can be denoted by 

x = {x1, x2, x3..xn},                            

where xi can be a scalar or vector value. The field of making predictions from 

an available time series is called time series prediction and is an area of research 

in the field of machine learning. The basic goal of time series prediction is to 

generate a model of the process under observation, which is able to predict 
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values that have not yet been measured. Such a model can be global model or 

local model. Global models describe the relationship between the input and the 

output values as a single analytical function over the whole input domain. On 

the other hand, local modeling does not describe the whole physical system in 

one model, but creates a specific model for a given input. This means that 

generally not a global model has to be created, but only a model that describes 

the systems behaviour for a given input.  

 

Figure 3.1: Time series plot 

 

Figure 3.2: Global Model 

 

Because the input for which the prediction has to be performed is only known 

at the prediction time, local model algorithms are generally lazy learners. This 

concept of global and local models requires some more clarification. In order to 

explain it, a simple example is assumed, in which, from a set of training data, 

the next value shall be predicted. For reasons of simplicity, scalar input and 

output values are assumed. The training data is shown in Figure 3.1. A linear 

global model is shown in plots of Figure 3.2 and a linear local model in plots of 

Figure 3.3. 
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Figure 3.3: Local Model 

 

The goal of local modelling is not to get a model which describes the whole 

process, but instead to simply give a reasonable output for a given input (the 

query). A possible local linear model is shown in Figure 3.3. As time 

independent local models, in which the next value is predicted based on the 

query, there are several strategies found in literature. One prominent approach 

is called the nearest neighbour. In this case, in the training data the value which 

is closest to the query is taken and the value which followed this nearest 

neighbour is taken as the prediction.  

 

3.2.3 Gaussian Process 
 

Gaussian process (GP) is considered as a supervised machine learning algorithm 

widely used in different domains in the past decades. Identification of the model 

of a dynamic system can be done by using GP regression. Such model identified 

is called as nonparametric model, which does not mean that there are no 

parameters inside the model but model has flexible parameters that can be 

adapted from the input data. Therefore, a Gaussian Process(GP) is completely 

different from the so called a parametric model where the parameters involved 

impose a fixed structure or value in advance upon the model. 
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A brief introduction to Gaussian Process (GP) is presented here. For a 

comprehensive report on GP, kindly refer [112]. Gaussian process provides a 

non-parametric Bayesian approach towards regression problems. It can capture 

relations between inputs and outputs by utilizing a theoretically infinite number 

of parameters and letting the data decide upon the level of complexity through 

the means of Bayesian inference. 

Formally, a Gaussian Process can be defined as: 

Definition: A Gaussian Process is a collection of random variables, any subset 

of which has a joint normal distribution. 

A Gaussian process is completely defined by its mean function and covariance 

function. We will write  

( ) ( ( ), )f GP mx x                                                  (3.18) 

Given a set of data  
1

x ,
n

i i i
D y


  where d

i Rx  and ( ) , yi i iy f Rx , we 

want to model the input-output relationship by using a Gaussian process with 

mean function ( )m x  and covariance function . In most of the applications, the 

mean function is set to zero, and any covariance function generating a positive 

definite covariance matrix is used.  

In order to make prediction about a new input *
dRx , the joint distribution of 

the training outputs f  and the test output *f . Eq. (3.19) is conditioned on the 

observations and the expected value is obtained according to Eq. (3.20) and 

variance of the prediction according to Eq. (3.21) 

2
*

* *, * *

( , ) ( , )
0,

( ) ( , )
nK X X I K X

N
f K X k

f x

x x x
                                       (3.19)  

 
1

2

* * *| , , ( , ) ( , ), nE f X x K X K X X I


   f x f                           (3.20) 

12
* *, * *, *cov( ) ( ) ( ) ( , ) ( , )nf k K X K X X I K Xx x x x                           (3.21) 
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where X  represents the matrix of training inputs, K  denotes the covariance 

matrix which is obtained by pairwise evaluation, 

cov( , ) cov( ( ), ( ) ( , )ij i j i j i jy y f f kx x x x  of the covariance function for the 

given inputs. Writing in shorthand form, we have the predicted value of the 

process at the new input and variance as  

* *

2 1
* ( )T T

nf k K I y k                                              (3.22) 

2
* *, * * *cov( ) ( ) ( )T

nf k k K I kx x x                                   (3.23) 

Here * *( , )k K X x , 2 1( )nK I y  is called prediction vector and y  is the 

vector of  training function outputs, and 2
n  is the variance of the Gaussian noise 

.  The schematic view of   GPR is shown in the Figure 3.4. Given the training 

data and a covariance kernel function, GPR can predict the function value at a 

test input. 

 

 

Figure 3.4: Schematic view of GPR 

 

The covariance function chosen is not completely free from parameters and they 

still have some parameters called hyper-parameters.  
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Let us accumulate these parameters in .  We can learn      from the training 

data by marginal likelihood optimization. The log-marginal likelihood is 

defined as 

  1 21 1
log( | , ) log log 2

2 2 2
T

n
n

y X y K y K I                         (3.24) 

The gradient of the marginal likelihood with respect to   can be computed by 

a gradient optimization technique to minimize the objective function in Eq. 

(3.24).  The implementation of Gaussian process regression in given in 

Algorithm 3.2 below (reproduced from [112]). 

Algorithm 3.2: Gaussian Process Regression  

 

Inputs: 

1. Input dataset, 
1{ , }n

i i iD x y    

2. Covariance function,
, ,( )i j i jk x x    

3. Signal noise level, 2

n   

Outputs: 

1. Mean, *f


  

2. Variance, *cov( )f   

 

Steps: 

1. 2( )nL choleskey K I    

2. 
1 1TL L y   

2. **

Tf k 


   

3. 
1

*v L k   

4. 
* * *cov( ) ( , ) Tf k x x v v    

5. return *f


, *cov( )f  
 

Due it Cholesky factorization the time complexity of Gaussian process 

regression is
3( / 6)O n .  
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3.2.4 An Example of Gaussian Process Regression 
 

We present here an illustrative example of using a Gaussian process in 

regression problem. Imagine that we have collected the observations shown in 

Table 3.1 and that we want to predict the value of  y   for a new input point *x  

Table 3.1: Observation for regression example 

t   
tx   ty   

1 0.9 0.1 

2 3.8 1.2 

3 5.2 2.1 

4 6.1 1.1 

5 7.5 1.5 

6 9.6 1.2 
 

In linear regression set up, we assume the outputs are a linear function of the 

inputs with additional noise as the following. 

0 1( )t t i t ty f x x         

Here t is the noise term that follows a normal distribution 2(0, )t N  . We 

can write the above equation in matrix notation as the following. 

x wT

t t iy    

The vectors are defined as  

0

1

1
x , wt

tx





   
    

  
 

To predict the output for the new point *x , we need to estimate the weights 

from the past observations. 
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1 0.9 0.1

X 1 3.8 , y 1.2

: : :

1 9.6 1.2

t t

   
   
   
    
   
   
      

 

Now we can rewrite the mean function in Eq. 3.22 as the following. 

*

1

(x ,x)
t

i i

i

f w k


  

Here each x i is a previously observed input value in X t and the weights are 

collected in the vector, 2 1

,w=(K(X ) ) yt t tX I
 . What this equation tells us is 

that Gaussian process regression is equivalent to a linear regression model using 

the basis function  k  to project the inputs into a feature space. To make 

predictions, every output ty  is weighted by how much similar the corresponding 

input  x t  to the to be predicted point *x  by similarity induced by the kernel. 

This results in a simple weighted sum to make the predictions for new points. 

The posterior predictive mean then is a linear combination of the features. 

Therefore a conceptually infinite parameter space ultimately boils down to a 

finite sum when making the predictions. This sum depends only on the chosen 

Gaussian process kernel k   and the data  tD  observed thus far.  

This is why Gaussian process regression is referred to as a non-parametric 

technique. It is not the case that this regression approach has no parameters. 

Actually it has theoretically as many parameters w  as there are observations. 

However, in making predictions, we only use a finite sum over all past 

observations. 
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Table 3.2: Example of generating a prediction using a Gaussian process with 

a radial basis function kernel. 2 1

*( ( , ) ) , 3i iw K X X I y x
     

 

t   
tx   ty   tw   *( , )tk x x   *( , )t tw k x x   

1 0.9 0.1 0.51 0.38 0.19 

2 3.8 1.2 -3.88 0.87 -3.37 

3 5.2 2.1 13.3 0.34 4.53 

4 6.1 1.1 -12.55 0.12 -1.48 

5 7.5 1.5 5.83 0.01 0.06 

6 9.6 1.2 -0.34 0.00 0.00 

 6

*

1

( , )t t

i

w k x x


   
-0.06 

 

Assuming a radial basis function kernel 
' 2

' 2
2

( )
( , ) exp( )

2
f

x x
k x x

l
  with length 

scale 1l  , and observation variance  2 0.01    the details for generating a 

prediction for * 3x    can be worked out as in Table 3.2.  

 

3.3 Proposed Models 

 

3.3.1 Definitions 
 

Time Horizon: Total time duration in the past over which the service user will 

analyze the trustworthiness of a service provider in order to make a trust-based 

decision for future interaction.  

The time horizon is a positive value representing years or months or days or 

seconds depending on the user. The idea is that for making a trust-based 

decision for a future interaction, a service user may like to analyse the behaviour 

of the service provider over previous years or months etc. 
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Time Slot: A finite duration of time in the time horizon over which the direct 

trust value or recommended trust values are collected from the direct 

experiences or from other intermediaries and then aggregated into a single 

value for analysis of its dynamic nature of trustworthiness of the service 

provider. 

Time slot allows us to divide the time horizon into equidistance intervals. For 

example, in a time horizon of one year, we can divide it into days, giving a 

sequence of 365(6) equidistance intervals. For each interval, using an 

aggregation method, a single value of trust value can be generated. This process 

will generate a time series of trust values. 

Time Point: The time of interaction between a service user and the service 

provider and at which the trustworthiness value based on the outcome(s) of the 

interaction is recorded by the service user. 

Time point will help to identify which past interaction(s) falls under a given 

time slot. 

Direct Trust: A measure of trustworthiness of the service provider in a given 

context and at a given time point established by a service user from the previous 

interactions with this provider. 

Recommended trust: A measure quantifying the trustworthiness of the service 

provider in a given context and at a given time point as communicated by an 

intermediary. 

Reputation Trust: A numerical value representing the truthfulness of the 

recommended trust provided by an intermediary. 

3.3.2 Architecture and Data Structures 
 

In our model, we assume a reasonable size network of service users and a single 

service provider (Figure 3.5.). Services from the service provider are accessed 

by the service users. They record the trustworthiness values of the service 

provider that they have previously interacted with. 
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Service users also communicate to each other about (1) their experience with 

the service provider and (2) their experience with other service users in 

soliciting recommendation trust. This communications serve as source of third 

party feedbacks. The second communication is an important one because using 

the information from this channel one can validate the trustworthiness of the 

third source of information i.e. advisor used in our model. Each service user in 

the network maintains the following information in its local database. 

 

Figure 3.5: Single Service Access Architecture 

 

Direct Trust Table: It stores the trustworthiness values of all service 

providers that a service user has interacted with in the past.  

Reputation Trust Table: It stores the reputation trust values of all other 

service users from whom recommended trust values of service providers 

have been collected.  

The structures of these tables are given in the following Figure 3.6. 

 

Figure 3.6: Table Entry format 
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Using entries in the Direct Trust table, a service user can do the prediction of 

trustworthiness of a service user in a future time slot. We call it as direct trust 

prediction. Secondly, service user also can answer a reputation query from other 

service users using this table. We consider each user as having an individual 

level of trustworthiness determined by the quality of its answer to such query. 

Reputation trust value in the reputation trust table reflects this level of 

trustworthiness. Its numeric value can be used by a service user to decide 

whether other witness service users are within its reputation range. Reputation 

trust value of a witness service user is calculated from the difference between: 

• Recommended trust value communicated by the witness agent about 

the target service provider.  

• The actual trustworthiness value obtained on interaction with the 

target service provider. 

We use the following simple mechanism for reputation trust calculation.   

• If actual trustworthiness value is greater than or equal to the 

recommended trust value, reputation trust is set to 1; otherwise it is 

set to -1.  

Context information in direct trust table and reputation trust value in the 

reputation trust table will enable us to categorize a service user as one of the 

intermediary types given in Table 3.3 in section 3.3.3. 

 

3.3.3 Trust Intermediaries 
 

A system based on the knowledge of trustees’ past behaviour could sustain trust 

and a consistent degree of trustworthiness provided that information was 

sufficiently reliable. Following argument in [120], it is crucial to understand the 

role of trust intermediaries who have positions and interests either analogous or 

different from the trustors. When positions and interests are aligned, trustors are 

expected to seriously consider the opinion of the intermediaries so that their 



79 

decisions will reflect reputational information available. Intermediaries may be 

either an advisor or a guarantor. Trustor trusts the advisor’s judgment which 

leads him to place trust on the potential trustee. So always there is an element 

of risk involved while taking the recommendations from advisors. The trustor, 

however places trust on a guarantor’s performance and integrity just as the later 

does in that of the potential trustee. So we claim the following in our model: 

• A guarantor intermediary is one whom the trustor has already 

established a recommendation trust relationship and from whom the 

opinion of the trustee’s behaviour can be elicited. 

• An advisor intermediary one whom the trustor has not established 

any recommendation trust relationship earlier, yet it can provide an 

opinion of the trustee’s behaviour. 

Our opinion is that a guarantor is already known to the trustor from their past 

exchanges of recommendations while an advisor is an unknown one. Again if a 

guarantor is within the reputation trust range of the trustor i.e. its reputation trust 

value is above a threshold, then we called it a known and trusted guarantor.  

3.3.4 Information sources 
 

According to [120], the placement of trust on a trustee is essentially based on 

the information available to a trustor from three sources: 

1. Trustor’s assessment of trustee’s performance. (Direct source) 

2. Recommendations from other intermediaries who have a position   

similar to the trustor’s and similar interest on the placement of trust. 

3. Recommendations from other intermediaries who do not have a position 

similar to the trustor’s and do not have the similar interest. 

Source (1) passing through no intermediaries at all, will be most likely to lead 

to a correct assessment. Source (2) often leads to the decision about trust as 

made by other intermediaries whose judgment was trusted. Finally source (3), 

provides the independent evidence of the decision. 
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In our prediction model, “position and interest” similarity is decided from the 

context information. We will explain with an example.  

Table 3.3. Categorization of Trust intermediaries 

 

Let ,  i jc c  be two possible contexts of interaction with a service provider. Let A 

be a service user who wants to interact with the service provider in future and 

let ic  be its context. Let B be another service user who already has interacted 

with the same provider in the context 
jc  and has established an opinion about 

the provider. Let     ,    0,  1i jConSim c c   be an operator which evaluates the 

similarity of any two contexts with a value of 1 meaning exact match and 0 

meaning exact mismatch. So, by  ,   1i jConSim c c   we mean that the A’s 

present position and interest is analogous to that of B ‘s past experience. A can 

directly utilize B’s opinion in its analysis of provider’s past behaviour. By

0 ,  ( )  1i jConSim c c   , we mean that A’s position and interest is not aligned 

completely to that of B. In this case, the opinion of B can still be utilized in A’s 

analysis following the transferability property of trust and reputation. With this 

explanation, we can formulate our trust intermediaries as shown in Table 3.3. 

Selection of intermediaries is based on ( , )i jConSim c c . There are many such 

functions used in the literature [7]. Here we explain three popular approaches-

ontology tree, key word based modeling and task based modeling to illustrate 

the meaning of context similarity. 

In ontology tree based approaches, the contexts are represented in a context 

ontology tree hierarchical structure. Each node in this tree represents a context. 
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A node is split into two lower level contexts and the low level contexts are sub-

context of the node.  

In [148] similarity between two contexts is computed by the distance between 

to node in the context’s ontology tree: 

1 2

1 2

1
( , )

( , )
ConSim S S

Dist S S
  

Here, the distance of two nodes is defined as the least number of intermediate 

nodes for one node to traverse to another node. For example, in Figure 3.7 which 

shows services ontology tree, service 1S   and 2S  has a distance of 3. 

 

Figure 3.7: Services in context ontology tree [148] 

In another similarity computation method for contexts based on ontology [149], 

the similarity between two nodes is calculated as the ratio between the number 

of shared nodes from the source node and the sink node to the root node, and 

the total number of nodes from the source and the sink to the root node. For 

example in Figure 3.7 service 1S   and 2S has a distance of 3/5. 

Second common approach is to use combination of keywords for context 

representation. Each keyword is referred to a different context and by ensemble 

the keywords the result collection is a context. In [66] they considered a file-

server application having three types of services: upload PDF file with 

keywords ,  ,  write pdf file  , upload DOC file with keywords ,  ,  write doc file  
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, and login with keywords ,  ,  LoginInfo userName passWD Based on set 

theory, the similarity between two contexts, iS   and 
jS , with their individual 

keywords sets,  iK S  and  jK S  , is defined as the following. 

1 2

( ) ( )
( , )

( ) ( )

i j

i j

K S K S
ConSim S S

K S K S





 

Third common approach is based on task. Here, each task is composed of 

several sub-tasks which are known task’s aspect or task’s attribute. An aspect is 

the smallest element of a task which describes a special attribute of it. In [151] 

they worked on several tasks such as: “Tom is wondering about trusting Bob to 

guide him in London when it is stormy”. Here, the task is model as: Location: 

London, Weather: stormy, Subject: guide. As it may be guessed the task’s 

aspects are: Location, Weather and Subject. In [150], the similarity between any 

two tasks iS   and
jS , is defined by  

, j,

1

1
  , ) 1(

n

i j i k k

k

S S SCon i S
n

S m


    

Here n   is the number of task attributes, 
,i kS is the kth attribute of task iS and 

j,kS is the kth attribute of task 
jS  

3.3.5 Trust Equation 
 

During the analysis of behaviour of a service provider, a service user calculates 

provider’s final trust based on the history of direct interactions and/or 

recommended trust values obtained from other intermediaries. So the final trust 

of a service provider A  over a context ic  at a future time point t   is evaluated 

from the following relation. 

( , , ) * ( , , ) (1 ) * ( , , )i d i r iT A c t T A c t T A c t                                      (3.25) 
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where ( , , )d iT A c t is the direct trust value obtained from direct interaction history 

stored in the direct trust table, ( , , )r iT A c t  is the indirect trust estimated from the 

recommended trust values obtained from other intermediaries, and  is the 

weighting factor to decide the importance between these two trust values. 

 

3.3.6 Direct Trust Calculation 
 

To calculate the direct trust value, the service user must decide the time slot 

over which all its direct interactions with the service provider must be examined.  

For example, if the future time point of interaction is next month, then the time 

slot can be the current year. If the service user already had directly interacted 

with the service provider in the identified time slot, we proposed to evaluate 

( , , )d iT A c t  as  

'( ) '

1

1
( , , ) * ( , ) * ( , , )

n
t t

d i i j jd
i

T A c t e conSim c c T A c t
n

                     (3.26)  

where '( , , )jd
T A c t  is the direct trust value recorded in the direct trust table from 

a previous interaction with the provider at time point 't  and context jc , 

( , )i jconSim c c  allows the transfer of trust from similar context, 0,1 takes care 

of the trust dynamics over time, n  is the number of all previous direct 

interactions recorded.    

While using Eq. (3.26), it may happen that the service user has no previous 

interactions in the identified time slot. This is true from two possibilities: (1) all 

previous interactions were in the previous time slots, for example in the previous 

years, and (2) the provider is a complete stranger. In this scenario, our service 

user has to choose one or both of the following: 
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Choice 1: Calculate the final direct trust value ( , , )iT A c t  only from ( , , )r iT A c t  

component of Eq. (3.25). 

Choice 2: Use the prediction mechanism presented in the Section 3.3.8 to get 

an estimate ˆ ( , , )d iT A c t by considering a larger time horizon. 

 

With our direct trust calculation mechanism, we give the procedure for direct 

trust calculation in the following algorithm. 

Algorithm 3.3: Direct Trust 

1. Decide the time point t  and context ic  of future interaction. 

2. Decide the time slot over which the analysis of behaviour of the 

service provider is to be done.   

3. If  previous interactions are available in the identified time slot then 

4.   Calculate ( , , )d iT A c t  from Eq.(3.26). 

5. else 

6.   Case based on Choice 

i. Choice is 1: Set ( , , )id
T A c t  to 0. 

ii. Choice is 2: Estimate ( , , )d iT A c t . 

7.   End Case 

8. End If 

 

3.3.7 Indirect Trust Calculation 
 

The service user first seeks the recommendation trust from the intermediaries 

by submitting a recommendation trust query specifying time slot and the Id of 

the service provider. All the intermediaries, who have previously interacted with 

the service provider, in some context and within the specified time slot, reply 

back to querying service user with a recommended trust value for the target 

service provider. After receiving all the replies, our service user will categorized 

the values as coming from the types of intermediaries mentioned in Section 
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3.3.3. We use the Beta distribution to select guarantors and also to weight the 

feedback from advisor. We measure a quantity called reputation range measure 

of every replying intermediary as 

 

#

# #

p
R

n p
                                                    (3.27) 

 

where #n  and # p  is the number of negative entries and positive entries 

respectively, against each replying user, in the reputation trust table of our 

service user. If  thR R  then a replying intermediary is said to be within the 

reputation query range of the querying service user and hence it is termed as 

guarantor. All other intermediaries for which there is no entry in the reputation 

trust table are considered as unknown and hence they are termed as advisors. 

To solicit feedback from them, our querying agent must measure their 

reputation trust indirectly. First a reputation trust query must be forwarded to 

all its guarantors, identified in the previous step, by specifying the name of the 

advisor. Each guarantor, if they know, the targeted advisor will return a pair

(# ,# )n p from their reputation trust tables. From these pairs, a final reputation 

range measure of the targeted advisor will be calculated as  

1

(# ) (# )
ng

i
i

Tot n n                                                (3.28) 

(# ) (# )
ng

i
i

Tot p p                                                (3.29) 

(# )

(# ) (# )a
Tot p

R
Tot p Tot n

                                           (3.30) 

where ng  is the number of guarantors identified. If a athR R  then the feedback 

from the targeted advisor will be solicited. 

Having devised the mechanism for identification and selection of 

intermediaries, we explain the calculation of ( , , )r iT A c t . It is calculated as  

  
'( ) '

_
1

1
( , , ) * * ( , ) * ( , , )

i

ng
t t

rg tot i i i j rg j
i

T A c t R e conSim c c T A c t
ng

                 (3.31)  
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'( ) '
_

1

1
( , , ) * * ( , ) * ( , , )

i i

na
t t

ra tot i a i j ra j
i

T A c t R e conSim c c T A c t
na

                   (3.32) 

 _ _( , , ) 0.5 * [ ( , , ) ( , , )]r i rg tot i ag tot iT A c t T A c t T A c t                      (3.33) 

where na  is the total number of identified advisors. We summarize the indirect 

trust calculation procedure in the following Algorithm 3.3. 

Algorithm3.4: Indirect Trust 

1. Decide the time point t  and context ic  of future interaction. 

2. Decide the time slot over which the analysis of behaviour of the service 

provider is to be done. 

3. Decide the thresholds  ,th athR R  .  

4. Issue a reputation query specifying the time slot and service provider Id. 

5. For each replying intermediary  

6.   Begin 

7.      if there exist a record in the reputation trust table 

8.      Calculate iR  using Eq.(3.27) 

9.      if thR R   

10.                Mark the intermediary as a guarantor. 

11.      End If 

12.         else 

13.               Mark the intermediary as advisor.   

14.        End If  

15.   End Begin 

16. End For 

17. From all marked guarantors calculate _ ( , , )rg tot iT A c t  using Eq. (3.31). 

18. For each advisor 

19.    Begin 

20.   Issue reputation trust query to marked guarantors. 

21.         Calculate aR  using Eq. (3.28)-(3.30). 

22.         if a athR R   

23.            Mark the advisor as useful.  

24.     End Begin 

25. From all useful advisors calculate _ ( , , )ra tot iT A c t using Eq (3.32).  

26.  Calculate ( , , )r iT A c t  from Eq. (3.33) 
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It may so happen that our service user is unable to obtain the recommended trust 

values from the intermediaries because none of the intermediaries has interacted 

with the provider during specified time slot. In such scenario, the analysis is to 

be done in a larger time horizon to get an estimate ˆ ( , , )r iT A c t .  

3.3.8 Trust Prediction 
 

When our service user cannot measure ( , , )d iT A c t and/or ( , , )r iT A c t , analysis is to 

be done in a wider time horizon. We proposed a prediction mechanism using 

non-linear time series mechanism and Gaussian Process Regression (GPR) 

[112]. We used Markov models – a Markov chain and a Hidden Markov Model 

to drive the GPR. We explain the prediction mechanism in the following 

subsections.  

Model 1: Markov Chain model based prediction 

The Schematic view of the prediction procedure is given in Figure 3.8. We 

called it as Model-1. 

 

Figure 3.8: Schematic view of Prediction Procedure of Model 1 
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Data selection phase constructs a coarse grained trust time series. Using a 

clustering technique the time series is segmented into regimes. A regime 

represents a region of volatility in the trust time series. Dynamics of regime 

change over time is captured in a Markov chain model. The Markov model is 

then used to generate the training data set of a local prediction model based on 

GPR and the new input (test input) about which the prediction of the future trust 

value is to be done. In the training phase, the GPR model is fed with training 

data to evaluate its parameters. The training process finds the optimal values for 

the kernel parameters by fitting the GPR model to the training data. In the 

current work, evaluation is performed by the Polak-Ribiere line search 

optimization method [117]. Once evaluation of kernel parameters is over, the 

GPR model is considered as “trained”, and hence, it is ready to make 

predictions. In the last phase i.e. the prediction phase, GPR gets as an input the 

test point about which the prediction of future value should be made. It should 

be noted that for prediction GPR framework utilizes both the input and the 

training data simultaneously and provides the prediction. The whole process is 

explained in detail below. 

Data Preparation Phase 

Data selection phase collects the direct trust data and recommendations for the 

construction of the Markov models and training of GPR models for prediction. 

We explain each activity included in this phase in the following 

Activity 1: Parameters Selection. 

 Select the time horizon hT  over which the trustworthiness of the service 

provider is to be analyzed. 

 Select duration T  of time slot to divide the time horizon into N  equal 

intervals of length hT

T
 each.  
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 Select time spot  pT   at which a trust based decision of whether or not to 

interact with the service provider in a given context is to be made. This will 

be considered to fall in the immediate next time slot. 

Activity 2: Data gathering and Time series formation. 

Case 1: Direct trust data. 

 Our service user determines if it has the context specific trust information 

of the service provider for the specified time horizon in its direct trust table. 

Available data are then distributed into time slot intervals over the time 

horizon using the time point of each record. In other words, all the 

interactions with their time points falling in a particular time slot are 

grouped together. Then in each slot, aggregation method in Eq. (3.8) is 

applied to generate a single direct trust value. This value is tagged with the 

interval number i.e. the time slot number. Here we assume that all intervals 

will receive at least one data point. This can be done by adjusting the slot 

length. 

Case 2: Recommendation trust data. 

 Our service user issues a recommendation trust query to all other service 

users by specifying the time horizon and the Id of the service provider. The 

replies are collected and distributed into the time intervals over the horizon. 

Using Eq.(3.14)-(3.16), the data points falling in each interval are converted 

into a single recommendation trust value. Each value is tagged with the 

respective interval number. 

We call the time series generated in either case as  
1

N

t t
Y y


   where N  is the 

number of intervals in the time horizon and ty  is the direct trust or recommended 

trust value of each slot. ThusY   becomes a time series sampled with time equal 

to slot duration.  
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Activity-3: Coarse Graining of Time Series 

In this phase of our prediction procedure, the data required for model making 

are collected. The trajectory of the time series is first segmented as explained 

below. 

From the field of non-linear time series analysis, there exists a mapping f  in the 

state space satisfying: 

1 2( , ,....., )t t t t my f y y y                                               (3.34) 

The prediction of the time series is the regression of the trajectory over the 

observed samples and generating the future value from the reconstructed state 

space  

1[ ,...., ]t t t mX y y                                               (3.35) 

Using Eq. (3.36) and Eq. (3.37) the original series  
1

N

t t
Y y


  is converted to 

series of segments. This may be noted that each time value t  has a 

corresponding pair [ , ]t tX y  assigned to it. Therefore we can visualize the original 

series as a series with [ , ]t tX y  as its observed value. We called this new series as 

coarse grained series of our trust series  
1

[ ]
N

t t t m
D X y

 
 . 

Regime selection and regime evolution 

We define a regime as the cluster that contains vectors representing same 

volatility region of the coarse grained trust time series  
1

[ ]
N

t t t m
D X y

 
 .  

Regime selection is implemented in the space 1m  of the joint velocity of the 

state vector and the corresponding output - 1 1, ,t t t t t tX y X X y y .  

The velocity vector of the state vector is  

1 1 2 ( 1), ,.......,t t t t t t m t mD y y y y y y                                      (3.36) 
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As the instantaneous velocity of the trajectory,  
d

dt

X
  is unavailable from the 

discrete time series, this segmentation operation using tD  intends to enable the 

velocity based segmentation more precisely. The regime selection is achieved 

by using fuzzy-C mean clustering [22]. The clustering mechanism calculates the 

cluster membership degree i  as the degree to which tD  belongs to cluster iS  

and updates the cluster centers iC  iteratively to minimize the objective function 

2( ( ))
R N

i t i
i j

O t D C                                                   (3.37) 

where R  is the number of clusters. Using the membership degree obtained from 

the clustering algorithm, each [ , ]t tX y  is assigned to a cluster iS   if its 

membership degree for iS is maximum. If each cluster now contains vectors 

representing same volatility region of the coarse grained trust time series

 
1

[ ]
N

t t t m
D X y

 
 .  

The whole time series is regarded as the evolution of the regimes over time. In 

this manner, we look into the trust series at a coarse level. The principle behind 

our approach is that each regime represents a set of similar behaviour patterns 

over time horizon hT . Such regimes must be extracted to learn a set of local 

models. The number of regimes (of clusters) R  is an open parameter to be 

decided empirically. 

Markov Modeling Phase 

In this phase, we generate a Markov chain model to represent the dynamic 

evolution of the regimes. The transition matrix of the chain is constructed in the 

following manner. 

Each observed trust value ty   is associated with a vector ,t t tz X y  from a 

particular regime, so we can model the original trust value sequence as a regime 

transition network using a Markov chain model.  
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We construct the Markov transition matrix R RA  to find the probability of 

changing from one regime to another regime between any two consecutive time 

slots. This is a way of finding the change in the behaviour pattern of our service 

provider. First we defined the following: 

Inter-regime transition, i jS S  :  A transition i jS S  is said to occur 

from time t  to time 1t  if  t iz S  implies 1t jz S   

Intra-regime transition, i iS S  : A transition i iS S  is said to occur 

from time t  to time 1t  if t iz S    implies 1t iz S  

Then we define the regime transition probability of the Markov matrix as  

1

(S )
(S )

(S )
i i

i i
S S i i R

i k
k

TotOf S
a p S

TotOf S

                                             (3.38) 

1

( )
( )

( )
i j

i j
S S i j R

i k
k

TotOf S S
a p S S

TotOf S S

                                          (3.39) 

where the TotOf  operator counts the total number of transitions from cluster to 

cluster. 

Markov chain model based prediction  

Once the Markov transition matrix R RA  is constructed in the Markov chain 

modeling phase, we are ready for prediction of the future trust value. The 

prediction for trust value for future time point is done in the following steps. 

Activity 1: Construction of current state vector ( cV )  

Current state vector is a vector of size 1 R . First for the last time spot N, the 

associated vector t Nz  is identified and its owner cluster iV  is decided. Then the 

ith  entry of the state vector cS is set to 1 and all other entries are set to 0.  
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Activity 2: Finding of Next state vector ( fV ) 

Future state vector is generated by *f cV V A .  

Activity 3: Training data selection 

Using the future state vector, fS  the next regime(s) are identified to select the 

training data for the predictor GP. Selection is based on the following 

observation. 

Observation 1: The current regime vector t Nz  and the next regime vector 

1t Nz  in the coarse time series will have ( 1)m values in common.  

This can be clarified from the Figure 3.9. This observation helps in filtering the 

training set of our GP. 

 

Figure 3.9: Common values between adjacent regime vectors 

This may be noted that due to windowing effect in the generation of coarse 

grained series, the substring ( 1)[ ,..... ]N m Ny y  of  NX  is the state vector for next 

time spot 1N . The value 1Ny  is our target of the prediction.  From the next 

state vector fV  we can find one or all the regimes (clusters) that immediately 

follow the regime at timeN .  Either only the regime with the highest transition 

probability value in fS can be taken as the next regime or all regimes with none 

zero transition probability value can be considered. Former can be considered 

as winner takes all policy of lazy learning while the latter in ensemble approach. 

We use the ensemble approach but with a filtering procedure. We generate the 

training set in the following manner. 
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Current regime vector [ , ]n N Nz X y   is identified as the last regime vector in the 

coarse time series. Its owning regime as given by current state vector cV is called

NS .  

All the regimes, whose transition probability in future state vector fV  is non-

zero, are identified. They represent the groups of possible behaviour patterns of 

the service provider in the future time slot. The regime vectors of the form 

,
i i
X y belonging to these clusters are filtered further by examining their time 

slots. Only the vectors whose time slot comes next to the time slot of any of the 

vector in NS  are retained in a group. Before applying this filtering we have to 

remove, nz  from NS .For each regime vector, ,i i iz X y in the group, a modified 

form of normalized cross correlation between NX  and iX  of  iz is calculated as   

1

2 21

1 1

( , )

*

m

N j i j
j

N i
m m

N j i j
j j

y Y y Y

xC X X

y Y y Y

                                     (3.40)  

Where Y  is the mean of all observations in the trust time series  
1

N

t t
Y y


  For 

this calculation please refer to Eq. (3.17).  We use Y  as specified because when 

the state vector  iX  or NX  is a flat pattern, ( , )N ixC X X  is undefined if we take 

the mean of iX  or NX  in calculation of Eq. (3.47). 

Only the regime vectors whose ( , )N ixC X X value is above a given threshold thxC  

are selected from the group and are retained in the final training data set of our 

GP.  This process is like finding the nearest neighbour of NX . 

Activity 4: Local GPR training  

The training set formed in the above process are used to train a GPR model.  For 

this purpose, first we select the kernel of our GP as the square exponential 

kernel. 
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' 2
' 2

2

( )
( , ) exp( )

2
f

x x
k x x

l
                                                (3.41) 

This kernel is a stationary kernel with the hyper-parameter l representing its 

length scale. The full set of hyper parameters of our GP is accumulated in 

{ , , }f nl  . These hyper parameters are learnt by Polak-Ribiere line search 

optimization method to minimize the objective function in Eq. (3.24).  We used 

the Matlab source code available at http://www.gaussianprocess.org/gpml. 

Activity 5: Future Value Prediction 

Now we take  * Nx X  as the new point for the prediction of *f   from the GP 

using Eq. (3.5).  The prediction model is a local GP model because the regime 

vectors are selected not from all clusters. Only the clusters with non-zero 

transition probability from 
fS  are used.  To check the efficiency of our model, 

we also use a global GP which is trained by using all the regime vectors of the 

coarse grained trust time series. The query point *x  of this global model is 

selected from the training set of the local GP model. The selection approach is 

as given below. 

For every pair of regime vectors ( , )i jz z in the local training set formed above, 

Eq. (3.40) is extended to calculate correlation between them by including [ , ]i jy y

in the calculation. The required equation is given in Eq. (3.42). After calculating 

the pairwise distances, we select the regime vector which average similarity is 

the maximum. Let it be iz . Average similarity is calculated by Eq. (3.43) 

0

2 21

0 0

( , )

*

m

i k j k
k

i j
m m

i k j k
k k

y Y y Y

xC z z

y Y y Y

                                        (3.42)  

1

( , )
i

K

z i j
j

xC z z                                                    (3.43) 
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where K is the total number of regime vectors in the training set. By using the 

average similarity we are, in a way trying to find the regime vector which has 

occurred most frequently in the past. This is the most likely pattern to follow 

the current regime Nz .Then * ix X  is use as the test point to predict *f   from 

the global GP using Eq. (3.22). 

Model-2: Hidden Markov Model based prediction 

Model-2 has the same activity flow as model-1. The only difference between 

the two models is in the Markov modeling and predictions step. We explain only 

these two phases of model-2 in the following. 

Markov Modeling Phase 

The schematic view of the model-2 is shown in the Figure 3.10 below.  

 

Figure 3.10: Schematic view of Prediction Procedure of Model 2 

Activity 1: Local GPR Training 

In model-2, we trained one local expert in the form of a GPR for each regime 

identified. The same GPR training procedure used in model-1 is followed. 

Activity-2: Training of CHMM 
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Using the trained local experts, a HMM model with the emission probability 

given by Eq.(3.49) is trained to model the evolution of the coarse grained series 

 
1

[ ]
N

t t t m
D X y

 
 . We called it Coarse Grained Hidden Markov Model 

(CHMM). We explain the CHMM model training and prediction in the 

following.    

Definition of CHMM: 

Formally, a discrete time CHMM,    , , ,S A B   is defined by the following 

elements: 

• A set  1 2,  ,..., RS s s s of (hidden) states. States correspond to regimes. 

• A state transition matrix    
i js saA   of size R R , where each element 

i js sa  is the probability of transition from state 
is  to state

js . 

• The matrix  
1 2

  , ,...,
Rs s sB     where an element 

is
  the variance of 

the state is  when the Gaussian error distribution  
is tb y is applied. 

2
ˆ( ( ))

22

2

1
( ) e

2

y yt si

si

i

i

s t

s

b y








Xt

                      (3.49) 

• Initial state probability distribution   
is

  , where an element 
is

  is 

the probability of being in state 
is  at the time 1 

 

Thus our CHMM is completely defined by a three-tuple    , ,A B   . The 

transition matrix A , the vector of variances  
1 2

  , ,...,
Rs s sB    , and    are 

called the parameters of the given CHMM. The number of states S R  is the 

only hyper-parameter in CHMM model which is to be fixed a priori. It reflects 

the number of behavioural patterns of our service provider. 
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Parameter estimation of CHMM: 

The parameters of our CHMM estimated according to the maximum likelihood 

principle using the expectation-maximization (EM) algorithm [125] which is 

Baum-Welch algorithm. Our implementation of the Baum-Welch algorithm 

updates these parameters over iterations of two steps of expectation and 

maximization. 

Expectation (E-step) 

In the E-step of the thr  iteration, the forward variable 
( )r    and backward 

variable 
( )r  are calculated from the current parameter estimates according to 

recurrence Eq. 3.50 and Eq. 3.51. Then the probability 
( )

s ,i j

r

s n  of having the 

successive pair of regimes n iq s and 
1n jq s  given all the data is estimated in 

Eq. 3.52. Also the posterior probability 
( )

,i

r

s n  having the regime, given all data, 

is estimated according to Eq. 3.53. 

 
, 1 1 ,

1

,1 ,1 1

( ) ; 1,...., ; 1,...., 1

( ); 1,....,

i i j j i

i i i

R

s n s n s n s s

j

s s s

b y a i R n N

b y i R

 

 

 




    


  


         (3.50) 
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1 1,...,
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 
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
    
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
         (3.51)  
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, ,

, 1 2

, ,

1

( | ... ) , 1,....,i i

i

j j

s n s n

s n n i N R

s n s n

j

p q s y y y n N
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

 

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
 (3.53) 
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Maximization (M-step) 

In the thr  iteration, the hyper-parameters 
1i

R

s
i




, A and   are re-estimated  

using Eq.(5.44) and (Eq.3.56) respectively. 

  

 

 
2

( 1) ( )

,
( 1) 1

( )

,

1

ˆ ( )
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r n

s N
r

s n

n

y y

i R








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



 




X

         (3.54) 
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a i j R






 





 



                      (3.55) 

( 1) ( )

,1 ; 1,...,
i i

r r

s s i R                                 (3.56) 

Initial guesses for these hyper-parameters need to be provided to start the 

iteration. We initialize 
is

  of the 
thi  regime, A  and   uniformly.  

Future Value Prediction Phase 

In this phase, the prediction of the trust value is performed by using trained GPR 

model(s). The various activities performed during prediction are different from 

model-1. The prediction for trust value for future time point in this model is 

done in the following steps. 

Step 1: Selection of the query point *x  

We take the last m  values of our trust time series as our query point i.e. 

* ( 1), 1[ ..... , ]query N m N Nx X y y y  

Step 2: Construction of posterior probability vector (P ):  

Using the observed sequence,  1O  ,  N 2X X , . . . , X , we  run one 

execution of the Viterbi algorithm 3.1 in our trained  CHMM to find the 
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most likely state sequence at time N . The last state in the state sequence 

returned by the Viterbi algorithm is the most likely state at time, N . Let this 

state be is . Then we find the th
is row in the transition matrix A  of our 

optimized CHMM. Let the row be
1 2, ,[ ....., ]

Rs s sp p p . Each ,js
p in this row 

provides the transition probability of  state is  in time N  to the state  js  in 

time 1N .    

Step 3: Prediction of future trust value. 

Finally, the future trust value is calculated as a weighted average according 

to Eq. (3.57). 

*.
i i

R

final s s

i i

T p f


                                                       (3.57) 

Here 
*is

f  is the prediction obtained from the 
thi  Local GPR expert.  

We formally summarize the prediction steps for both models in the form of 

algorithms in the following. 

Algorithm 3.4: Markov Chain Based Trust Prediction 

Inputs: 

1. No of regimes, .R  

2. Regime vector selection threshold, .thxC  . 

3. Kernel function, cov . 

4. Mean function, mean . 

Outputs: 

1. Predicted future trust value, *f .  

2. Prediction variance, var . 

 

Steps: 

 

1. [Set the time horizon of prediction] 
 

etTHorizon()hT g   
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2. [Set the length of a time interval] 
 

 etTDuration()T g  
 

3. [Set the time point for prediction] 
 

etTSpot()pT g  
 

4. [Calculate the number of time intervals] 
 

calcNumInter( , )hN T T      
 

5. [Collect trust/reputation values over the time horizon] 
 

genTrustSeries( )hY T . 
 

6. [Obtain model order] 
 

getModelOrd()m   
 

7. [Prepare coarse grained series] 
 

genCoarsedSeries( , )D Y m . 
 

8. [Obtain regimes] 
 

1 2[ , ,...,s ] ( , ).Rs s fuzzyCmean R D  
  

9. [Generate Markov chain ] 
 

1 2([ , ,.. ])R R RA getMarkMatrix s s s    
 

10. [Obtain current state vector] 
 

1 2getCurrState([ , ,...,s ], )c RS s s R   
 

11. [Obtain next state vector] 
 

getNextState( , )f c R Rs S A    

12. [Obtain query state vector] 
 

* getQPoint( )x D   

13. [Generate training points] 
 

1 2 *getTrainingSet([ , ,...,s ], , , )R f thX s s x s xC   
 

14. [Train GPR prediction model ] 
 

minimize( ,cov, )hyp mean X    
 

15. [ Predict future trust value] 
 

* *[ , var] gp( , ,cov, , )f hyp mean X x    
 

16. [Return the predicted future trust value and prediction 

variance] 
 

return *, varf   
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Algorithm 3.5: CHMM Model Based Trust Prediction 

 

Inputs: 

1. No of regimes, .R  

2. Kernel function, cov . 

3. Mean function, mean . 

Outputs: 

1. Predicted future trust value, 
finalT .  

 

Steps: 

 

1. [Set the time horizon of prediction] 
 

etTHorizon()hT g   
 

2. [Set the length of a time interval] 
 

 etTDuration()T g  
 

3. [Set the time point for prediction] 
 

etTSpot()pT g  
 

4. [Calculate the number of time intervals] 
 

calcNumInter( , )hN T T      
 

5. [Collect trust/reputation values over the time horizon] 
 

genTrustSeries( )hY T . 
 

6. [Obtain model order] 
 

getModelOrd()m   
 

7. [Prepare coarse grained series] 
 

genCoarsedSeries( , )D Y m . 
 

8. [Obtain regimes] 
 

1 2[ , ,...,s ] ( , ).Rs s fuzzyCmean R D  
  

9. [Train one GPR expert for each regime] 
 

 

1 2[ ... ] minimize( ,cov,[ , ,.. ])
i Rs s Rhyp hyp mean s s s  

 

10. [Estimate CHMM Model ] 
 

1 2[ ,[ ... ],[ ... ]) ([ , ,.. ])
i R i RR R s s s s RA paraEstCHMM s s s       
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11. [Obtain query point] 
 

* get int( , )x Qpo Y m   
 

12. [Obtain mixing probability vector ] 
 

1 2, 1,[ ....., ] getPProb ( ,  , ,s , )
R Ns s sp p p A B2X X , . . . , X   

 

13. [ Predict future trust value] 
 

1 21 2 , , *gp([ ... ], ,cov,[ , ,.. ],[ ....., ], )
i R Rfinal s s R s s sT hyp hyp mean s s s p p p x  

  

14. [Return the predicted future trust value] 
 

return 
finalT   

 

  

3.4 Experiments and Results 
 

The objective of the experiments is to compare the performance difference 

between our proposed prediction models and the existing methods using 

synthetic data, two real datasets and a simulation test-bed. 

We compare our models with two other typical general trust models: 

Summation model [21] and Bayesian model [145]. We present here a brief 

explanation of these two models. 

The summation model is widely used general model. Commercial services like 

eBay and specific environment like P2P networks (in the Engentrust [135]) use 

summation model. The summation model calculates the feedback score as

S P N  , where P  is the number of positive rating and N is the number of 

negative ratings. Finally, the reputation score is calculated as / ( )R P P N  . 

The model in [8] computes the trust value according to the beta probability 

density function (PDF). The QoS value is mapped to one of the 2   levels. 

Corresponding to the 
thi  QoS level a counter ie  is maintained. After each 

transaction, QoS experience is mapped to one of the levels and increase the 

corresponding count by one. Using a Dirichlet-Multinomial model and 
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Bayesian inference, the reputation score for the 
thi   level is generated after each 

transaction by using the formula. 

i i
i

i ii

e
r

e










 

Here i  is the “prior count” of the 
thi   level and is uniformly set to 1 for all 

1 i   . At the end of any transaction, a user calculates, the trust value as the 

aggregate of the reputation scores of his/her desired levels according to the 

formula. 

h

l

f i

i

t r




  

Here 
l

 and 
h

 the lowest and highest QoS levels defined by the user. For 

example, if the QoS attribute, say time (in seconds)t , may be classified as six 

levels : 1 2 3 4 560( ),48 t 60( ),36 48( ),24 36( ),12 24( ),t l l t l t l t l        

and 612( )t l . For a user, if the minimum and maximum levels are 3l  and 1l  

respectively, then a time value greater than or equal to 36 seconds will be 

considered a good one. 

3.4.1 Experiment using Synthetic data 
 

3.4.1.1 Data Generation 

 

We generate a data series of 1000 data points. The next value in the series 

changes randomly with a factor   (next value/current value). We assume a wide 

range [0.6, 1.4] for the factor so that the models can be tested in a difficult 

situation. Moreover, the minimum and maximum values of the series are set to 

be 0.1 and 1, respectively. The generated synthetic data used for the experiment 

is shown in Figure 3.11. Out of these 1000 data point 500 points are used as the 

past direct trust or reputation trust series to train the models and remaining 500 

points are used in the prediction. 
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Figure 3.11: Reputation or Trust synthetically generated.  

 

3.4.1.2 Parameters Setting 

 

There are some open parameters that are to be set before the experiment. The 

model order i.e. lag value m is decided by FNN method [24]. The number of 

clusters, R  is selected experimentally by Elbow method [159]. We found R = 

4.  

3.4.1.3 Experimental Results 

 

For comparison, a rolling prediction is performed by allowing the next value of 

the series to enter into the training set sequentially. In the first prediction step, 

first 500 time points (i.e. data points) are used as the trust time series to train 

both global and local GPRs. Using the last regime vector of the training series, 

the future value at time point 501 is predicted. In the second prediction last 501 

points are used to train the models and the value at time point 502 is predicted 

from the models. The process is repeated till prediction for the last time point 

999 is done. 
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Figure 3.12: Predictions from Markov Chain Local GPR (MLGPR) using 

square exponential GP kernel. 

 

Figure 3.13: Predictions from Markov chain Global GPR (MGGPR) using 

square exponential GP kernel. 

 

Figure 3.14: Prediction from Coarse Grained Hidden Markov GPR 

(CHMMGPR) using square exponential GP kernel. 
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The predicted result is shown in the Figure 3.12, Figure 3.13 and Figure 3.14. 

The blue line represents the actual trust/reputation values. Red stars are the 

predicted values. We can observed that CHMM based model and Markov chain 

local GPR (MLGPR) outperform the Markov chain global GPR (MGGPR). 

Among CHMMGPR and MLGPR, CHMMGPR has better prediction accuracy. 

In the next experiment, we compare our models with other two models 

[21][145]. We run all the models using the same synthetic data. Since the trust 

values are in the range [0.1 1], we considered any value less than  0.45 as “bad” 

and  value equal to or greater than 0.45 as “good”. In this way we obtained only 

two levels for the implementation of the model in [145]. The levels are 

1( 0.45)( )iy l  and 2(0.45 y 1.0)( )i l  . We take 2l hv v l  . The cumulative 

distribution functions of the prediction errors given by the four models are 

plotted in Figure 3.15.  

Figure 3.15: Cumulative distribution of prediction errors.  
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We can see from the plot that CHMM based model (CHMMGPR) and Markov 

chain based local GPR (MLGPR) are better than  the Bayesian and Summation 

models. The majority error given by CHMGPR and MLGPR are less than 0.1 

However due to slow growth in the cumulative, curve, CHMMGPR has more 

prediction accuracy compared to MLGPR  

Errors in Bayesian and Summations models spread to 0.5. Further, we can see 

from the plot that Bayesian model is slightly better than summation model. The 

Markov driven global MGGPR does not perform well in the prediction.  

 

3.4.2 Experiment using Real Data set. 
 

3.4.2.1 About the Real Data set 

 

We conducted second round of experiments to test the accuracy of our proposed 

models by using real life the dataset available at Cloud Armor Project web site 

http://cs.adelaide.edu.au/~cloudarmor/ds.html. The dataset consists of 10,000+ 

trust feedbacks given by nearly 7,000 consumers to 113 real-world cloud 

services.  

 3.4.2.2 Data Preparation 

 

The Cloud Armor dataset contains values of QoS attributes – availability, 

security, response time, accessibility, price, speed, storage space, features, ease 

of use, technical service, and level of expertise. Along with these attributes, the 

trust values of the services are also recorded at various time intervals. However 

most the services have their QoS and trust values recorded for short duration. 

So we have selected a service “1and1”. There are 567 feedback sessions 

recorded for this service. Not all QoS attributes have their values recorded. Only 

the values for availability, price, and technical service are recorded. Out of 

these 567 feedback ratings, there are missing values of these QoS attributes on 

http://cs.adelaide.edu.au/~cloudarmor/ds.html
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three cases date September 10, 2009, March 18, 2011 and March 26, 2011. 

Another 26 cases where all values were entered as zeros were found.  

Table 3.4: Details of data set selected from Cloud Armor dataset. 

Cloud 

Service 

Name 

Data 

points 
Time 

QoS Attribute Value (continuous) 

Trust Availability Price Technology  

Support 
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We removed these cases from the data set and finally obtained a trust time series 

538 time points. The details of the data set selected are given in the Table 3.4. 

Figure 3.16 visually shows the nature of the whole dataset we used in this 

experiment. The plot shows the variation of the trustworthiness of cloud service 

‘1and1’ with the perceived QoS attributes.  The color bar shows the range of 

trust values. It can be observed that majority of the trust values are distributed 

in the middle range. There are only 44 cases in which the user obtained the best 

service from the cloud service provider “1and1” and hence were given a 

trustworthiness level of 5. In 26 cases, the service failed to deliver and were 

reported its trustworthiness level as 0. In the rest of the transactions, the cloud 

service was changing its trust level. 
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Figure 3.16: 3D plot of the trust values against the QoS attribute for the Cloud 

service ‘1and1’ 

 

3.4.2.3 Experimental Results 

 

We performed experiments to access the correctness of our proposed models in 

the prediction of trust value from a given set of <QoS attributes,trust> pairs.  

In this experiment, we wanted to predict the trust value using the corresponding 

QoS attributes. In other word, we want to recover the following functional 

relationship between the QoS attributes and trust.  

( , , )Technolof availabili gySupportty price trust  

Since the number of data points is 538, we used a smaller number of points i.e. 

only first 100 points as the training set. Using Elbow method, the number of 

cluster 3R   was decided for 0.90thxC  . Since the predictor vector is a 3-

dimension consisting the values of the three QoS attributes, the model order is 

fixed at  m=1. Using these values of the opened parameters, we first clustered 

100 test data points into three clusters. Using these three clusters, we 

constructed our Markov chain based models – both local and global, and the 

CHMM based model. Using these models, the predictions for the remaining 438 

QoS attributes values were performed.  
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The prediction from the Markov chain Global GPR show exact matches of the 

real value and predicted value at 311 cases out of 438 cases. The scatter plot of 

absolute Error in Figure 3.17 shows this results. Here the cross marks in blue 

color are the predicted values and red ones are the real values. These are the 

cases where MGGPR made maximum errors in prediction. The range of 

prediction error ranges from 0 to 3 as shown in Figure 3.18. 

 

Figure 3.17: Prediction from Markov Chain based Global GPR. 

 

Figure 3.18: Scatter plot of prediction error using Markov chain Global GPR 

 

The performance of the Markov chain based Local GPR is shown in Figure 3.19 

and Figure 3.20. The number of exact prediction cases has been increased to 

322 i.e. an increase of 2%. Though it is not a significant improvement, it can be 
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observed that the error margin in the prediction has been reduced to 1.5 as 

shown in the scatter plot of the errors in Figure 3.21.  

 

 

Figure 3.19: Prediction from Markov Chain Local GPR. 

 

Figure 3.20: Scatter plot of prediction error using Markov chain Local GPR. 

 

The best results are obtained from our CHMM based GPR model. There is an 

increase of 7% in the number of exact matches between the predicted and real 

values as shown in Figure 3.21.  
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Figure. 3.21: Prediction from Coarse Grained HMM GPR 

 

Moreover, there is a significant reduction in the error margin in the prediction. 

This can be confirmed from the scatter plot of prediction error for Coarse 

Grained Hidden Markov Model GPR in Figure 3.22 

 

Figure. 3.22: Prediction error from Coarse Grained HMM GPR 

 

 

3.5 Discussion and Conclusion 
 

We have proposed a trust model based on Markov modeling of dynamic 

behaviour and the machine learning approach of Gaussian Process. Two models 

have been proposed. These models provided a framework of using 
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nonparametric regression technique of Gaussian process in the prediction of 

direct trust and indirect trust from the past interactions. 

The models’ prediction accuracy has been investigated experimentally using 

both synthetic and real life data. The empirical results show promising future of 

the framework. One of the advantages of the proposed framework is their ability 

to recover the trust value from the associated QoS attributes. This may be of 

particular importance whenever we do not have any information of the function 

that mapped the QoS attributes to the trustworthiness value. What our model 

can achieve is to learn this mapping from QoS attributes to trust value. Such 

requirements arise in the prediction of missing values in a particular dataset. 

Another advantage is the use of local model over the global model. As 

trustworthiness bahaviour of a Web service is dynamic, depending on a single 

global model for future value prediction may not be able to capture this time 

dependent variations in the predicted value. This fact was experimentally shown 

by the better accuracy rate of our Markov chain Local GPR and Coarse grained 

Hidden Markov Model GPR over the Markov chain global GPR. Further it was 

shown that Hidden Markov Models are more powerful tool to model time 

variant dynamic processes such as trust and reputation.  

Kernels of a GP describe the input data pattern. So an extension can be done to 

use different GPs with different kernels and use a model selection approach to 

choose the best model at a given time. This is the main motivation of our work 

in Chapter 4. 
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